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Abstract—As the scales of parallel applications and platforms
increase the negative impact of communication latencies on
performance becomes large. Random network topologies can be
used to achieve low hop counts between nodes and thus low
latency. However, random topologies lead to increased aggregate
cable length and cable packaging complexity on a machine room
floor. In this work we propose two new methods for generating
random topologies and their physical layout on a floorplan:
randomize links after optimizing the physical layout, or optimize
the layout after randomizing links. The first method randomly
swaps link endpoints for a given non-random topology for which
a good physical layout is known. The resulting topology has the
same cable length and cable packaging as the original topology,
but achieves lower communication latency. The second method
creates a random topology with random links picked so that they
will not lead to a long physical cable length, and then solves a
constrained optimization problem to compute a physical layout
that minimizes aggregate cable length. We quantitatively compare
these two methods using both graph analysis and cycle-accurate
network simulation, including comparisons with previously pro-
posed random topologies and non-random topologies.

Index Terms—Network topologies, cabinet layout, interconnec-
tion networks, high-performance computing

I. INTRODUCTION

Large parallel applications to be deployed on next genera-
tion High Performance Computing (HPC) systems will suffer
from communication latencies that could reach hundreds of
nanoseconds [1], [2]. There is thus a strong need for devel-
oping low-latency networks for these systems. Switch delays
(e.g., about 100 nanoseconds in InfiniBand QDR) are large
compared to the wire and flit injection delays even including
serial and parallel converters (SerDes). To achieve low latency,
a topology of switches should thus have low diameter and
low average shortest path length, both measured in numbers
of switch hops. Fortunately, high-radix switches with dozens
of ports are now available, as seen in the YARC routers for
folded-Clos or Fat-tree networks [3]. These switches make it
possible to design low-latency topologies with higher degree
than traditional high-diameter topologies, e.g., the 3-D torus
used in the BlueGene/L supercomputer [4].

Traditional topologies use regular structures that can match
application communication patterns [4], [5]. One drawback of
using a regular structure is that it strictly defines network size
(e.g., kn vertices in a k-ary n-cube topology) even though
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Figure 1. (a) Diameter vs. degree for a 210 topology, for non-random
topologies and the random shortcut topology proposed in [6], and (b)
aggregate cable length vs. N (degree is log2N ).

the scale of an HPC system should be determined based on
electrical power budget, surface area, and cost. Furthermore,
additional mechanisms must often be used as part of routing
algorithms so as to maintain topological structure in the face of
network component failures [4], [5]. As the number of inter-
cabinet cables increases, the number of backup cables pro-
portionally increases. These backup cables must be installed
at deployment time since adding cables once the platform is
deployed is costly.

Random shortcut topologies are generated either as fully
random graphs [7] or by adding random links to classical
topologies [6], [8]. These topologies achieve low diameter, low
average shortest path length, and thus low end-to-end network
latencies [6]. Figure 1(a), which reproduces results in [6], plots
diameter vs. node degree, using a logarithmic scale on the
vertical axis, for seven non-random topologies with 210 ver-
tices: 2/3/4-D torus, hypercube, twisted hypercube [9], folded
hypercube [10], and flattened butterfly network [11]; and for
the “ring plus random shortcuts” topology proposed in [6]. The
striking observation is that, for a given degree, random shortcut
topologies have (often dramatically) lower diameter than non-
random topologies. Furthermore, a small number of random
shortcuts is sufficient to obtain low diameter, as seen in the
curve’s sharp initial drop. Similar results are obtained when
considering average shortest path length. Another advantage of
random topologies is that they naturally mitigate the problems
of component failures and of human errors that lead to mis-



connected link ports during system deployment.
A practical concern for random shortcut topologies is long

cable length for a physical deployment [7], [6]. Aggregate
cable length can reach astronomical proportions in deployed
systems that use non-random network topologies. For example,
the first generation Earth Simulator required over two thousand
kilometers of cabling [12], while the K-computer requires
one thousand kilometers [5]. The use of random shortcuts
further increases cable length, and thus cost. Figure 1(b) shows
average cable length versus network size for a hypercube
topology, a torus topology and for the random shortcut topol-
ogy proposed in [6]. For a given network size all the topologies
have the same degree, and they use a standard physical layout
by which switches are taken in the canonical topological order
and mapped to cabinets sequentially. We see that the cable
length of the random topology is about three times larger
than that of the hypercube and torus, meaning that its cost
would be significantly higher in practice. Another concern with
random shortcut topologies is cable packaging. As the number
of cabinet pairs that are directly connected by at least one
cable increases, the cable packaging becomes more complex,
also increasing cost. Previously proposed random topologies
tend to connect all cabinet pairs. We conclude that, in spite of
good performance results, random shortcut may thus become
impractical at large scale due to the added cost.

To address the above issue we propose and evaluate two
methods for generating random topologies and their physi-
cal layouts: one method randomizes links after optimizing
the physical layout while the other randomizes links before
optimizing the physical layout. The first method, which we
term permutation, uses a known good physical layout for a
non-random topology as a starting point and swaps endpoints
between pairs of links in a way that conserves cable length.
One advantage of topology permutation is that it can be
applied to HPC systems that are already deployed in a machine
room using a non-random topology: it only requires swapping
the endpoints of some pairs of physical links and updating
routing tables. The second method, which we term constrained
shortcutting, generates a random shortcut topology starting
from a ring and adding shortcut links to it, as in [6], but
these shortcuts are created to bypass a small number of nodes
so as to reduce the potential for long cable lengths. Then, a
graph clustering algorithm is used to group switches together
in cabinets, and cabinets are mapped to a physical floor by
solving a facility location problem. Our main contributions
are as follows:

• We find that a permuted topology has better performance
properties than its non-random counterpart (lower diame-
ter, lower latency, identical bisection bandwidth, identical
or higher throughput). The performance improvement is
lower than that achieved by random shortcut topolo-
gies [6], but comes at no increase in cable length. This
result shows that randomness of endpoints, rather than
the shortcutting effect of bypassing switches, is sufficient
to improve performance.

• We find that constrained shortcutting in which shortcuts

connect only nodes that are at most N /4 hops away on a
N -switch ring produces topologies that have essentially
the same performance properties as the unconstrained
random shortcut topologies in [6]. The main advantage of
constrained random shortcut topologies is that they can
be mapped to cabinets on a standard floorplan in a way
that reduces cable length significantly when compared to
their unconstrained counterparts.

• Our results provide a quantitative comparison of topology
permutation and constrained shortcutting in terms of
performance and aggregate cable length. One important
result is that as long as the degree is relatively large,
e.g., order log N for an N -switch network, then topology
permutation leads to the best trade-off between perfor-
mance and cabling cost. Note that such “large” degrees
are feasible due to the availability of affordable high-radix
switches.

• We find that the path computations necessary to fully
define our random topologies can be completed in only
a few minutes for networks with tens of thousand of
switches, meaning that they can be deployed in real-world
systems.

The rest of this paper is organized as follows. Related work
is discussed in Section II. Sections III and IV detail and
evaluate topology permutation and constrained shortcutting,
respectively, while Section V provides qualitative and quanti-
tative comparisons of both methods. Section VI discusses the
scalability of path computation. Finally, Section VII concludes
the paper with a brief summary of our findings, including
recommendations regarding which random topologies should
be deployed in practice.

II. RELATED WORK

A. Topologies of HPC Systems

A few topologies are traditionally used to interconnect
compute nodes in most HPC systems, and these topologies
can be used to interconnect high-radix switches [13]. In direct
topologies, each switch connects directly to a number of
compute nodes as well as to other switches. Popular direct
topologies include k-ary n-cubes, which include tori, meshes,
and hypercubes. Each topology leads to a different trade-off
between degree and diameter. All these topologies are regular,
meaning that all switches have the same degree (i.e., each
switch has the same fixed number of links to other switches).

Indirect topologies, i.e., topologies in which some switches
are connected only to other switches, have also been proposed.
They have low diameter at the expense of larger numbers
of switches when compared to direct topologies. The best
known indirect topologies are Fat trees, Clos network and
related multi-stage interconnection networks (MINs) such as
the Omega and Butterfly networks. MINs have uniform access
latency and they use different schemes by which link end
points are “shuffled” deterministically at each stage, so that
re-arrangeable or non-blocking data transfers are possible.



B. Graphs with Low Diameter

The problem of maximizing the number of vertices in
a graph for given diameter and degree has been studied
by graph theoreticians for decades, striving to approach the
famous Moore bound [14]. Several graphs with tractable
and hierarchical structure and good diameter properties have
been proposed for interconnection networks, including the
well-known De Bruijn graphs [15], (n,k)-star graphs [16],
etc. Another approach is to augment known topologies. For
instance, in the case of the hypercube, many variations have
been proposed: folded hypercube [10], twisted hypercube [9],
hierarchical hypercube [17], enhanced hypercube [18], Hyper
De Bruijn (hypercube plus De Bruijn) [19], hierarchically
constructed Hypernets [20], etc. Some of these variations
have also been proposed for k-ary n-cubes, such as express
cubes [21].

The low diameter properties of random graphs have been
identified in the theoretical literature, e.g., for a ring with
random chordal shortcuts [22]. The effectiveness of random,
or seemingly random, shortcuts to reduce diameter has been
exploited for real-world complex networks, e.g., social net-
works and Internet topology. The small-world property of
these networks has been studied in the literature. Watts and
Strogatz [23] propose a small-world network model based on a
probability parameter that smoothly turns a single-dimensional
lattice into a random graph, in which a small number of long
edges are used to reduce the diameter drastically. Other small-
world networks rely on lattice structure plus random links that
are generated by accounting for the distance along the lattice
structure [24].

Most of the above hierarchical or random topologies are
constructed for fixed numbers of nodes and/or strive to achieve
a node degree as low as possible. Furthermore, some of these
topologies use non-uniform node degrees, which complexifies
their use in a real deployment. By contrast, in this work
we focus on topologies of high-radix switches in which
maintaining as low node degree as possible is not a pressing
concern. Furthermore, some of our proposed topologies do not
impose any constraints on the number of nodes. Finally, all our
proposed topologies have uniform node degree.

Recently, small-world graphs have been proposed for de-
signing data center networks with increased expandability,
fault tolerance, and throughput [8], [7]. In [6] such graphs have
been proposed to reduce the latency in HPC interconnects,
based on the observation that adding random shortcuts to a
ring produce topologies with drastically lower diameter and
average shortest path length than same-degree non-random
topologies used traditionally in HPC systems. These random
networks, whether for a data center that uses a top-of-rack
switch for inter-cabinet connection or an HPC system in which
a large number of switches are connected by inter-cabinet
links [25], face the challenge of long aggregate cable length.

C. Cabinet Layout of Topologies

Cabinet layout on a floorplan is a concern when designing
large systems because it affects costs [11], [25]. The salient

features of a layout include cabinet footprint, number of
compute nodes and switches per cabinet, and cabinet spacing.
For instance, in the case of the Cray BlackWidow system, it
is estimated that each cabinet has a 0.57m× 1.44m footprint,
with 128 nodes per cabinet, and that the node/m2 density
should be 75 [11]. A common way to view this problem is
to come up with specifications for the widths of the aisles
between rows of cabinets. The ANSI/TIA/EIA-942 standard
recommends site layouts with alternating cold and hot aisles
with width at least 4ft and 2ft, respectively. A similar speci-
fication is found in [26]. In this work we assume that some
2-D physical layout of cabinets has been determined to comply
with the power/heat constraints of the system to be deployed.

The topologies used traditionally in HPC systems exhibit
both highly regular structures and low degree (e.g., the 3-D
torus in BlueGene/L). As a result, they map naturally to a
simple 2-D grid-like cabinet layout with low (or even opti-
mally low) aggregate cable length. This is no longer the case
for high-degree, and especially random, topologies. System
designers are thus faced with the difficult task of mapping
switches to a physical layout so as to reduce aggregate cable
length. In addition, the cost of the cabling medium increases
with the cable length between cabinets (e.g., for InfiniBand
the typical maximum length of passive copper is 10m, while
embedded optical is 100m [27]). In this work we focus on the
problem of reducing aggregate cable length when mapping
random topologies onto pre-determined physical layouts.

III. TOPOLOGY PERMUTATION

A. Two Permutation Methods

Consider an arbitrary physical layout of cabinets on a
floorplan, so that each cabinet contains the same number of
switches (and possibly compute nodes connected to these
switches). The switches are interconnected in some non-
random traditional topology, e.g., a 3-D torus, that maps well
to the cabinet layout in terms of aggregate cable length. We
use the notation x ↔ y to denote a link between switch x
and switch y. A natural permutation method proceeds in two
steps. In the first step, for each cabinet i, determine Ei, the set
of all intra-cabinet links that connect two switches in cabinet
i. Consider two links picked randomly in Ei, say a ↔ b and
c ↔ d. If all four switches a, b, c, and d are distinct, then
replace a ↔ b by a ↔ d and c ↔ d by c ↔ b, otherwise
do nothing. Remove both links from consideration, and repeat
until all links in Ei have been considered. In the second step,
consider all pairs of cabinets (i, j) with i 6= j. Considering
Ei,j , the set of all inter-cabinet links connecting a switch in
cabinet i to a switch in cabinet j, swap the endpoints of these
links using the same method as described for intra-cabinet
links.

Because all endpoint permutations are for links between the
same pair of cabinets, bisection bandwidth and cable length
are conserved. Figure 2 (a) shows an example initial topology
and Figure 2 (b) shows a sample permuted topology generated
using the above method.
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Figure 2. Example 18-switch 3-cabinet baseline non-random topology and
permuted topology.

An alternate method is to randomly swap endpoints without
using two separate steps for intra- and inter-cabinet links. For
each pair of cabinets i and j, i 6= j, let Êi,j = Ei,j ∪Ei ∪Ej ,
i.e., the set of all intra-cabinet links and all inter-cabinet links
with both endpoints in cabinets i and/or j. Randomly pick
two links in Êi,j , say a ↔ b and c ↔ d. If all switches
a, b, c, and d are distinct and if the two links are not both
intra-link cabinets in different cabinets, then replace a ↔ b by
a ↔ d and c ↔ d by c ↔ b, otherwise do nothing. Remove
both links from consideration and repeat until all links in Êi,j

have been considered. The number of intra-cabinet links and
the number of inter-cabinet links between any two cabinets
are identical to those for the baseline topology. Here again,
both the aggregate cable length and the bisection bandwidth
are conserved. But the topology can be considered as “more
random” than when using the two-step method. We term this
method fully random permutation and the two-step method
partially random permutation.

Note that this topology generation procedure may produce
a partitioned network. However, this happens with very low
probability, making it possible to simply regenerate the
topology until a non-partitioned network is obtained. Note
also that the generation procedure may lead to multiple edges
between the same pair of switches, but only the first such edge
is actually added and all other redundant edges are ignored if
the link duplication is prohibited.

B. Graph Analysis Evaluation

In this section we use graph analysis to evaluate the merits
of topology permutation when compared to non-random stan-
dard topologies and to fully random shortcut topologies. More
specifically, we consider the following random topology:

• RING-n: A ring of degree two with n − 2 additional
random shortcut links at each vertex [6];

and the following three non-random topologies:
• TORUS-n: A n/2-dimensional torus of degree n;
• HYPERCUBE: A hypercube of degree n for N = 2n

vertices; and
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Figure 3. Diameter (a) and average shortest path length (b) vs. network size
for the HYPERCUBE, P-HYPERCUBE, and PF-HYPERCUBE topologies
and the RING-x topology of the same degree.
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Figure 4. Diameter (a) and average shortest path length (b) vs. network
size for the FHYPERCUBE, P-FHYPERCUBE, and PF-FHYPERCUBE
topologies and the RING-x topology of the same degree.

• FHYPERCUBE: A folded hypercube of degree n+1 for
N = 2n vertices, in which an edge is added between
each vertex and its most distant multi-hop neighbor [10].

Let 2p be the number of vertices that fit in a cabinet. The
last three topologies above admit a natural mapping of the
vertices into cabinets that is known to have low aggregate
inter-cabinet cable length: simply assign vertices taken in the
canonical topological order to cabinets sequentially. In the
case of the TORUS-n topology, however, such straightforward
mapping is only valid when the total number of vertices is
N = 2p·n/2. These three topologies are thus good candidates
for evaluating our topology permutation approach. Considering
that each cabinet can hold 24 = 16 switches we denote by P-
topo, resp. PF-topo, the partially, resp. fully, random permuted
version of base topology topo, where topo is one of TORUS-n,
HYPERCUBE, or FHYPERCUBE.

Figure 3 shows exact values of the diameter and the average
shortest path length for HYPERCUBE, its two permuted
versions P-HYPERCUBE and PF-HYPERCUBE, and RING-
n as the number of vertices, N = 2n, increases. For a given n
value all four topologies have the same degree, thus allowing
for a fair comparison. We see that all random topologies
improve both metrics over the non-random HYPERCUBE. In



Table 1. Diameter and average shortest path length (ASPL) for the TORUS-4
and TORUS-6 topologies, and for the RING-n topology of the same degree.

N = 2n Topology diameter ASPL

256

TORUS-4 16 8.00
P-TORUS-4 10 5.59
PF-TORUS-4 11 5.96
RING-4 7 4.38

4,096

TORUS-6 24 12.00
P-TORUS-6 16 8.41
PF-TORUS-6 17 8.70
RING-6 7 5.06

all cases, P-HYPERCUBE leads to equivalent or better re-
sults than PF-HYPERCUBE, showing that randomly swapping
links in two separate steps for intra- and inter-cabinet links is
more effective than using a single step. In terms of diameter,
P-HYPERCUBE is outperformed by RING-n but improves
significantly over HYPERCUBE (e.g., for n = 12 its diameter
is larger than that of RING-n by 3 hops but lower than that of
HYPERCUBE by 4 hops). Similarly, P-HYPERCUBE leads
to larger average shortest path lengths than RING-n but still
improves significantly over HYPERCUBE (e.g., for n = 12
its average shortest path length is 0.72 hops larger than that
of RING-n but 1.63 hops lower than that of HYPERCUBE).
The gaps between P-HYPERCUBE and RING-n increase as n
increases. However, N = 212 already represents a very large-
scale platform. Assuming switches with 36 ports, each switch
would support 24 compute nodes for a total of 98k compute
nodes, or almost the number in the largest platform in the
Top500 list at the time this article is being written.

Figure 4 shows results for FHYPERCUBE and its permuted
versions. Note that the random shortcut topology used is
RING-(n + 1) so as to allow same-degree topology compar-
isons. As expected, diameters and average shortest path lengths
are lower than with HYPERCUBE. All random topologies
improve both metrics over the non-random HYPERCUBE,
with the exception of the diameter when n = 6. Again,
in all cases, P-FHYPERCUBE leads to equivalent or better
results than PF-FHYPERCUBE. In terms of diameter, P-
FHYPERCUBE leads to the same diameter as RING-(n +1),
improving over FHYPERCUBE by up to two hops. In terms
of average shortest path length, P-FHYPERCUBE leads to a
large improvement over FHYPERCUBE and is close to RING-
(n + 1) (e.g., for n = 12 its average shortest path length is
0.23 hops larger than that of RING-n but 1.24 hops lower than
that of HYPERCUBE).

Table 1 shows results for the TORUS topologies (with a
number of vertices constrained to be an integral power of p =
16 so that a straightforward layout of the vertices into cabinets
is possible). The main observations are similar to those for
HYPERCUBE and FHYPERCUBE. The random topologies
outperform the non-random base topology. P-TORUS-n is
more effective than PF-TORUS. While P-TORUS-n is not
as impressive as RING-n it improves significantly over the
base non-random topology. The gap between P-TORUS-n
and RING-n is larger than observed for the higher-degree
HYPERCUBE and FHYPERCUBE topology. This is because

the RING-n topology achieves low diameter and average
shortest path length for low n values, as seen in Figure 1(a).

We conclude that topology permutation leads to largely
improved diameter and average shortest path length when
compared to original non-random topologies. Furthermore, for
high-degree topologies such as hypercubes, it leads to result
that can be close to that of the random shortcut topology
proposed in [6]. In the next section we evaluate topology
permutation in terms of actual network latency and throughput
measured in simulation.

C. Simulation Evaluation

1) Methodology: We use a cycle-accurate network simula-
tor written in C++ [6]. Every simulated switch is configured
to use virtual cut-through switching. A header flit transfer
requires over 100ns that include the routing, virtual-channel
allocation, switch allocation, and flit transfer from an input
channel to an output channel through a crossbar. The flit injec-
tion delay and link delay together are set to 20ns. Each cabinet
stores 16 switches (except in the case of 64-switch networks,
in which case there are eight switches per cabinet). Routing
in hypercubes and tori is done with the protocol proposed by
Duato [28], and we use dimension-order routing for the escape
paths. For random topologies we use the topology-agnostic
adaptive routing scheme described in [29], with up*/down*
routing for the escape paths. In our simulation, four virtual
channels are used in all topologies. We also present results for
the Myrinet-Clos topology [30], for which we use up*/down*
routing.

We simulate three synthetic traffic patterns that deter-
mine each source-and-destination pair: random uniform, bit-
reversal, and matrix-transpose. These traffic patterns are com-
monly used for measuring the performance of large-scale
interconnection networks [31]. The hosts inject packets into
the network independently of each other. In each synthetic
traffic the packet size is set to 33 flits (one of which is for
the header). Each flit is set to 256 bits, and effective link
bandwidth is set at 96 Gbps. We pick relatively small packet
sizes since we wish to study the performance of latency-
sensitive traffic that consists of small messages [1].

Our results quantify two metrics: latency and throughput.
The latency is the elapsed time (in nsec) between the gen-
eration of a packet at a source host and its delivery at a
destination host. The throughput is the largest amount of traffic
(in Gbit/sec) accepted by the network before network is not
saturated.

Because discrete event simulation is compute intensive,
we simulate networks with at most 512 switches. However,
our simulation results are consistent with the graph analysis
results presented in the previous section. Those results are for
networks with up to 4,096 switches and show stable trends as
the number of switches increases.

2) Simulation Results: Figures 5, 6, and 7 plot communica-
tion latency vs. accepted traffic for 64-, 256-, and 512-switch
direct topologies, respectively. Each figure shows results for
our three synthetic patterns. All figures show results for
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Figure 5. Latency vs. accepted traffic for non-random topologies and random shortcut topologies (64 switches, 256 hosts).
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Figure 6. Latency vs. accepted traffic for non-random topologies and random shortcut topologies (256 switches, 2,048 hosts).
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Figure 7. Latency vs. accepted traffic for non-random topologies and random shortcut topologies (512 switches, 4,096 hosts).
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(b) uniform traffic (160 switches, 512 hosts)
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Figure 8. Latency vs. accepted traffic for non-random topologies and random shortcut topologies.
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Figure 9. Latency vs. average cable length (256 switches, 2,048 hosts).
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Figure 10. Throughput vs. average cable length (256 switches, 2,048 hosts).

HYPERCUBE, P-HYPERCUBE, and PF-HYPERCUBE, as
well as for the same degree RING-n topology, where 2n is
the number of switches. Results for 256-switch topologies also
include TORUS-4, P-TORUS-4, and PF-TORUS-4, as well as
the same degree RING-4 topology. We do not include FHY-
PERCUBE here because results lead to the same conclusion
as those for HYPERCUBE (which is expected given the graph
analysis results). The network latency of a given topology
is the value of the corresponding curve on the left of the
horizontal axis. The achieved throughput is quantified by the
points at which the latency curve “shoots up.”

For 2n-switch topologies, RING-n leads to the better results
in terms of both latency and throughput than all HYPER-
CUBE versions. For instance, for a 256-switch topology, it
achieves latency lower than that of HYPERCUBE by 19.4%,
20.1%, and 15.6% for the uniform, matrix-transpose, and bit-
reversal traffic, respectively. By comparison, the latency of P-
HYPERCUBE improves over that of HYPERCUBE by 16.5%,
17.2%, and 12.0%. PF-HYPERCUBE leads to performance
inferior to that of P-HYPERCUBE. The advantage of ran-
dom topologies over the baseline HYPERCUBE increases
as network size increases. It is worth noting that all same-
degree hypercube and RING-n topologies achieve similar
throughput. In the case of 256 switches, results show that the
non-random TORUS-4 is widely outperformed by same-degree
random topologies. P-TORUS-4 is significantly better than
PF-TORUS-4 (with a latency 5% lower) but not as good as
RING-4 (which has a latency 21% lower than PF-TORUS-4).
Furthermore, for these low-degree topologies, we do observe
differences in throughput, with network saturation being reach

first by TORUS-4, then PF-TORUS-4, then P-TORUS-4, and
finally by RING-4. Overall, our simulation results corroborate
the graph analysis results in the previous section. This is
expected because network latency is correlated with diameter
and average shortest path length.

We also present results for the indirect Myrinet-Clos topol-
ogy in Figure 8, which plots communication latency vs. ac-
cepted traffic for 80- and 160-switch topologies with 256- and
512-hosts, respectively, for our synthetic traffic patterns. We
assume that leaf switches are stored in cabinets that store their
local compute nodes (up to 128), while the other switches are
stored in switch-only cabinets. The permuted Clos topology is
computed using our fully randomness method. We observe
that the original and permuted topologies achieve sensibly
the same throughput, but the permuted topology improves
communication latency for all traffic patterns, by up to 23.4%.
Results for the bit reversal traffic pattern are similar but are
omitted due to lack of space. We conclude that topology
permutation is effective in reducing latency not only for direct
but also for indirect topologies such as Myrinet-Clos. Since
this topology belongs to the Fat-tree family, we expect our
approach to apply to Fat trees in general, and thus to data
center networks. Random topologies have in fact received
recent attention for such networks [8], [7].

D. Cable Length Evaluation

In this section we estimate the cable length required for
deploying the previous topologies onto a physical layout of
cabinets. We assume a physical floorplan that is sufficiently
large to align all cabinets on a 2-D grid. Formally, assuming



m cabinets, the number of cabinet rows is q = d
√

m e and
the number of cabinets per row is p = dm/qe. We assume
that each cabinet is 0.6m wide and 2.1m deep including
space for the aisle, following the recommendations in [26].
The distance between the cabinets is computed using the
Manhattan distance. We estimate average cable length based
on [11]: 2m intra-cabinet cables, and a 2m wiring overhead
added to the length of inter-cabinet cables at each cabinet.
We ignore cables between compute nodes and switches, since
their lengths are constant regardless of the layout.

Figures 9 and 10 plot latency and throughput, respec-
tively, vs. average inter-cabinet cable length for 256-switch
topologies and all three traffic patterns. The layout of all
the topologies, but for RING-n, is based on sequentially
mapping switches to cabinets according to the canonical
topological order. For RING-n the mapping to the cabinets is
computed using a method described in an upcoming section
(Section IV-D). Latency and throughput values are computed
from simulation experiments similar to (and including) those
presented in the previous section. As explained earlier, latency
values are the network delays measured in low load conditions
before network saturation. Throughput values are computed
as the largest accepted traffic at which network delay is
less than 1.2µs. To avoid clutter, these results exclude PF-
topo topologies since they are always inferior to their P-topo
counterparts.

In all results, and as expected, a topology topo is either
equivalent to or outperformed by the P-topo topology since
both topologies have the same cable length. Let us first
consider the latency results in Figure 9. Among the topologies
with degree 4, RING-4 leads to latency between 19% and
20% smaller than P-TORUS-4 but at the expense of between
24% and 25% longer average cable length. Considering higher
degree topologies, then we find that RING-8 leads to latencies
only between 3% and 5% smaller than P-HYPERCUBE, but
incurs an increase in cable length between 30% and 31%.
Throughput results in Figure 10 paint a similar picture. RING-
4 improves on P-TORUS-4 by between 100% and 150%, but
RING-8 improves on P-HYPERCUBE by less than 0.04%
in the case of the uniform and matrix transpose traffics and
even leads to lower throughput than P-HYPERCUBE for the
bit reversal traffic. The overall conclusion is that topology
permutation makes it possible to combine low cable length
with good performance. RING-n may be preferred in low
degree situation because it can lead to good performance even
with only a few shortcut links (see Figure 1(a)). However,
as the degree increases, a permuted topology leads to similar
performance as RING-n at a much lower cabling expense.

IV. CONSTRAINED SHORTCUTTING

A. Overview

Constrained shortcutting, which is inspired by the random
topology generation approach in [6] but aims at lower cable
length, proceeds in three steps. First, starting with a simple
ring, random shortcuts are generated that only bypass a small
number of switches. Second, switches are aggregated into
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Figure 11. Constrained shortcutting on an example.

groups of 2p switches where 2p is the number of switches
that can fit in a single cabinet. This aggregation is done using
a graph clustering algorithm so as to reduce the number of
edges between groups. Third, the groups are mapped onto
a physical floorplan by solving a facility location problem.
Figure 11 shows an example for a topologies with N = 64
vertices. The first step creates the topology on the left-hand
side of the figure, i.e., a ring with random shortcuts that, in
this example are constrained to not bypass more than 0.35×N
vertices (note that there are no cross-cutting shortcuts). The
result of the graph clustering algorithm used in the second
step is shown in the middle part of the figure, in which six
clusters are formed. Each cluster is denoted by a symbol, and
each node in that cluster is depicted with the same symbol
in the topology shown on the left-hand side. The thickness
of an edge between two clusters corresponds to the number
of edges between the vertices in those two clusters. The third
step maps each cluster to a cabinet on a floorplan, as shown
on the right-hand side of the figure.

B. Shortcut Generation

1) Methods: In the RING-n topology, the two endpoints
of each shortcut are randomly selected regardless of their
distance (i.e., hop counts), which can lead to a large number
of longer cables in a physical layout [6]. Instead, we propose
to add a shortcut only between vertices with bounded hop
counts so that some of these long cables can be avoided.
Results in [6] show that only marginal benefit can be achieved
by generating long random shortcuts, i.e., shortcuts between
vertices that have high hop counts. Consequently, it is fair
to expect that generating shortcuts between vertices with
bounded hop counts, or not-as-long random shortcuts, may
only degrade latency slightly when compared to RING-n.
This reasoning provides the intuition and motivation for the
constrained shortcutting approach.

We consider two methods for generating constrained short-
cuts on an N -vertex ring, leading to two families of topologies:

• Nbr(p)-n: Consider V , the set of all vertices on the ring.
Given a randomly selected shortcut endpoint u in V , the
other endpoint v is randomly selected among the vertices
in V p

u ∩ V̄u, where V p
u is the set of vertices that are less

than N · p/2 hops away from u along the ring, and V̄u is
the set of vertices that are not already connected with u. If
such a v is found, then connect u and v and remove them
from V ; otherwise simply remove u from V . Repeat this
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Figure 12. Diameter and average shortest path length vs. degree for random
constrained shortcut topologies.

process until V is empty. Reset V and repeat this process
n− 2 times to obtain a topology of degree n. Nbr(1.0)-n
corresponds to RING-n.

• Gau(α)-n: Same as above but v is selected among the
vertices in V̄u so that the distance from u is picked
randomly by sampling a Gaussian distribution with mean
0 and standard deviation N · α/2, truncated so that it
takes values between −N/2 and +N/2. A positive, resp.
negative value, means that the path between u and v is
going clockwise, resp. counter-clockwise, along the ring.
Lower values of α make average shortcut lengths lower.
Unlike with Nbr(p)-n, the probability of having long
shortcuts is not zero. As α increases, Gau(α)-n generates
topologies closer to RING-n.

2) Graph Analysis Results: Figure 12 shows diameter and
average shortest path length for random constrained shortcut
topologies with 256 and 4,096 switches versus the average
number of hops along the ring between two switches con-
nected by a shortcut. Results are shown for Nbr(p)-n and
Gau(α)-n. The last data points on the right of the curves
correspond to RING-n. We see that Nbr(≥ 0.5)-n and Gau(≥
0.7)-n have diameters at most one hop larger than RING-n,
and comparable average shortest path length, at least for the
256- and 4,096-switch cases. We conclude that constrained
shortcutting can produce high-quality topologies. There is a
small advantage to the Gau(α)-n method as it achieves lower
or identical diameter and average shortest path length values
at lower average shortcut hop counts.

3) Simulation Results: Using the methodology described in
Section III-C1 we conduct network simulation experiments to
evaluate network latency and throughput of topologies gener-
ated using constrained shortcutting. Figure 13 shows results
with 256-switch topologies for the uniform and the matrix
transpose traffic patterns, for RING-8, Nbr(0.4)-8, Nbr(0.5)-
8, Gau(0.7)-8, and Gau(1.0)-8. Results for the bit reversal
traffic pattern are omitted because virtually identical to results
obtained with the uniform traffic pattern. The results for the
uniform traffic pattern show that all topologies lead to sensibly
the same results. By contrast, for the matrix transpose traffic,
we observe that the throughput decreases significantly for
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Figure 13. Latency vs. accepted traffic for non-random topologies and
random shortcut topologies (256 switches, 2,048 hosts).

Nbr(0.4)-8 and Gau(0.7)-8 compared to the other topologies.
Based on these empirical results, we conclude that Nbr(≥ 0.5)
or Gau(≥ 1.0) should be used for constrained shortcutting. In
all that follows, we only use Nbr. The advantage of Gau over
Nbr seen in the previous section is almost insignificant. One
advantage of Nbr over Gau, which is seen in the experiments
presented in upcoming sections, is that the number of pairs of
cabinets that are directly connected is much larger with Gau
than with Nbr. As a result, Nbr leads to less complex cable
packaging at only an insignificant performance penalty.

C. Clustering

1) Methods: A topology is an unweighted, undirected
simple graph in which vertices represent switches. Grouping
switches together in a cabinet is equivalent to contracting
the vertices — in other words, converting the graph into a
weighted undirected simple graph in which vertices represent
cabinets — where loop edges are removed and multiedges are
converted to weighted simple edges. One can use clustering
methods to group densely-connected vertices together in the
same cabinet so that the number of inter-cabinet cables is
minimized.

In [32] we have evaluated the use of several clustering
methods applied to the RING-n topology. The Walktrap
method [33] produces the best results in our experiments. In
this work we thus attempt to use this method for clustering
constrained random shortcut topologies. For completeness, we
present details of the method here. It starts from a state in
which each vertex is contained in a one-vertex cluster and
recursively merges the two clusters that minimize the increase
in the variance of the distance between each vertex and the
cluster center. In this work, we define the distance between
vertices i and j as dij =

√∑n
k=1(P

t
ik − P t

jk)2/deg(k), where
P t

ik denotes the probability of arriving at vertex k by doing
a t-step random walk from i, and deg(k) denotes the degree
of k. We modify the Walktrap method to force it to generate
clusters whose size does not exceed a specified cabinet size.
We also define a sequential method as a baseline, which groups
every 2p or 2p − 1 vertices (so that the grouping is as even
as possible) in order of generation, where 2p denotes the
cabinet size. If the random shortcut topology has absolutely
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no locality, then the sequential method leads to good (random)
clustering.

2) Graph Analysis Results: Figure 14 shows the number
of inter-cabinet cables produced by the sequential (seq) and
Walktrap (walk) clustering methods for several topologies
versus the number of switches (for a given number of switches,
all topologies have the same degree). We omit the results for
Gau(1.0)-n because it leads to results similar to those obtained
with Nbr(0.5)-n. The sequential method produces better results
than the Walktrap method for the HYPERCUBE topology
since for this regular topology assigning nodes to cabinet
in the canonical topological order minimizes the number of
inter-cabinet links. The Walktrap method outperforms the
sequential method for Nbr(0.5)-n and RING-n. The number
of inter-cabinet links for RING-n is 59% larger than that of
HYPERCUBE, but Nbr(0.5)-n reduces the number of inter-
cabinet links by up to 24% when compared to RING-n.

D. Mapping

1) Methods: The input to the mapping method is a floorplan
that indicates the possible locations for the cabinets. The
method is applicable to an arbitrary floorplan since it only uses
the distances between each pair of cabinet locations, for some
arbitrary distance definition. Our method then assigns each
cabinet to a location so that the inter-cabinet total cable length
is minimized. This process can be framed as a facility location
problem and formulated as a quadratic assignment problem
(QAP). We employ Simulated Annealing (SA) [34], a well-
known metaheuristic that has been successfully applied for
solving QAPs. In [32], in the context of the RING-n topology,
we have experimented with several other heuristics, but they
lead to almost the same results as SA. We run SA for 100
million iterations and pick the best solution out of five trials.
We also define a baseline method that assigns the locations
from left to right in the first row, from right to left in the
second row, etc. If the distribution of inter-cabinet cables has
no locality, then the baseline method produces a high-quality
mapping.

2) Results: Figure 15 shows the average length of inter-
switch cables achieved by Simulated Annealing (SA) com-
pared to those by the baseline (base) method for RING-n,
Nbr(0.5)-n, and HYPERCUBE, vs. the number of switches
(for a given number of switches, all topologies have the
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same degree). Cable lengths are computed as described in
Section III-D.

Results show that Nbr(0.5)-n improves the average cable
length by 26% compared to RING-n, but HYPERCUBE leads
to markedly lower average cable length. For all topologies,
the SA mapping method improves upon the baseline mapping
method. The improvement is around 10% for Nbr(0.5)-n
and RING-n. When using SA, Nbr(0.5)-n provides a good
compromise between RING-n and HYPERCUBE in terms of
cable length. For instance, consider 8,192 switches, each with
10 attached compute nodes. This would imply a total of 81,920
compute nodes, which is around the number of compute nodes
in the K-computer [5]. At this scale, using the SA mapping
method, the average cable length for Nbr(0.5)-n is around
11m, while it is around 7m for HYPERCUBE but more than
14m for RING-n.

V. COMPARISON OF RANDOM TOPOLOGIES

In this section we compare the best topologies ob-
tained using the permutation method (P-TORUS-x and P-
HYPERCUBE), using constrained shortcutting (Nbr(0.5)-n
with Simulated Annealing for cabinet mapping), and the
random topology proposed in [6] (RING-n). Figure 16 shows
latency and throughput vs. cable length for 256-switch topolo-
gies for our three synthetic traffic patterns. Results for the bit
reversal traffic are similar, and are omitted due to lack of space.
For all traffic patterns considering latency or throughput, the
results show that the best topology is permuted topology
P-HYPERCUBE at degree 8. The other topologies lead to
similar (or even worse) performance at higher cabling costs. At
degree 4, the choice of the topology would depend on budget
constraints for cabling cost and on the target performance:
the permuted topology P-TORUS is the most economical,
RING-n is the most high-performance, and Nbr(0.5)-n strikes
a compromise between the two.

An important concern is the cabling and installation costs
for a topology and its physical layout in a machine room. Costs
can be estimated using the method and parameters available
in recent studies [35], [36]. The cost of 10Gbps cables varies
according to the technology (copper or optical, connector
types), and is simply assumed to be in the $50–$200 range.
Installation and re-wiring costs are in the $10–$50 range.
Using these parameters, expected costs can be computed for
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Figure 16. Latency and throughput vs. average cable length for 256-switch random topologies.

our topologies. For instance, P-HYPERCUBE decreases cost
by up to 27% when compared to RING-12 in a network with
4,096 switches.

Another important concern is the reliability of a topology,
i.e., its robustness to link failures, of a topology. The two
methods proposed in this work, permutation and constrained
shortcutting, and that in [6], all produce topologies of similar
reliability. This is because they are based on graphs with
the same level of edge redundancy and can all use the same
deadlock-free topology-agnostic routing.

VI. ROUTING SCALABILITY

The scale of a network topology can be limited by routing
table size at a switch. We note that 83% of the supercomputers
posted on the June 2012 Top500 list [37] are based on
Ethernet or InfiniBand. For all these systems, the routing
table size limits scalability regardless of the topology, though
various types of topologies and deadlock-free routing can be
implemented [38].

Another potential scalability issue is path calculation cost
for topology-agnostic deadlock-free routing, which is more
complex than when routing on structured topologies (see the
survey in [39]). The computation cost of path search on most
deadlock-free topology-agnostic routings, such as up*/down*
routing, or Silla’s routing with virtual channels used in the
simulation [29], is almost the same as the problem of finding
shortest paths in a graph. Several algorithms can be used
to compute these paths (e.g. Dijkstra, Bellman-Ford, Floyd-
Warshall). In this section we use a priority-queue implemen-
tation of Dijkstra’s algorithm, with computational complexity
O((N + E)logN), where N is the number of vertices and
E is the number of edges [40]. Figure 17 shows the path
calculation time vs. network size (N ) for a RING-log2N
topology when executed as a single-threaded program on a
3.47 GHz Intel Xeon X5690 with 144GB of RAM. Similar
results are obtained for HYPERCUBE and Nbr(0.5)-log2N
since these topologies all have the same number of vertices
and edges. The results show that it is feasible to compute paths
for 16k-switch random topologies to be used with topology-
agnostic deadlock-free routings since the computation requires
under 82 seconds. Furthermore, path computation can be done
in parallel for each destination and a faster but complicated al-
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Figure 17. Routing computation time vs. N

gorithm can be used, such as a Fibonacci-heap implementation
of Dijkstra’s algorithm.

VII. CONCLUSIONS

In this work we have proposed and evaluated two methods
for generating random topologies that lead to lower cable
lengths (and less complex cable packaging) than the random
shortcut topology proposed in [6] once deployed in a physical
cabinet layout. The first method consists in randomly swapping
link endpoints in a non-random topology. One advantage of
this method is that the generated random topology has the
same cable length and packaging as the original non-random
topology. Since traditional non-random topologies can often
be deployed with low cable length onto a standard cabinet
layout, then the cable length of the permuted topology is also
low. Another advantage of topology permutation is that it can
be applied to an already deployed topology. In our results
permuting a topology can improve latency (by up to ∼15%
for direct topologies and ∼25% for indirect topologies) while
leading to the same or even slightly higher throughput. While
the performance is lower than that of the topology proposed
in [6], the cabling cost is much lower. The second method
consists in adding shortcuts to a ring topology, but ensuring
that these shortcuts do not bypass too many vertices so as
to limit cable length. The vertices in the obtained topology
are then logically clustered in as many clusters as cabinets in
the physical layout so as to minimize the number of inter-
cabinet links. Finally, these clusters are physically mapped
to cabinets so as to minimize aggregate cable length. One
advantage of this approach is that it is applicable to any type
of floorplan for any definition of the distance between two



cabinets. In our results we found that topologies generated
using this method can achieve high performance but lead to a
significant cable length increase compared to traditional non-
random topologies. They also lead to more complex cable
packaging because any two cabinet have inter-cabinet links
between them. However, they achieve essentially the same
performance as the topology in [6] at reduced cable length.

Our results show that topology permutation is the best
approach for “high” (i.e., logarithmic) degree. It leads to
performance at least equivalent to the other methods with
cabling costs and cable packaging complexity identical to
that of non-random topologies. When the degree is low (e.g.,
as in a 2-D or 3-D torus), then all three methods can be
viable options, with topology permutation being the most
economical, the method in [6] the most high-performance,
and constrained shortcutting a middle ground. Given that
high-radix switches are increasingly available, high-degree
topologies are no longer merely attractive due to their good
performance, but also feasible in practice. In this context, our
results indicate that topology permutation is the method of
choice for generating high-performance random topologies.
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