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Abstract—Various network topologies can be used for deploy-
ing High Performance Computing (HPC) clusters. The network
topology, which connects switches in cabinets on a machine
room floor, is typically defined once and for all at system
deployment time. For a diverse application workload, there are
downsides to having a single wired topology. In this work, we
propose using free-space optics (FSO) in large-scale systems so
that a diverse application workload can be better supported.
A high-density layout of FSO terminals on top of the cabinets
is determined that allows line-of-sight communication between
arbitrary cabinet pairs. We first show that our proposal reduces
both end-to-end network latency and total cable length when
compared to a wired topology. We then demonstrate that the use
of FSO links improves the embedding/partitioning capabilities
of a wired topology. More specifically, we show that a recently
proposed random low-latency topology can be augmented with
a reasonable number of FSO links to support multiple k-ary n-
cube and fat tree embedded topologies. Finally, we investigate
power-aware on/off link regulation techniques and show how
adding/reconfiguring FSO links leads to both performance and
power efficiency improvements.

I. INTRODUCTION

The common approach for building a large-scale High
Performance Computing (HPC) cluster is to define a topology
of switches, typically picking one of a few popular topologies
such as low-radix k-ary n-cubes or high-radix fat trees. The
selected topology is then deployed across several cabinets on
a machine room floor, using inter- and intra-cabinet network
cables to connect switches. One drawback of picking a partic-
ular network topology is that in a diverse application workload
some applications may find this topology far from optimum.
For instance, decades of research have gone into developing
efficient mappings of parallel scientific applications onto k-ary
n-cube topologies (e.g., numerical linear algebra kernels on 2-
D or 3-D tori). For such applications, especially when large
messages are exchanged, known mappings to known structured
topologies lead to maximum performance. By contrast, parallel
applications that have irregular and/or dynamically evolving
communication patterns require low average network latencies
across all switch pairs [1]. These applications can perform
poorly on k-ary n-cube topologies due to long shortest path
lengths between some switches, but they are well-suited to
random topologies [2]. Conversely, traditional regular parallel

FSO Terminal

Switch

Cable

Laser Beam

Cabinet

Fig. 1. Interconnection network that uses FSO links.

applications would perform poorly on random topologies that
do not have a k-ary n-cube structure. In the datacenter area, a
conventional design is based on various tree-like topologies.
However, emerging datacenter applications, such as graph
analysis for social simulations, massive-scale MapReduce op-
erations, or big-data sorts and searches, have characteristics
similar to those of traditional HPC workloads [3]. And in
fact, supercomputers designed for HPC workloads are ranked
on Graph500 [4]. It is thus reasonable to expect that future
datacenters will require different network topologies to support
both legacy and emerging applications.

Given that different applications benefit from different
topologies, defining the topology once and for all at system
deployment time is problematic if a diverse application work-
load is to be supported. An approach to address this problem
is to deploy multiple topologies that are each accessed via a
separate network interface (e.g., IBM’s BlueGene/L provides a
torus topology and a tree topology separately). But the number
of supported topologies remains limited and may not cater
to all relevant applications. In this work, we take a radically
different approach and propose to deploy network topologies in
which some of the network link endpoints can be reconfigured
arbitrarily. To enable reconfigurable endpoints, we use free-
space optical (FSO) links. One or more FSO terminals, each
consisting of a lens and a pointing control mechanism, are
placed between the top of each cabinet and the ceiling of
the machine room. These FSO terminals can be precisely re-



oriented so as to establish FSO links with various endpoints
(see Figure 1 for a simple illustration). FSO technology is
currently used in production for various applications, and we
propose to use it as part of the network infrastructure in HPC
clusters as proposed for datacenters in [5].

Beyond network reconfiguration to better match the com-
munication patterns of parallel applications, FSO links can
also be used for improved power management of the network
infrastructure. Once the connection is established, an FSO
link does not lead to an increase in power consumption when
compared to a wired link [5]. For a given traffic pattern, re-
arranging FSO links thus makes it possible to create custom
power-efficient topologies with large numbers of deactivated
links. Typical power-efficient on/off network studies usually
discuss the tradeoff between performance degradation and
power reduction [6], [7]. This tradeoff occurs due to deac-
tivation and activation time overheads, which can reach a few
microseconds even for 10GBASE-T in IEEE 802.3az Energy
Efficient Ethernet (EEE) [8], [9]. With FSO links, instead,
it is possible to dynamically choose FSO endpoints and to
deactivate wired links to improve both network performance
and power efficiency.

Our main contributions in this work are:

• We propose several layouts of FSO terminals on top of
cabinets that make it possible to establish line-of-sight
FSO links between all or a large number of terminal pairs
depending on the number of cabinets. (Section III)

• We quantify reductions in end-to-end network latency and
total cable length when using FSO links. (Section IV)

• We show that a random network topology, which is well-
suited to irregular parallel applications, can be augmented
with FSO links to support multiple embedded k-ary n-
cube and fat tree topologies. (Section V)

• We show how combining existing on/off link regulation
with dynamically configured FSO links can improve both
performance and power efficiency. (Section VI)

• We discuss how our FSO approach compares to the use of
optical circuit switches (OCS) for the same purpose, how
an embedded topology that uses FSO links can provide
better application performance than its physical counter-
part, and how our approach raises interesting questions for
job scheduling in a production deployment. (Section VII)

Background information and related work are discussed in
Section II. Section VIII concludes with a summary of our
findings and perspectives on future work.

II. BACKGROUND AND RELATED WORK

A. Network Topology

Current production HPC clusters are deployed using a
handful of topologies, the most popular being low-radix tori
and high-radix fat trees. For instance, in the Top500 list from
November 2013 [10], six of the top ten systems use a torus
and three use a fat tree. The remaining system uses the high-
radix Dragonfly topology [11]. With exascale systems on the
horizon, interest in such high-radix topologies has increased.
For instance, today IBM proposes several high-radix topologies
including high-dimensional tori (BlueGene/Q systems) and

Dragonfly topologies (PERCS Power 775 systems). In this
work we consider torus topologies, fat tree topologies, and
high-radix random network topologies.

Communication-efficient mappings of application pro-
cesses to compute nodes have been traditionally obtained by
matching regular and deterministic communication patterns to
a structured topology (e.g., tiling matrices onto a torus for par-
allel numerical linear algebra algorithms). By contrast, finding
an efficient mapping for irregular parallel applications onto
such topologies is challenging. Topology properties such as
diameter, average shortest path length, or bisection bandwidth
are crucial for these applications because any two processes
may need to communicate. In this context, random network
topologies are attractive because random graphs are known to
achieve low hop counts [12], [13]. As a result, it has recently
been proposed to use random network topologies for large-
scale clusters [2], [14], [15].

In this work we use FSO for network reconfiguration.
Network reconfiguration has also been proposed in [16]. Their
approach relies on combining electrical and optical switches so
as to support both packet-switching and circuit-switching. The
circuit-switching network can be reconfigured dynamically to
support bulk data transfers and network paths can be optimized
to match particular traffic patterns. By contrast, FSO commu-
nication makes it possible to reconfigure connections between
electrical switches directly and reconfiguration operations are
free from cable geometry constraints.

B. Topology Embedding

Topology embedding is needed when running a parallel ap-
plication that is implemented for a particular logical topology
but is executed on a different physical topology. The general
graph embedding problem consists in finding a mapping F
from the vertices of a graph G to the vertices of a (larger)
graph H along with a routing scheme, in our case shortest-
path, so that certain metrics are optimized. The two main
metrics considered in the literature are edge dilation and edge
congestion. Given an edge in G between two vertices v and
w, its dilation is the length of the shortest path between F(v)
and F(w) in number of hops. Given an edge e in H , its
congestion is the number of paths between F(v) and F(w) that
go through e, over all (v, w) vertex pairs in G. The objective is
to minimize maximum dilation and/or to minimize maximum
congestion. The optimal value for dilation and congestion is
1. Finding an embedding with dilation 1 is NP-complete in
the general case (since, e.g., the maximum clique problem is
NP-complete).

The embedding of grids/tori into other graphs has been
studied extensively [17]–[22], with a large fraction of that lit-
erature devoted to designing optimal or guaranteed algorithms
for embedding grids and tori into hypercubes. In Section V we
study embeddings in a random graph. More specifically, given
an embedding with low maximum dilation and/or congestion,
we use FSO links to augment the physical topology so that
the embedding becomes optimal (with maximum dilation and
congestion both equal to 1).



C. Network Power Consumption

Reducing the power consumption of interconnection net-
works is crucial since the network can represent a significant
fraction of the total power consumption of a system (e.g., over
40% for the first-generation Earth Simulator). An approach
for reducing network power consumption is to use DVFS
(Dynamic Voltage and Frequency Scaling) for switches [23].
In addition, some commercial Ethernet switches reduce their
power consumption by slowing down the link speed [24]

An orthogonal approach, termed “on/off link regulation,”
consists in deactivating network links that are not used and
reactivating them later. Since deactivating/activating a link has
a time overhead, it has been shown in various case studies that
the times during which links are deactivated must be large
enough to reach power consumption break-even points. For
instance, when there is no traffic on a cable, Energy Efficient
Ethernet (EEE) puts its NIC/switch PHY in Low Power Idle
(LPI) mode. 10GBASE-T EEE has link deactivation/activation
overheads on the order of a few microseconds [25]. It is
shown in [9] that these overheads degrade the performance
of latency-sensitive HPC benchmarks. A proposed solution
therein is to allow for packet arrivals during the link activation
and de-activation periods. In [26], the total system power
budget (or cap) is maintained by dynamically shifting some
power consumption between the compute nodes and an on/off
interconnection network. In addition to the above dynamic
approach, we also study static on/off link regulation in which
network links are deactivated before an application is executed
and remain deactivated throughout its execution. Network
topology and routing strongly impact the effectiveness of the
static approach because they determine the amount of traffic
at each link. When using the static on/off link regulation, the
activated network topology is a subset of the full topology.
Some of the aforementioned previous works show that there
is then a tradeoff between network performance and network
power consumption. However, if some external links are added
to the activated network, then it is possible to achieve both
higher performance and lower network power consumption.
This is what we propose to achieve with the use of FSO links.

D. Radio Communication Technology

Reconfiguring link endpoints, as proposed in this work,
requires wireless communication. One option is 60-GHz band
radio communication, such as IEEE802.11ad [27], which has
been considered in the context of datacenters. It has been
shown that offloading a portion of the network traffic to the ra-
dio network can improve the overall performance of datacenter
applications [27]–[29]. The bandwidth of a 60-GHz radio link
is up to several Gbps. Even though MIMO (Multiple Input
Multiple Output) transfers have been proposed to improve
the aggregate bandwidth [30], the resulting bandwidth does
not reach that of current HPC systems, which can be in the
40 Gbps range. Moreover, 60-GHz radiowaves spread and
interfere with each other. This prevents radio transceivers from
being densely installed in a machine room.

E. FSO Communication Technology

Free-Space Optical (FSO) technology uses wider band-
width and higher frequency [31], [32] than radio communica-
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Fig. 2. Our FSO terminal prototype.

tion, with several hundred THz band for the carrier signal. The
use of FSO technology in datacenter was recently proposed
by Hamedazimi et al. [5]. They prove the feasibility of 10-
Gbps datacenter-scale FSO communications using standard
SFP+ tranceivers, multi-mode fibers, lenses, and mirrors. The
lens transparently couples the fiber to/from a collimated laser
beam; no additional opto-electric conversion is needed for
FSO. An acceptable tradeoff between signal power density
and misalignment tolerance can be achieved. They propose
two possible optomechanical designs for an FSO terminal
device to be steerable: (i) an array of mirrors that can be
electrically switched between mirror (reflection) mode and
glass (transparent) mode; and (ii) a Galvo mirror, which
can be electrically rotated up to, e.g., ±20◦. Possible pairs
of communicating FSO terminals are constrained by (i) the
number of switchable mirrors or (ii) the angle of rotation of
the Galvo mirror.

FSO communication technology is traditionally developed
for long-range outdoor use, such as satellite, airplane, or inter-
building communications. In this context, Arimoto et al. have
developed a state-of-the-art FSO terminal device [33], [34].
One of its key features is a mutual beacon tracking system that
acquires target terminal direction in 0.1◦ field-of-view (FOV)
and maintain stable link within 1.0◦ FOV. This outstanding
feature accomplishes full 360◦ steerability of the FSO terminal
in combination with a commercial pan-tilt camera mechanical
unit, e.g., FLIR’s PTU-D46, which can steer terminal direction
with a 0.013◦ resolution at a 300◦/second steering speed.
However, because it is intended for outdoor use, Arimoto’s
device is bulky and heavy-duty, and would not be necessarily
practical for indoor use in a machine room.

To verify the potential of combining the ideas in [5] and
[33], [34] we have developed a simple prototype FSO terminal
with the goal of achieving 360◦-steerable FSO communication
in an HPC cluster. This prototype is shown in Figure 2. Built
with off-the-shelf motors and gears, it is 360◦ steerable within
0.003◦ error, which translates into a 1.6-mm positioning error
at a 30-m distance, which is well within the 6-mm tolerance
of an FSO link [5]. Its footprint is 50 mm across, and its
height can be lowered with a little design effort. This design
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Fig. 3. Various direct layouts of FSO terminals.

thus largely alleviates the constraints in [5] regarding the
number of possible pairs of communicating FSO terminals.
Consequently, in the rest of this paper we assume that each
FSO terminal can communicate directly with a large fraction
of the deployed FSO terminals, and that the design is small
enough to accommodate dense indoor layouts. Note that, in
some cases, our proposed approach for topology embedding
and network power management could be applied to the more
constrained design in [5].

In both the work by Hamedazimi et al. [5] and ours, an
FSO terminal is a purely passive device that consumes no
power (except when steering). An FSO terminal is just a lens
in an optical sense; it transforms a laser light in an optical
cable to a laser beam in the air, and vice versa. The same
routing and flow control mechanisms as Ethernet work with
the FSO links, because an FSO link is bi-directional (full
duplex) thanks to an optical circulator. Possible sources of laser
beam attenuation include atmospheric turbulence, dust/gas
absorption, and crossed beam interference. We have conducted
an experiment using Arimoto’s devices (which have more
complicated optical circuit than our prototype) and confirmed
that the optical power loss over a 30-m indoor FSO link
is well within SFP/XFP/QSFP standards. Since most optical
transceivers emit a constant optical power regardless of the
link loss, we conclude that an FSO link does not affect the
power consumption in the physical layer.

The prior work [5] focuses on the feasibility of FSO
terminal devices for indoor use, because there are no cus-
tom/commercial FSO terminal designs available for datacen-
ters. In this study we thus assume that FSO devices will
be feasible in datacenters and supercomputers. Our main
interests are “how much benefit will FSO network bring to
supercomputers and high-end datacenters in terms of topology
optimization, system partitioning and on/off link regulation?”
We feel that both our work and that in [5] are needed for
obtaining a feasible and efficient network architecture using
FSO links on HPC clusters.

III. LAYOUT OF FSO TERMINALS IN A MACHINE ROOM

We propose to outfit cabinets in a machine room with
FSO terminals so that lenses can be reoriented to establish
FSO links between cabinet pairs. In this section, we discuss
several FSO terminal layout designs. We assume a standard

2-D grid layout of N cabinets in a machine room so that
our approach can be applied to existing systems. A cabinet
is 0.6 m wide and 2.1 m deep including space for an aisle,
following the recommendations in [35]. Headroom, i.e., the
distance between the top of a cabinet and the ceiling, is 1.2
m. Each cabinet has one FSO terminal, placed on top of the
cabinet or possibly over an aisle. An FSO terminal, which
consists of a lens and actuators, is packaged in a sphere of
diameter R. The lens can be oriented in an arbitrary direction.
A laser beam is emitted/received at the center of the package.
For simplicity we ignore the thickness of the laser beam.

A. Direct Layout

Ideally there should be a direct line of sight between
each FSO terminal. For every pair of FSO terminals to have
direct line-of-sight, they must be placed so that no laser beam
between any two terminals is interrupted by other terminals.
An intuitive solution to this problem is a “theater” layout, as
depicted in Figure 3(a) for 6 cabinet rows and 8 cabinets per
row. Let us call the x-axis, resp. y-axis, the axis across, resp.
along, cabinet rows. The z-axis is the vertical axis. In this
layout, each terminal is placed in the center of a cabinet along
the y direction but at various points along the x direction. The
layout is computed incrementally as follows. First, place four
terminals at the lowest possible height on top of the four center
cabinets. Two of these cabinets belong to one cabinet row and
the other two to another cabinet row. For each of these two
rows, we add terminals to the other cabinets in the row so as
to form an arc by varying their x-axis positions. See the two
center cabinet rows with FSO terminals depicted in Figure 3(a).
The curvature radius of this arc should be as large as possible
so as to accommodate as many cabinets/terminals as possible.
However it must be small enough to allow all terminals to see
each other given the cabinet and terminal sizes. The layout is
then built incrementally by using a similar technique for the
two adjacent cabinet rows, but raising the terminals along the
z-axis so as to allow direct lines of sight with all previously
placed terminals. In this way, there is a direct line of sight
between any pair of terminals.

One drawback of the above layout is that the number of
terminals is limited by the headroom and the cabinet depth
(size along the x-axis). Table I shows the maximum number
of FSO terminals that can be used in a theater layout assuming
a headroom of 1.2 m and a cabinet depth of 2.1 m, for various
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values of the terminal diameter R. For instance, assuming
R = 50 mm, the theater layout supports up to 18× 14 = 252
terminals on 252 cabinets. Another layout approach is needed
to push system scale to larger numbers of cabinets.

The theater layout ensures that 100% of terminal pairs have
direct lines of sight. We can instead come up with “incomplete”
layouts that offer no such guarantee but hopefully yield many
direct lines of sight in practice. The easiest approach is to use
randomness and we consider three options: (i) The theater/XY-
random hybrid layout in which terminals on the center cabinet
rows are placed randomly directly on top of cabinets (z = 0)
and the theater layout is used only for the maximum number of
outside cabinet rows given a headroom limitation (Figure 3(b));
(ii) the XYZ-random layout in which terminals are placed
randomly along all three dimensions (Figure 3(c)); and (iii) the
XY-random layout in which terminals are placed directly on
top of the cabinets (z = 0) but randomly along the x and
y dimensions (Figure 3(d)). For the XYZ-random layout, we
assume that terminals are placed on vertical cylindrical rods
that have a diameter of 10 mm (and can obstruct the lines of
sight between other terminals).

For each of these layouts we use a ray tracer [36] to
determine whether a pair of terminals has a direct line of sight.
We then calculate the line-of-sight ratio (LSR) as 2L

N(N−1) ,
where L is the number of terminal pairs with a direct line
of sight and N is the number of terminals. Figure 4 shows
the LSR for the proposed layouts, including the theater layout
and a baseline Straight layout (Figure 3(e)) for comparison.
In these results, we assume R = 50 mm. Results show that
100% LSR is achieved at N = 252 by using the theater layout.
The XYZ-random layout achieves 92.5% LSR at N = 840,
which is close to the number of cabinets of the K-computer
[37]. Although LSR might be improved using metaheuristics
or other optimization techniques (which we leave as future
work), we conclude that the direct layouts proposed in this
section should suffice for many systems in practice.

TABLE I. MAXIMUM NUMBER OF TERMINALS THAT THE THEATER
LAYOUT SUPPORTS, DEPENDING ON THE TERMINAL SIZE R.

R (mm) 40 50 60 70 80 100 160
#Rows 20 18 16 14 14 12 10
#Columns 16 14 12 12 10 10 8
#Terminals 320 252 192 168 140 120 80

Mirror

Fig. 5. Indirect layout using a mirror on a ceiling.

B. Indirect Layout

A way to sidestep the challenges involved in creating large
direct layouts is to consider “indirect” layouts that rely on
mirrors, as proposed in [5], [29]. We have seen in Section II-E
that FSO can be used with mirrors without negative impact
on performance. Figure 5 shows a straightforward indirect
layout with a single planar mirror (placed on the ceiling of the
machine room). In this layout there is an immediate indirect
line of sight between any two terminals. While in principle
there is no scale limitation, producing a very large mirror may
not be practical. In fact, a promising approach would be to
augment one of the incomplete layouts in the previous section
with multiple smaller mirrors. There is a large design space
for such indirect layouts, and it is reasonable to expect that an
indirect layout is feasible with large numbers of FSO terminals
and cabinets in a machine room. In the rest of this paper we
assume such a layout, meaning that there is a direct/indirect
line of sight between any two FSO terminals.

C. Multiple FSO Terminals per Cabinet

So far we have assumed only one FSO terminal per cabinet,
but cabinets are large enough to accommodate multiple termi-
nals. In terms of layout, a simple approach is to divide cabinet
tops into same-size areas and place one terminal per area. In
this case the maximum number of terminals supported by the
theater layout is decreased, but the other layouts proposed in
the previous sections are still applicable. In the rest of this
paper we assume that up to 4 FSO terminals can be placed on
top of each cabinet.

IV. LATENCY AND CABLE LENGTH

The use of FSO links in place of wired links reduces not
only the cable length (which is desirable in terms of topology
deployment cost [38]) but also the end-to-end network latency
(which is desirable in terms of application performance). The
reason is twofold: (i) the speed of light is faster in the air (3.3
ns/m) than in an optical cable (5.0 ns/m), and (ii) the FSO
laser beam travels between two terminals along the Euclidean
distance (i.e.,

√
x2 + y2) while an optical cable is usually

installed in a machine room along the Manhattan distance (i.e.,
x + y). In this section we quantify latency and cable lengths
reductions due to the use of FSO links.

We consider 512 cabinets arranged in a 16 × 32 grid on
a machine room floor. Each cabinet has s = 2 switches,
t = 0, 2, 4 FSO terminals and s × m compute nodes, where
each switch is connected to m compute nodes. Each FSO
terminal can be connected to an arbitrary switch in its cabinet.
We then consider four topologies of those 1,024 switches: 3-D
torus (2×16×32) with degree d = 6, 5-D torus (4×4×4×4×4)
with degree d = 10, fully random with degree d = 6, and
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fully random with degree d = 10. A fully random topology of
degree d is generated by adding d random perfect matchings to
a graph with no edges [2]. Other methods have been proposed
to generate random topologies, such as random permutation
and constrained shortcuts [39], but these methods lead to larger
hop counts. Given a cabinet layout and a topology, we sort
the edges in descending order of their Manhattan distance
between the two cabinets, and assign each edge an FSO link
(if possible) or a wired link (otherwise). The cable lengths
are calculated as follows: an intra-cabinet cable is 2 m long,
an inter-cabinet cable has 4 m wiring overhead (2 m in each
cabinet) plus the Manhattan distance between the two cabinets,
and each cabinet is 0.6 m wide and 2.1 m deep including space
for the aisle [35]. The end-to-end zero-load network latency is
calculated by graph analysis as follows: a switch delay is 100
ns, an FSO link delay is 3.3 ns/m, a wired link delay is 5.0
ns/m, and packets are routed along shortest-hop paths. For the
sake of simplicity, we assume the Straight layout and 100%
LSR as described in Section III.

Figure 6 (left) shows the zero-load latency vs. the number
of FSO terminals on each cabinet. As expected, FSO links
reduce end-to-end latency. For instance, the average end-to-
end latency is reduced by 8.1% in a fully random topology of
degree 6 when 4 FSO terminals are placed on each cabinet.
In theory, the maximum possible reduction is 27.6% when an
FSO link replaces a wired link (if it exists) connecting two
cabinets on the opposite corner of the machine room.

Figure 6 (right) shows the total cable length vs. the number
of FSO terminals on each cabinet. As expected, using FSO
links reduces cable length, especially for those topologies with
many long links, such as the random topologies and the high-
dimensional torus topology. For instance, the total cable length
is reduced by 36.5% when 4 FSO terminals are placed on each
cabinet in a fully random topology of degree 6.

In this section, we have replaced some wired links
with FSO links so as to compare the same topology built
with/without FSOs. In the following three sections, we try
to augment a network with FSOs, where wired links are
untouched and FSO links are appended to an existing topology.

V. TOPOLOGY EMBEDDING WITH FSO LINKS

Parallel applications exhibit various communication pat-
terns. A communication pattern can be defined as a graph in
which the vertices are the processes and an edge links two
processes if they communicate directly during the application
execution. In many cases, application developers strive to
map communication patterns to known logical topologies. For
instance, it is typical to implement parallel numerical linear
algebra algorithms assuming that processes are arranged in a
logical torus topology. If the physical network topology of
the parallel platform is also a torus, then the application can
usually achieve high performance. If the physical topology is
not a torus, then one must try to embed the logical torus into
the physical topology with the goal of minimizing maximum
dilation and congestion (see Section II-B). In this work, we
consider topologies of switches rather than topologies of
compute nodes, meaning that both the logical and physical
topologies are graphs in which vertices are switches. Further-
more, we only consider injective embeddings so that different
logical switches are mapped to different physical switches.

Part of the motivation for this work is the need to support
both regular applications that can run efficiently on a struc-
tured topology (e.g., torus, hypercube, fat tree) and irregular
applications that would benefit from running on a random
topology. As in the previous section, we consider a topology of
(electrical) switches placed in cabinets arranged in a 2-D grid
on a machine room floor. Each cabinet contains s switches and
is equipped with t FSO terminals. Each switch is connected to
m compute nodes and each FSO terminal can be connected to
an arbitrary switch in its cabinet. The switches are connected
together via a fully random topology of degree d, as described
in Section IV. This topology design thus assumes high-radix
switches with d+m+ t ports.

The random topology has low (maximum and average) path
lengths and is thus well-suited to irregular parallel applica-
tions [2]. However, for regular applications, it is necessary
to embed the application’s logical topology into the random
physical topology. If an embedding with dilation 1 (and thus
congestion 1 since the embedding is injective) is found, then
the application can be executed without performance penalty
when compared to an execution on the application’s preferred
physical topology. We consider the embedding of tori and of
fat trees into the above random topology. We cannot reuse
the embedding algorithms cited in Section II-B because they
are designed for particular non-random physical topologies.
Instead, we rely on non-guaranteed heuristics and meta-
heuristics. Few embeddings with dilation 1 can be identified
with these methods, but few such embeddings may exist in
the first place. Note that the heuristics can be applied to any
physical topologies, such as Dragonfly.

We propose to use FSO links to reconfigure/augment part
of the physical topology so as to reduce an embedding’s
dilation, saying that an embedding is “valid” only if it has
dilation 1. An embedding with higher dilation would still be
useful to the application, but would degrade performance. Our
objective is to determine to which extent FSO technology
can enhance the embedding capabilities of a random physical
topology, i.e., increase the number of valid embeddings that
can be found.



A. Embedding Tori into the Random Topology

We consider a random topology with 1,024 switches, with
d = 8, 10, . . . , 40 and with s = 2 switches per cabinet.
We consider that each cabinet can host t = 0, 1, 2, 4 FSO
terminals. Experiments show that the t/s ratio determines the
number of possible embeddings. Consequently, we opt to keep
the number of switches constant and vary the number of FSO
terminals. To embed a torus in the random topology, we first
attempt to find an embedding with the lowest possible number
of embedded edges with dilation strictly greater than one. We
then attempt to “repair” these embedded edges using FSO
links.

Finding a torus embedding with the lowest number of
embedded edges with non-1 dilation is NP-complete. Since
Genetic Algorithms (GAs) have been used successfully for
graph embedding problems [40], this is the approach we take
in this section. We have also attempted various global/local
random searches and Simulated Annealing, but with signif-
icantly less success than with a GA. We encode candidate
embeddings as individuals in the GA’s population as follows.
All individuals are same-length vectors. The i-th value in a
vector is the index of the physical switch to which the i-th
switch of the torus is mapped, using the canonical “by row”
ordering to number the switches of the torus. The fitness of
an individual is the number of embedded edges with dilation
strictly greater than one, with a low fitness being preferable.
No value is repeated in a vector since we consider injective
embeddings. We use a crossover operator that produces two
new individuals from two parents by concatenating a prefix
of one parent with a suffix of the other parent, removing
duplicate values if necessary, and possibly completing the
vector with random values so as to generate individuals with
the correct length. We define a mutation operator that replaces
one value by a random value that is not already in the vector.
We use a population size of 1,000, a crossover probability
of 0.1, and a mutation probability of 0.25. We execute the
GA for 500 generations or until no improvement in fitness is
seen for 50 consecutive generations. At each generation we
select individuals using tournaments of size 3. We execute
the GA 10 times until an optimal embedding is computed,
returning the best embedding out of these 10 trials otherwise.
We then attempt to use FSO links to make the embedding
valid, if necessary. After we find an embedding we (i) mark
the physical switches it uses as unusable in future embeddings;
(ii) remove the physical edges it uses; and (iii) remove the
FSO terminals it uses. In this manner, we attempt to embed as
many consecutive tori of a given size into our random physical
topology until no further valid embedding can be found.

Figure 7 shows the coverage of the platform as a percent-
age, i.e., the fraction of the 1,024 switches that are used by
embedded tori, vs. d. The curves have jagged shapes because
we use a heuristic to optimize a function with many local
minima. We show results for tori with 8 (4 × 2) switches
assuming 1, 2, or 4 FSO terminals per cabinet, and 16 (4× 4)
switches assuming 2 or 4 FSO terminals per cabinet. Results
with no FSO terminals are not shown because our heuristic
never finds a valid embedding. This does not mean that valid
embeddings do not exist, but simply that they are “hard” to
find, at least using a genetic algorithm approach. Similarly we
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do not show results when embedding 16-switch tori with 1
FSO terminal per cabinet as no valid embedding is found by
our heuristic. As expected, decreasing the torus size makes
the embedding problem less difficult. With still only 1 FSO
terminal per cabinet, our heuristic finds valid embeddings of
8-switch tori covering more than 10% of the platform at high
degree. Many more embeddings can be found if 2 or 4 FSO
terminals are available at each cabinet. With 4 FSO terminals
per cabinet, we find that it is always possible to cover more
than 84% and up to 96% of the entire platform with 8-switch
tori. With 16-switch tori, one can cover up to 84% of the
platform but only at very high degree. Nevertheless, one can
cover more than 50% of the platform provided d ≥ 28. With
only 2 FSO terminals, one can still achieve high coverage
with 8-switch tori (up to 91% and more than 66% provided
d ≥ 32). However, the coverage becomes low with 16-switch
tori, always below 7%.

At first glance, the size of our embedded tori may seem
low. However, each switch may connect to tens of multi-core
compute nodes. For example, assuming a switch that connects
to as few as 16 6-core compute nodes, an 8-switch torus would
contain 128 nodes for a total of 768 cores. It turns out that
such a torus corresponds to the majority of jobs executed
on production HPC systems. For instance, Xing et al. have
analyzed the workload of the Kraken Cray XT5 system from
January 2011 to June 2013 [41]. They show that 86.5% of the
jobs use ≤ 512 cores, and only 0.6% use > 8192 cores out of
the entire 112,896 cores.

Overall, although a random topology has poor torus embed-
ding capabilities, we conclude that one can find many useful
embedded tori with a reasonable number of FSO links.

B. Embedding Fat Trees into the Random Topology

In this section, we consider the embedding of fat tree
topologies into our random physical topology of degree d. It is
not feasible to embed high-degree fat trees, e.g., Myrinet Clos
[42], unless d is very large. Instead we consider lower-degree
fat trees as described in [43]. We denote a fat tree of switches
as Fattree(h, u, v). h is the number of levels in the tree, with
level 1 being the leaf switches and level h being the highest
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level. u is the number of upward connections from each switch
to different switches in the level above, and v is the number of
downward connections from each switch to different switches
in the level below. Fattree(h, u, v) with h > 1 has 2h−2v
leaf switches and (2h−1 − 1)u non-leaf switches. Note that
the highest level contains u switches. Fat trees are indirect
topologies, meaning that the leaf switches are connected to
compute nodes as well as to other switches, but the non-leaf
switches are only connected to other switches.

We use a simple approach to embed a fat tree in our random
physical topology. This approach is recursive since each switch
at level h+1 connects to v switches in level h that are each the
root of a h-level fat tree. We can thus embed fat trees bottom-
up starting with 2-level fat trees. To find an embedding of
Fattree(2, u, v), we first find an embedding for a 2-level tree
with 1 root and v leaves. We then find u−1 switches that each
connects to the v leaves. Given two Fattree(h, u, v) fat tree
embeddings, we then find u switches that each connects to v
roots of the two fat trees. We thus need two heuristics: (H1) a
heuristic to embed a 2-level tree with v leaves; and (H2) a
heuristic to find a switch that connects to v given switches.

For H1, we consider all switches in the physical topology
in a randomized order, and find the first switch that has v
one-hop neighbors. If no such switch is found the heuristic
fails. For H2, and for v given switches, we consider all other
switches in a randomized order. We find the switch with the
largest number of one-hop neighbors that are among the v
given switches. We then use FSO links to connect the switch
to all given switches if possible. If no such switch is found,
then the heuristic fails. Otherwise, we pick the switch that uses
the fewest number of FSO links. In case of a tie, we pick the
switch that leaves the most cabinets with at least one unused
FSO terminal.

After each embedding, we remove all used edges and
FSO terminals used by the embedding. We also mark all leaf
switches as unusable as leaves for other embeddings. Because
the fat tree is an indirect topology, a switch that is used as a
leaf in the embedding of one fat tree can still be used as a
non-leaf switch in another embedding. Furthermore, a switch
can be used as a non-leaf switch in multiple embeddings.

Figures 8 and 9 show results with the same 1,024-switch
random topology with variable degree and s = 2 switches
per cabinet as in the previous section. These results are all
for Fattree(h, 2, 4) embeddings, as computed with the above
heuristics. Figure 8 shows the coverage of the platform as a
percentage, i.e., the fraction of the 1,024 switches that are
used as leaf switches in embedded fat trees, vs. d. Results are
shown for fat trees with 3 to 6 levels (i.e., with 8 to 64 leaves),
assuming either 2 or 4 FSO terminals per cabinets. Results
are not shown for 0 or 1 FSO terminal per cabinets as no
embeddings were found in these cases. With 2 FSO terminals
per cabinet some embeddings of 3-level fat trees can be found,
covering more than 11% of the platform for d ≥ 32 up to 18%
of the platform for d = 40. Expectedly, it is easier to cover
the platform with fat trees with lower numbers of levels. With
only 2 FSO terminals, embeddings of fat trees with more than
3 levels are only found occasionally by our heuristics. Results
are vastly improved with 4 FSO terminals per cabinet. For 3-
level fat trees, coverage is higher than 31% and up to 75%.
Even for fat trees with 6 levels, i.e., with 64 leaves, more than
25% of the topology can be covered, provided d ≥ 34.

Figure 9 shows the number of levels of the largest single
fat tree that we are able to embed in our random topology.
We see that only 1-level fat trees can be embedded with 0
FSO terminal per cabinet. With 1 FSO terminal per cabinet,
some 2-level fat trees can be embedded when d ≥ 14. With
2 FSO terminals per cabinet, fat trees with up to 3 levels (8
leaves) can be embedded in the topology with d ≥ 18. With 4
FSO terminals per cabinet, fat trees with 5, 6, and 7 levels can
be embedded for d ≥ 10, d ≥ 16, and d ≥ 24, respectively.
For high degree d = 40, 8-level fat trees (256 leaves) can be
embedded, thus covering 1/4 of the physical topology.

We conclude that, although a random topology has poor
fat tree embedding capabilities, the use of FSO links makes
it possible to embed multiple and/or large fat trees. As ex-
pected, results for embedding fat trees with larger numbers of
upward/downward links at each switch lead to lower coverage
and lower maximum fat tree sizes. For instance, for a random
topology with 1,024 switches, degree 30, 2 switches per
cabinet, and 4 FSO terminals per cabinet, the largest embedded



fat tree with 4 upward and 4 downward link per switch
identified by our heuristics has 6 levels, as opposed to 7 levels
if only 2 upward links are used.

C. Combining Direct and Indirect Topology Embeddings

So far, we have embedded a collection of tori or a collection
of fat trees into the physical topology. It is of course possible to
embed both kinds of topologies simultaneously, thereby mixing
direct and indirect topology embeddings. A single switch can
thus serve as a leaf node of a fat tree or a node of a torus,
and at the same time as a non-leaf node of one or more fat
trees. After attempting to embed the maximum number of tori
into the physical topology there remain sufficient unused FSO
terminals so that fat tree embeddings can still be found. For
instance, with the parameters in the previous two sections
and assuming 4 FSO terminals per cabinet and a physical
topology with degree 20, it is possible to embed 11 16-switch
tori. We find that 7 additional fat trees can be embedded as
well, each with 16 leaf switches. We conclude that a single
physical platform with a random topology augmented with
FSO links, as proposed in this work, can support a reasonably
diverse workload that includes applications that map well to
tori, applications that map well to fat trees, and applications
that map to a random topology.

VI. POWER MANAGEMENT WITH FSO LINKS

Existing on/off link regulation approaches and standard
technologies such as Energy Efficient Ethernet (EEE) can be
applied to regulate link activations in a way that matches an
application’s traffic pattern. Previous works have shown that
on/off link regulation makes it possible to achieve a trade-
off between the power consumption of the network and its
performance. In this section, we study how existing dynamic
and static on/off link regulation techniques can be enhanced
with the use of FSO links to reconfigure link endpoints, in
order to reduce both power consumption and hop counts.

A. Dynamic On/Off Link Regulation

Dynamic on/off link regulation, which is now supported
commercially by EEE, consists in active monitoring of the
traffic on each link and in automatic link deactivation if the
link is unused for a given time window. In this context, we
evaluate a simple FSO-based approach for minimizing the
average number of packet hops for a given traffic pattern.

We enhanced a cycle-accurate network simulator called
booksim written in C++ [44] with support for irregular custom
topologies, topology-agnostic routing algorithms and simula-
tion of dynamic on/off link regulation. Each simulated switch
is configured to use virtual cut-through switching. A header
flit transfer requires over 100 ns including the routing, virtual-
channel allocation, switch allocation, and flit transfer from an
input channel to an output channel through a crossbar. The flit
injection delay and link delay together are set to 20 ns. We set
the deactivation and activation overheads of each link to 2 µs
since this delay is a few microseconds in EEE 10GBASE-T
and would have smaller overhead for over-10Gbps links.

In all the experiments in this section the baseline topology
is a 64-switch 3-D torus with dimension-order routing. We

build custom topologies from this baseline by replacing p
percent of the wired links with FSO links. These custom
topologies could be partitioned subtopologies created for
running a single job in a larger platform, e.g., embedded
in a physical high-radix network topology as discussed in
Section V. Custom topologies are generated using a simple
greedy algorithm that replaces wired links by FSO links so as
to minimize average hop counts over all routing paths for a
given application traffic pattern. A topology with p = 0 denotes
a 3-D torus, while a topology with p > 0 denotes a custom
topology obtained by configuring FSO links optimized to the
application’s traffic pattern. The power consumption due to the
links (including wired and FSO links) is constant regardless of
p. This is because the lenses used in FSO terminals are passive
components that do not consume power. In these topologies
we use a topology-agnostic deadlock-free routing scheme and
each simulated input-queuing router has four virtual channels.
The input buffer size for each virtual channel is set to 128
flits. Network event traces obtained from executions of MPI
(Message Passing Interface) implementations of the BT, CG,
IS, LU, and SP NAS Parallel Benchmarks [45] in a cluster are
provided as input to the network simulator.

Figure 10 shows simulation results in terms of (i) the
relative latency, i.e., the elapsed time between the generation
of a packet at a source and its delivery at a destination relative
to that in the baseline 3-D torus (lower is better); and (ii) the
fraction of the time when links are idle (higher is better, with
100% correspond to the case in which all links are turned off).
We need to set the duration of the time window after which
an unused link becomes deactivated. For each experimental
scenario we tune this value empirically, through calibration
experiments, so as to achieve the best latency and power trade-
off. We can thus perform fair comparisons of experimental
results across the experimental scenarios, assuming that a good
time window is used in all cases. The question of how to
determine the best time window for a given traffic pattern
analytically, while interesting, is outside the scope of this work.

Results are consistent across benchmarks and show that
using FSO links makes it possible to achieve lower latency
and equivalent or longer link idle periods when compared to
the baseline. For instance, when p = 40 percent of links are
FSO links, for the IS benchmark the network latency is reduced
by more than 20% and the link idle period is longer than in the
baseline by a few percent. FSO links can effectively “shortcut”
paths on the torus topology to match a communication pattern,
thus leading to both lower latency and longer link idle time
when compared to the baseline. We conclude that FSO links
can be used in dynamic on/off link regulation to improve both
performance and power efficiency.

B. Static On/Off Link Regulation

The overhead of on/off link regulation can degrade the
performance of latency-sensitive HPC applications even with
the low deactivation/activation overheads of EEE [9]. Besides,
off-the-shelf network and InfiniBand products currently lead to
large deactivation/activation overheads that can reach up to a
few seconds [7]. As a result, the dynamic on/off link regulation
approach in the previous section can be impractical. In this
case, a simple workaround is to statically select the links that
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to those of p = 0, q = 0 for static on/off networks for the 5 benchmarks.

are to be deactivated just before an application runs [6], [7].
Assuming such a static on/off link regulation scheme, we study
how FSO links can compensate the increase in hop counts due
to deactivated links.

We use the same simulator, topology, and simulation pa-
rameters as in the previous section. The link power consump-
tion does not depend on p, provided the number of deactivated
links is the same. We use q to denote the percentage of
links that are deactivated. Figure 11 shows the simulation
results, in terms of latency (left) and hop counts (right),
relative to the baseline with p = 0, q = 0. Without FSO link
reconfiguration, the latency increases by up to 7.1% as the
number of deactivated links becomes high for the BT, IS and
SP benchmarks. By contrast, FSO link reconfiguration enables
to improve both the number of deactivated links and network
latency in all the traces. For example, even though 40% of
links are deactivated, network latency is improved by 5.9%
with FSO link reconfiguration. The latency trends are similar
to that of the average hop count. Unlike dynamic on/off link
regulation, paths for q > 0 can be different from that in the
baseline 3-D torus. When some links are deactivated with
p = 0, the hop counts increase. By contrast, if p > 0, the
hop counts decrease. This is again because the reconfigured
FSO links work effectively as shortcuts. Reconfiguring FSO
links is thus also beneficial for static power-aware on/off link
regulation.

VII. DISCUSSION

A. Optical Circuit vs. FSO

Instead of using FSO links for topology reconfiguration
one can use the same number of wired links connected to
optical circuit switches (OCS). If OCSes are attached to
electrical packet switches, then various optical circuit paths can
be configured and established before running an application
(these paths do not change during the application’s execution).
Neither switching delay nor packet contention occurs at the
intermediate OCS on such a path. Conceptually, each optical
circuit path works just as a link that connects two electrical
switches.
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In this section we compare the topology embedding ca-
pabilities of FSO and OCS. In both cases, we compute
embeddings using the GA approach described in Section V-A.
We assume a fully random topology of degree d of 1,024
electrical switches, as described in Section IV, but placed in
1,024 cabinets (s = 1 switch per cabinet). When using FSO,
each cabinet has 1 or 2 FSO terminals connected to the switch
inside that cabinet. When using OCS, each switch is connected
to an OCS with 1 or 2 links. For example, when using 64 32-
port OCSes, switches 0 through 15 are connected to OCS 1,
switches 16 through 31 are connected to OCS 2, etc., each
with 2 links.

Figure 12 shows the coverage of the platform when em-
bedding 8-switch tori using FSO or OCS, vs. d. Comparing the
case with 1 FSO terminal per cabinet and the case with 32 32-
port OCSes, we see that using FSO leads to higher coverage
than using OCS. This difference is even clearer for case with 2
FSO terminals per cabinet and the case with 64 32-port OCSes.
While using the same number of extra ports, FSO links leads to
coverage between 84% at d = 8 and 95% at d = 40, whereas
OCSes leads to coverage 0% for d < 24, gradually increasing
up to 69% at d = 40. The reason for these results is that



the FSO links have higher freedom of reconfiguration than the
OCS links. In other words, an FSO link can be established
between arbitrary pairs of terminals, while the endpoints of an
OCS link are constrained by the number of OCS ports.

B. Exploiting Unused Links for Improved Embedded Topolo-
gies

Typically, the degree of an embedded topology is lower
than that of the physical topology in which it is embedded.
For instance, traditional parallel algorithms (e.g., numerical
linear kernels) lead to low-radix traffic patterns (e.g., that map
directly to 2-D or 3-D tori). This is why in Section V we
have studied the embedding of k-ary n-cubes or fat trees.
However, we note that an application running on an embedded
(logical) topology can achieve a higher performance than if
it were running on an equivalent (physical) topology. This is
because unused physical links, i.e., links that do not participate
in any embedding, can be used as extra shortcut links for the
embedded topology, thereby reducing communication latency.

Consider the embedding of 4 × 4 tori into a 1,024-switch
36-degree random topology with 4 FSOs per cabinet, as done
in Section V-A, which produces 44 embedded tori. For 41 of
the tori there is at least 1 unused physical link that can be
used as a shortcut. For more than half of the tori there are 3
or more such links, with 2 tori with 6 such links. Using these
links as shortcuts leads to occasional improvements in diameter
(from 4 hops to 3 hops for 4 of the 44 tori) and significant
improvements in average shortest path length (by more than
5.0% for 34 of the 44 tori, and by up to 13.6%). We conclude
that the abundant links in a high-radix physical topology can
be utilized to improve low-radix embedded topologies.

C. Practical Scheduling Considerations

We have shown the potential of FSO technology for en-
hancing both the topology embedding and the network power
management capabilities of wired topologies. Interesting ques-
tions remain regarding the production use of FSO technology
in practice for HPC deployments. In production use, the topol-
ogy is partitioned into subsets, each subset running a parallel
application, or job, and jobs arrive to and depart from the sys-
tem dynamically (e.g., managed by a batch scheduler). Since
our topology embedding and power optimization techniques
are job/traffic dependent, they must be applied to each subset
of the topology dedicated to a job. Given currently running jobs
and current network configurations, a scheduler component
must perform network configuration for a newly arrived job,
for topology embedding and/or power management. The best
configuration, however, is likely not always achievable. For
instance, the new job may be allocated to compute nodes that
are located in cabinets whose FSO terminals are all currently
in use, which may preclude perfect topology embedding (i.e.,
with dilation 1) or the most effective power management
scheme. In terms of embedding, the maximum number of
embeddable non-random topologies (e.g., tori or fat trees) may
already have been reached, in which case the job may be
running on a random sub-topology with degraded performance
due to non-optimal dilations.

VIII. CONCLUSIONS

In this work, we have proposed augmenting topologies
of switches, as used in large-scale HPC clusters, with FSO
terminals so that a fraction of the topology’s link endpoints
can be reconfigured. FSO devices can achieve a wire-rate data
transfer over tens of meters [5], and we have proposed effective
layouts of FSO terminals in a machine room. An FSO link
has the key advantage over a wired link that it reduces both
the end-to-end network latency and the total cable length of
the deployed topology. FSO links also enable link endpoint
reconfiguration, which can be used for many purposes. In
particular, we have shown how the use of FSO links can
increase the topology embedding capabilities of a random
physical topology. We have also shown how existing on/off
link regulation techniques for network power management can
benefit from FSO links so that both power efficiency and
network performance are improved.

The selection of the best network topology for a paral-
lel application, in terms of network performance and power
consumption, is an open problem. We contend that the use
of FSO links, as proposed in this work, makes a fundamental
step toward answering this open problem because FSO link
reconfiguration affords ad-hoc network topology tuning capa-
bilities. A future direction for this work is to design a scheduler
component that makes judicious network reconfiguration deci-
sions for a newly arrived job based on the current workload on
the platform (including advance reservations) and current FSO
terminals availability, so as to achieve desirable performance
and power consumption trade-offs.
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