
1

Accelerating Distributed Deep
Reinforcement Learning by

In-Network Experience Sampling

Masaki Furukawa, Hiroki Matsutani
(Keio University, Japan)

Background: Reinforcement learning
• Goal

– Acquire an action-selection policy that maximizes
a long-term reward by taking actions and observing
the environment

• Q-value
– Expected value for action a in state s

• Q-learning algorithm
– Q(s, a) is updated by taking action at and observing

the next state st+1 and reward rt

2

𝑄𝑄𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 ← 𝑄𝑄 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 + 𝛼𝛼 𝑟𝑟𝑡𝑡 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴

𝑄𝑄 𝑠𝑠𝑡𝑡+1, 𝑎𝑎 − 𝑄𝑄 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡

Old value

Learning rate

Reward

Discount rate

Old valueExpected future value

Environment

Actor / Agent

Action a

State s
Reward r

Background: Deep Q-Network
• Q-learning

• DQN: Q-learning + Deep neural network
– Q-value is approximated with deep neural network θ
– θ is updated to minimize the loss

– Game AI, robot control, communication control, …
– Various techniques are used for stability and

convergence 3

𝑄𝑄 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴

𝑄𝑄 𝑠𝑠𝑡𝑡+1, 𝑎𝑎

Estimated optimal future value

Set of all the possible actions

𝑄𝑄 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡; 𝜃𝜃 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴

𝑄𝑄 𝑠𝑠𝑡𝑡+1, 𝑎𝑎; 𝜃𝜃

𝐿𝐿 𝜃𝜃 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴

𝑄𝑄 𝑠𝑠𝑡𝑡+1, 𝑎𝑎; 𝜃𝜃− − 𝑄𝑄 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡; 𝜃𝜃
2

Loss function Fixed

Background: DQN techniques
• Experience replay

– Remove correlations in the observation sequence
– Reuse experiences to increase sampling efficiency

• Distributed deep reinforcement learning
– Generate more experiences using many machines
– Ape-X DQN [1] (Distributed prioritized experience

replay)

4[1] D. Horgan, et al., "Distributed Prioritized Experience Replay", ICLR'18.

Environment

Q-network

(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡, 𝑠𝑠𝑡𝑡+1)
Replay
buffer

DQN-loss
Store Random

Shuffle
𝑎𝑎𝑡𝑡 ← ε−greedy(𝐴𝐴)

Background: Ape-X
• Distributed prioritized experience replay [1]

5[1] D. Horgan, et al., "Distributed Prioritized Experience Replay", ICLR'18.

Actor (Predict)

Environment
Q-network

Actor (Predict)

Environment
Q-network

Actor (Predict)

Environment
Q-network

Actor (Predict)

Environment
Q-network

Learner (Train)

Q-network

Prioritized
experience replay

Network parameters 𝜃𝜃

Experiences + priorities Sampled experiences

Updated priorities

1. Pull parameters
2. Prediction

Action:

Next state & reward:

LocalBuffer.ADD()

if LocalBuffer.Size BatchSize:
Priority:

3. Push experience
𝑎𝑎𝑡𝑡 ← ε−greedy(𝐴𝐴)

𝑠𝑠𝑡𝑡+1, 𝑟𝑟𝑡𝑡 ← Environment(𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡)

𝜽𝜽

𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 , 𝑟𝑟𝑡𝑡 , 𝑠𝑠𝑡𝑡+1

𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡 , 𝑟𝑟𝑡𝑡 , 𝑠𝑠𝑡𝑡+1, 𝛿𝛿𝑡𝑡 × BatchSize

𝑎𝑎: Action, 𝑠𝑠: State, 𝑟𝑟: Reward,
𝛿𝛿: TD-error , 𝛾𝛾: Discount rate

|𝛿𝛿𝑡𝑡| ← |𝑟𝑟𝑡𝑡 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴

𝑄𝑄 𝑠𝑠𝑡𝑡+1, 𝑎𝑎
−𝑄𝑄 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 |

≥

Background: Ape-X
• Distributed prioritized experience replay [1]

6[1] D. Horgan, et al., "Distributed Prioritized Experience Replay", ICLR'18.

Actor (Predict)

Environment
Q-network

Actor (Predict)

Environment
Q-network

Actor (Predict)

Environment
Q-network

Actor (Predict)

Environment
Q-network

Learner (Train)

Q-network

Prioritized
experience replay

Network parameters 𝜃𝜃

Experiences + priorities Sampled experiences

Updated priorities

1. Experience sampling

2. Batch training

3. Update priorities

4. Set parameters

𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡 , 𝑟𝑟𝑡𝑡 , 𝑠𝑠𝑡𝑡+1, 𝛿𝛿𝑡𝑡 × BatchSize

𝑎𝑎: Action, 𝑠𝑠: State, 𝑟𝑟: Reward,
𝛿𝛿: TD-error , 𝛾𝛾: Discount rate

𝜽𝜽

𝑄𝑄 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡; 𝜃𝜃 ← 𝑟𝑟𝑡𝑡 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴

𝑄𝑄 𝑠𝑠𝑡𝑡+1, 𝑎𝑎; 𝜃𝜃

Background: Prioritized exp. replay
• Stochastic sampling [2]

– Priority:
– Sampling probability for experience i

• Sum-tree structure
– Add/Sample experience:

7[2] T. Schaul, et al., "Prioritized Experience Replay", ICLR'16.

𝑝𝑝𝑡𝑡 = |𝛿𝛿𝑡𝑡| = |𝑟𝑟𝑡𝑡 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴

𝑄𝑄 𝑠𝑠𝑡𝑡+1, 𝑎𝑎 − 𝑄𝑄 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 |

𝑃𝑃𝑖𝑖 =
𝑝𝑝𝑖𝑖

𝛼𝛼

∑𝑘𝑘 𝑝𝑝𝑘𝑘
𝛼𝛼 (𝑝𝑝𝑖𝑖 ≠ 0)

How much prioritization is used

𝛰𝛰 log 𝑁𝑁

14

10 4

3 7 4

s=8

s=8-3

Priorities

Selected experience is used for training

Require: 0 <= s (random number) <= Σkpk
Require: n : root

function Sampling(n, s)
if n is leaf_node then return n
if n.left.val >= s then

return Sampling(n.left, s)
else

return Sampling(n.right, s - n.left.val)

Baseline: Our DRL implementation
• Distributed deep reinforcement learning (DRL)

– Actors, shared memory (Redis), and learner

8

1. Pull parameters (Dueling network architecture [3] 13MB)
2. Prediction
3. Push experiences (43MB)

40GbE NIC

Kernel

40GbE NIC

Kernel

Actors
Environment

40GbE NIC

Kernel

Learner (Train)
Sampling

Replay memory

Redis DB

1. Pull experiences (43MB*N)
2. Sampling + Training
3. Push parameters (13MB)

Actors
EnvironmentActors

EnvironmentActors
EnvironmentActor (Predict)

Environment

[3] Z. Wang, et al., "Dueling Network Architectures for Deep Reinforcement Learning", ICML'16.

Atari’s Breakout
https://gym.openai.com Q-lossActor’s score

• Distributed deep reinforcement learning (DRL)
– Actors, shared memory (Redis), and learner

Baseline: Our DRL implementation

9

• Distributed deep reinforcement learning (DRL)

Baseline: Execution time breakdown

10

Communication cost:
14.5% (1 actor) – 19.0% (8 actors)

Upper bar: Actor’s breakdown
Lower bar: Learner’s breakdown

Baseline: Shared mem throughput
• Distributed deep reinforcement learning (DRL)

• Actor push frequency
– Increase as # of actors

• Increase of # of actors
– Network traffic increases
– Gap between ideal and
actual frequency increases

11

Gap

Network optimizations on DRL
• Our approach

– Accelerating shared memory & experience replay
using DPDK

• DPDK (Data Plane Development Kit)
– Network processing at application layer
– Polling by dedicated CPU cores

• F-stack
– Light-weight TCP/IP stack

for DPDK applications

• Related work [4]

– Accelerating gradient aggregation of distributed deep
learning at DPDK-based network switch 12[4] M. Furukawa, et al., "An In-Network Parameter Aggregation using DPDK for Multi-GPU Deep Learning", CANDAR'20.

Optimization 1: Shared memory
• In-network shared memory (Redis) by DPDK

– Low-latency shared memory by DPDK and F-stack

13

40GbE NIC

Kernel

DPDK+F-stack
(Userspace TCP/IP stack)

40GbE NIC

Kernel

Actors
Environment

40GbE NIC

Kernel

Learner (Train)
Sampling

Replay memory

Redis DBActors
EnvironmentActors

EnvironmentActors
EnvironmentActor (Predict)

Environment

Optimization 1: Shared memory
• In-network shared memory (Redis) by DPDK

– Low-latency shared memory by DPDK and F-stack

14

40GbE NIC

Kernel

DPDK+F-stack
(Userspace TCP/IP stack)

40GbE NIC

Kernel

Actors
Environment

40GbE NIC

Kernel

Learner (Train)
Sampling

Replay memory

Redis DBActors
EnvironmentActors

EnvironmentActors
EnvironmentActor (Predict)

Environment

Redis access latency:
32.7% to 58.9% decrease

Replay memory pull throughput:
21.9% to 31.9% increase

Optimization 2: Experience replay
• In-network experience sampling by DPDK

– Moved from leaner machine to in-network switch

15

40GbE NIC

Kernel

Sampling

DPDK+F-stack
(Userspace TCP/IP stack)

40GbE NIC

Kernel

Actors
Environment

40GbE NIC

Kernel

Learner (Train)Actors
EnvironmentActors

EnvironmentActors
EnvironmentActor (Predict)

Environment

Replay memory

Sampled
experiences
(Batch size: 512)

Optimization 2: Experience replay
• In-network experience sampling by DPDK

– Moved from leaner machine to in-network switch

16

40GbE NIC

Kernel

Sampling

DPDK+F-stack
(Userspace TCP/IP stack)

40GbE NIC

Kernel

Actors
Environment

40GbE NIC

Kernel

Learner (Train)Actors
EnvironmentActors

EnvironmentActors
EnvironmentActor (Predict)

Environment

Replay memory

Sampled
experiences
(Batch size: 512)

A micro-thread is
launched for each Actor
process to multiplex the
network I/O

Optimization 2: Experience replay
• In-network experience sampling by DPDK

– Moved from leaner machine to in-network switch

40GbE NIC

Kernel

Sampling

DPDK+F-stack
(Userspace TCP/IP stack)

40GbE NIC

Kernel

Actors
Environment

40GbE NIC

Kernel

Learner (Train)Actors
EnvironmentActors

EnvironmentActors
EnvironmentActor (Predict)

Environment

Replay memory

Sampled
experiences
(Batch size: 512)

Replay memory access latency is
reduced by 11.7%-28.1%
Sampling latency of learner is
reduced by 21.9%-29.8%

17

Future work: Deployed in edge server
• Experience sampling in edge server

– Actors located in edge, and learner located in cloud

18Edge computers Edge server Datacenter

Edge Cloud
10km optical cable

40GbE NIC

Kernel

Sampling

DPDK+F-stack
(Userspace TCP/IP stack)

40GbE NIC

Kernel

Actors
Environment

40GbE NIC

Kernel

Learner (Train)Actors
EnvironmentActors

EnvironmentActors
EnvironmentActor (Predict)

Environment

Replay memory

Sampled
experiences

Summary: Optimizations in DRL
• Communication cost reduction by DPDK+F-stack

– Optimization 1: In-network shared memory (Redis)
– Optimization 2: In-network experience sampling

• Future work: Deployment in edge-cloud system

19

40GbE NIC

Kernel

Sampling

DPDK+F-stack
(Userspace TCP/IP stack)

40GbE NIC

Kernel

Actors
Environment

40GbE NIC

Kernel

Learner (Train)Actors
EnvironmentActors

EnvironmentActors
EnvironmentActor (Predict)

Environment

Replay memory

Sampled
experiences

Edge computers Edge server Datacenter

Edge Cloud
10km optical cable

	Accelerating Distributed Deep Reinforcement Learning by �In-Network Experience Sampling
	Background: Reinforcement learning
	Background: Deep Q-Network
	Background: DQN techniques
	Background: Ape-X
	Background: Ape-X
	Background: Prioritized exp. replay
	Baseline: Our DRL implementation
	Baseline: Our DRL implementation
	Baseline: Execution time breakdown
	Baseline: Shared mem throughput
	Network optimizations on DRL
	Optimization 1: Shared memory
	Optimization 1: Shared memory
	Optimization 2: Experience replay
	Optimization 2: Experience replay
	Optimization 2: Experience replay
	Future work: Deployed in edge server
	Summary: Optimizations in DRL

