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Background: Reinforcement learning
• Goal

– Acquire an action-selection policy that maximizes     
a long-term reward by taking actions and observing 
the environment

• Q-value
– Expected value for action a in state s

• Q-learning algorithm
– Q(s, a) is updated by taking action at and observing 

the next state st+1 and reward rt
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Background: Deep Q-Network
• Q-learning

• DQN: Q-learning + Deep neural network
– Q-value is approximated with deep neural network θ
– θ is updated to minimize the loss

– Game AI, robot control, communication control, …
– Various techniques are used for stability and 

convergence 3

𝑄𝑄 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴

𝑄𝑄 𝑠𝑠𝑡𝑡+1, 𝑎𝑎

Estimated optimal future value

Set of all the possible actions

𝑄𝑄 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡; 𝜃𝜃 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴

𝑄𝑄 𝑠𝑠𝑡𝑡+1, 𝑎𝑎; 𝜃𝜃

𝐿𝐿 𝜃𝜃 = 𝑟𝑟𝑡𝑡 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴

𝑄𝑄 𝑠𝑠𝑡𝑡+1, 𝑎𝑎; 𝜃𝜃− − 𝑄𝑄 𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡; 𝜃𝜃
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Background: DQN techniques
• Experience replay

– Remove correlations in the observation sequence
– Reuse experiences to increase sampling efficiency

• Distributed deep reinforcement learning
– Generate more experiences using many machines
– Ape-X DQN [1] (Distributed prioritized experience 

replay)

4[1] D. Horgan, et al., "Distributed Prioritized Experience Replay", ICLR'18.
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Background: Ape-X
• Distributed prioritized experience replay [1]

5[1] D. Horgan, et al., "Distributed Prioritized Experience Replay", ICLR'18.
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𝛿𝛿: TD-error , 𝛾𝛾: Discount rate
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Background: Ape-X
• Distributed prioritized experience replay [1]
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Background: Prioritized exp. replay
• Stochastic sampling [2]

– Priority:
– Sampling probability for experience i

• Sum-tree structure
– Add/Sample experience: 

7[2] T. Schaul, et al., "Prioritized Experience Replay", ICLR'16.

𝑝𝑝𝑡𝑡 = |𝛿𝛿𝑡𝑡| = |𝑟𝑟𝑡𝑡 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴
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14

10 4

3 7 4

s=8

s=8-3

Priorities

Selected experience is used for training

Require: 0 <= s (random number) <= Σkpk
Require: n : root

function Sampling(n, s)
if n is leaf_node then return n
if n.left.val >= s then

return Sampling(n.left, s)
else

return Sampling(n.right, s - n.left.val)



Baseline: Our DRL implementation
• Distributed deep reinforcement learning (DRL)

– Actors, shared memory (Redis), and learner
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1. Pull parameters (Dueling network architecture [3] 13MB)
2. Prediction
3. Push experiences (43MB)
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[3] Z. Wang, et al., "Dueling Network Architectures for Deep Reinforcement Learning", ICML'16.

Atari’s Breakout
https://gym.openai.com Q-lossActor’s score



• Distributed deep reinforcement learning (DRL)
– Actors, shared memory (Redis), and learner

Baseline: Our DRL implementation
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• Distributed deep reinforcement learning (DRL)

Baseline: Execution time breakdown
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Communication cost: 
14.5% (1 actor) – 19.0% (8 actors) 

Upper bar: Actor’s breakdown
Lower bar: Learner’s breakdown



Baseline: Shared mem throughput
• Distributed deep reinforcement learning (DRL)

• Actor push frequency
– Increase as # of actors

• Increase of # of actors
– Network traffic increases
– Gap between ideal and 
actual frequency increases
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Gap



Network optimizations on DRL
• Our approach

– Accelerating shared memory & experience replay 
using DPDK

• DPDK (Data Plane Development Kit)
– Network processing at application layer
– Polling by dedicated CPU cores

• F-stack
– Light-weight TCP/IP stack

for DPDK applications

• Related work [4]

– Accelerating gradient aggregation of distributed deep 
learning at DPDK-based network switch 12[4] M. Furukawa, et al., "An In-Network Parameter Aggregation using DPDK for Multi-GPU Deep Learning", CANDAR'20.



Optimization 1: Shared memory
• In-network shared memory (Redis) by DPDK

– Low-latency shared memory by DPDK and F-stack
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Optimization 1: Shared memory
• In-network shared memory (Redis) by DPDK

– Low-latency shared memory by DPDK and F-stack
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Redis access latency: 
32.7% to 58.9% decrease

Replay memory pull throughput:
21.9% to 31.9% increase



Optimization 2: Experience replay
• In-network experience sampling by DPDK

– Moved from leaner machine to in-network switch
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Optimization 2: Experience replay
• In-network experience sampling by DPDK

– Moved from leaner machine to in-network switch
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Optimization 2: Experience replay
• In-network experience sampling by DPDK

– Moved from leaner machine to in-network switch
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Replay memory access latency is 
reduced by 11.7%-28.1%
Sampling latency of learner is 
reduced by 21.9%-29.8%
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Future work: Deployed in edge server
• Experience sampling in edge server

– Actors located in edge, and learner located in cloud

18Edge computers Edge server Datacenter

Edge Cloud
10km optical cable
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Summary: Optimizations in DRL
• Communication cost reduction by DPDK+F-stack

– Optimization 1: In-network shared memory (Redis)
– Optimization 2: In-network experience sampling

• Future work: Deployment in edge-cloud system
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