
A Line Rate Outlier Filtering FPGA NIC using
10GbE Interface

Ami Hayashi1, Yuta Tokusashi1, and Hiroki Matsutani1,2,3

1Keio University, 3­14­1 Hiyoshi, Kohoku­ku, Yokohama, Japan
2National Institute of Informatics, 3Japan Science and Technology Agency PRESTO

{hayashi,tokusasi,matutani}@arc.ics.keio.ac.jp

ABSTRACT
As data sets grow rapidly in size and the number, an out-
lier detection that filters unnecessary normal information be-
comes important. In this paper, we propose to move the unsu-
pervised outlier detection from an application layer to a net-
work interface card (NIC). Only anomalous items or events
are received for a network protocol stack and the other pack-
ets are discarded at the NIC. The demands for storage and
computation costs at a host are thus dramatically reduced.
However, because normal items are discarded at the NIC and
the application layer can no longer know what is normal, in
our approach, the application at the host periodically peeks
at the NIC buffer. We select an outlier detection based on
the Mahalanobis distance as one of the simplest algorithms.
Our approach is implemented on an FPGA-based NIC that
has 10GbE interfaces. The sampling frequency of the NIC
buffer vs. outlier detection precision is analyzed. Real ex-
periments using the FPGA NIC demonstrate a 14,000,000
samples-per-second throughput in performance, which is close
to the 10GbE line rate.

1. INTRODUCTION
Data sets grow rapidly in size with the advances in informa-

tion and communication technologies and mobile and sensing
devices. Sensors that monitor physical or environmental con-
ditions are applied to various applications, such as health-care
monitoring, pollution monitoring, industrial monitoring, net-
work logging, and server logging, and they continuously gen-
erate data. The generated data are collected via a network
and stored in dedicated servers for record and analysis. The
demand for storage and computing resources to manage such
Big data is thus a crucial issue.

Data compression is a common solution to reduce the stor-
age demand and mitigate a disk I/O bottleneck. It can be
either lossless or lossy, and one of them is selected depend-
ing on whether dropping nonessential detail can be accepted
for a given storage demand. Since compressed data must be
decompressed before use, data compression incurs an extra
computation cost, which introduces a space-time trade-off. A
similar but different approach is an information filtering that
removes nonessential information from a data stream. An ex-
tra computation cost (e.g., data decompression) is not needed
to access the filtered data. The goal is to increase the signal-to-
noise ratio, and it can be used instead of the data compression
or prior to the data compression. For the sensing and moni-
toring applications, outlier detection algorithms, such as using
the Mahalanobis distance, can be simply used for information

This work was presented in part at the international symposium on Highly­
Efficient Accelerators and Reconfigurable Technologies (HEART2015)
Boston, MA, USA, June 1­2, 2015.

filtering to identify anomalous items or events.
As sensor data collected via a network grow in size, the de-

mands for storage and computation costs (e.g., network pro-
cessing and outlier detection) are increasing. In this paper,
we propose to move the unsupervised outlier detection from
an application layer to a network interface card (NIC). For the
sensing and monitoring applications, only anomalous items or
events are received for a network protocol stack and the other
packets (most data) are discarded at the NIC. The demands
for storage and computation costs are thus dramatically re-
duced. However, because normal items are discarded at the
NIC, the application layer can no longer know what is normal.
To address this issue, the application periodically (but infre-
quently) peeks at an input buffer of the NIC and feeds back
necessary information to the NIC.

In this paper, we design and implement an outlier detec-
tion based on the Mahalanobis distance for an FPGA-based
NIC that has 10Gbit Ethernet (10GbE) interfaces. The out-
lier detection is fully pipelined and real experiments using the
FPGA NIC demonstrate a 14M samples-per-second through-
put, which is close to the 10GbE line rate.

The rest of this paper is organized as follows. Section 2
introduces data mining algorithms and their FPGA-based ac-
celerators. Section 3 illustrates our outlier filtering NIC using
the Mahalanobis distance and Section 4 evaluates it in terms
of performance and precision. Sections 5 and 6 discuss the
results and conclude this paper.

2. BACKGROUND AND RELATED WORK

2.1 Mahalanobis Distance
Various metrics can be used for an outlier detection. One of

the simplest metrics is the Mahalanobis distance which repre-
sents how many standard deviations a given value is away from
the average. That is, it is a weighted distance that takes into
account the deviation for each feature or dependent variable.

An outlier detection using the Mahalanobis distance is ex-
pressed by the following equations.

µ =
1

m

m∑
i=1

xi (1)

Σ =
1

m

m∑
i=1

(xi − µ)(xi − µ)T (2)√
(x− µ)TΣ−1(x− µ) > θ (3)

Assuming that there are m samples, each of which has n fea-
tures, each sample xi (i = 1...m) is thus represented by an
n-dimensional vector. Equations (1) and (2) denote the mean
vector µ and the variance-covariance matrix Σ, respectively.
In Equation (3), the left- and right-hand sides represent the



Figure 1: Classification of algorithms for filtering

Mahalanobis distance and the user-defined threshold value θ,
respectively. If the Mahalanobis distance of a given sample is
larger than θ, the sample is identified as an outlier.
The Mahalanobis distance is widely used for cluster anal-

ysis, classification, and outlier detection. In [2], a principal
component analysis (PCA) is accelerated by means of FPGAs
for network intrusion detection systems. More specifically, a
feature extraction and the Mahalanobis distance are calculated
by FPGAs for the PCA. In [4], a real-time object tracking is
accelerated by FPGAs. The Mahalanobis distance is used for
a color segmentation module that separates an object from a
background in the system.

2.2 Other Data Mining Accelerators

Random Forest. It is a well-known machine learning algo-
rithm that uses an ensemble of decision trees. It is applicable
for classification, regression, and clustering. For the classifica-
tion, decision trees independently perform a classification for
given data, and then the final decision is made by the aggre-
gated result (e.g., given by averaging or majority vote). The
classification phase of the random forest can be accelerated
by using FPGAs and GPUs, and both the approaches are dis-
cussed in [3]. To compensate for the deep and nonuniform
nature of the decision trees, CRF (Compact Random Forest)
[3] that can keep the depths of decision trees shallow and uni-
form is used for the FPGA-based approach.

Frequent Item­set Mining. It is a popular method for find-
ing item-sets that frequently appear in a large-scale transac-
tion that records a vast number of item-sets. It can be used
for marketing activities, such as product placements. Eclat is
a frequent item-set mining algorithm and it is accelerated by
FPGAs in [6]. The design can be extended depending on avail-
able FPGA resources. The results using four FPGA boards
show a 68x performance improvement compared to a software.

K­means. It is one of the most popular clustering algorithms
that partition the data set into some clusters. Such a parti-
tioning is performed to minimize the distance between each
sample and the center of gravity of the cluster currently be-
longing. It is accelerated by FPGAs in [5]. They focus on
required resources on FPGAs and propose a method to con-
figure K-means on FPGAs using binary kb-tree or exploiting
the distributed memory architecture efficiently.

3. DESIGN AND IMPLEMENTATION

3.1 Data Mining Algorithm for Filtering NIC
In our approach, normal items are discarded at NICs, and

Figure 2: Outlier filtering FPGA NIC

applications can no longer know these normal values. This
approach affects the outlier detection algorithms. Figure 1
classifies some data mining algorithms from a standpoint of
the negative impacts induced by discarding normal values at
NICs.
Algorithms in Group 1 in Figure 1 perform the data selec-

tion (e.g., classifications) and do not update their data set
model based on the filtered data. They work correctly even if
filtered data are dropped at the NIC, because a prepared data
set is preliminarily fed to build their data set model. Most su-
pervised learning algorithms, such as Random Forest [3], are
included in this group. These algorithms can be simply used
for the outlier detection at FPGA NICs by combination with
a packet filtering mechanism.
Algorithms in Groups 2 and 3 perform the data selection

and update their data set model together. Most unsupervised
learning algorithms are included in these groups and they are
often used for the outlier detection. In these algorithms, be-
cause the filtered data are used for updating their data set
model (i.e., learning), both the learning and data selection
must be implemented inside the FPGA NIC; otherwise, their
data set model cannot be updated. However, some sort of
intelligence is useful for constructing the data set model in
the learning phase. Actually, the data set model and some
parameters can be tuned in response to various information
from environments or applications. In such cases, the learning
phase should be implemented at the application layer rather
than the FPGA NIC, though normal values are filtered at the
NIC and cannot be transferred to the application layer for
learning. This paper focuses on such a dilemma. As proposed
below, this problem can be simply resolved by sampling the
FPGA NIC buffer from applications periodically and infre-
quently.
In this paper, we select an outlier detection based on the Ma-

halanobis distance as one of the simplest algorithms that re-
quire the filtered data for updating the data set model. Please
note that the proposed strategy is widely applicable for the
other data mining algorithms (especially algorithms in Groups
2 and 3) when the update of their data model is performed at
application layer while filtered data are dropped at the NIC.

3.2 Outlier Filtering FPGA NIC
Figure 2 illustrates an overview of the proposed system. The

data selection is performed at the FPGA NIC, while a covari-
ance matrix and its inverse matrix used for the outlier detec-
tion are calculated by an application software and fed back
to the NIC. The application periodically peeks at the input
data queued for the outlier detection in the NIC via device
driver APIs (e.g., read() or ioctl()) in order to calculate the
covariance matrix and its inverse matrix.



Figure 3: Outlier detection using the Mahalanobis dis-
tance

In the following, the proposed outlier detection FPGA NIC
(both the FPGA NIC side and host side) is illustrated.

3.2.1 FPGA NIC Side
We use a NetFPGA-10G board as a programmable NIC.

NetFPGA-10G Reference NIC design [1] combined with Xil-
inx 10GbE MAC IP core is used as a baseline NIC, and we
implement our outlier filtering NIC by modifying the baseline.

3.2.1.1 Packet Classification Module.
Packet classification is performed at the FPGA NIC as il-

lustrated in Figure 2. The packet classification module re-
ceives packets as 256-bit sized data due to the bitwidth of
NetFPGA-10G AXI (Advanced eXtensible Interface). In the
packet classification module, UDP packets with a specific des-
tination port number are classified as sample data packets.
The other packets, such as ARP (Address Resolution Proto-
col) packets, are all transferred to the host without outlier
detection and processed by a network protocol stack as usual.
The sample data packets are stored in an input FIFO buffer.
Then only their sample data values (n values for n features)
are extracted, and transferred to the outlier detection module.
If a sample data set is classified as an outlier, the correspond-
ing packet is transferred to the host; otherwise, the packet is
discarded at the FPGA NIC.

3.2.1.2 Outlier Detection Module.
Figure 3 details the outlier detection module. An input data

set is processed with the following seven steps.

1. An input data set is decomposed into values of features.
These values are stored into an FIFO buffer for each
feature.

2. An average of all the values stored in each FIFO buffer is
calculated (Equation (1)). At the same time, a difference
between the previous average value (calculated before)
and this sample value is calculated.

3. An inverse matrix of a covariance matrix periodically fed
by a host is multiplied by the difference value calculated
in Step 2.

4. The multiplication result in Step 3 is totalized.

5. The totalized result in Step 4 is multiplied by the differ-
ence value calculated in Step 2.

6. The multiplication result in Step 5 is totalized.

Figure 4: Packet processing pipeline

7. A square of the Mahalanobis distance (calculated in Steps
3 to 6) and a user-defined threshold value are compared.

These seven steps, each of which is performed in two cycles,
are fully pipelined in the FPGA NIC. Thus, sample data pack-
ets are processed in every two cycles, as shown in Figure 4. As
the packet processing in the NetFPGA-10G board is operated
at 160MHz, the maximum throughput is 80,000,000 samples
per second. Please note that the packet classification/filtering
takes two cycles in Figure 4, because we assume that a size of
sample data packets is 64Byte (256-bit for each cycle). These
seven steps are explained as follows.

Step 1. The feature values extracted from a single sample
packet are stored in dedicated FIFO buffers. The FIFO buffer
is dedicated for each feature. In this example, the data width
is set to 32-bit in order to store 32-bit integer values. The
FIFO buffer depth is corresponding to m in Equations (1) and
(2). That is, it is the number of samples used to calculate
the Mahalanobis distance. When a new value is received, the
Mahalanobis distance between this value and recent data set
consisting of previous m sample values is calculated. A quality
of outlier detection becomes susceptible to outliers as m de-
creases, while a hardware amount (RAM size) of these FIFO
buffers increases as m increases. These effects resulting from
the FIFO buffer depth m is discussed in the evaluation section.

Step 2. All the values in each FIFO buffer are totalized and
stored in a sum register. Then, the mean vector µ (Equation
(1)) is calculated based on the total value stored in the sum
register. The sum register is initialized to zero by a reset
signal. When a new value is enqueued to the FIFO, the value
is added to the sum register. When an old value is dequeued
from the FIFO, it is subtracted from the sum register. The
FIFO buffer depth is set to a number which is a power of two.
When m is eight, for example, the average value can be simply
obtained by shifting three bits.

Steps 3 and 4. (x−µ)TΣ−1 in Equation (3) is calculated as
tmp. The average value µ calculated in Step 2 and an inverse
matrix of a covariance matrix Σ−1 fed by a host (details are
described in Section 3.2.2) are used for the calculation. Each
element in the matrix is multiplied in Step 3, and the resultant
elements are totalized in Step 4. Multipliers using DSP slices
calculate the result in two cycles in Step 3.

Steps 5 and 6. The left side of Equation (3) is calculated
as tmp(x− µ), where tmp was calculated in Step 4 and the
mean vector µ was calculated in Step 2. The Mahalanobis



distance is thus calculated in Step 6.

Step 7. An outlier is detected based on a square of the Maha-
lanobis distance calculated in Step 6 and a threshold θ2 given
by a user. Both the left and right sides in Equation (3) are
squared. A 1-bit outlier detection result is transferred to the
packet filtering module (denoted as Packet Filtering in Figure
2). The user or applications can adjust the threshold value θ
at run-time via ioctl() interface of the NetFPGA-10G device.

3.2.2 Host Side
A covariance matrixΣ is expressed by Equation (2). m sam-

ple data (most of them should be normal values) are needed
for the covariance matrix, though all the normal values are dis-
carded at the FPGA NIC. The covariance matrix is calculated
with following five steps.

1. m samples in the NIC FIFO buffer are read by a host
via ioctl().

2. A covariance matrix Σ is calculated using these m values
as data sets.

3. An inverse matrix Σ−1 is calculated.

4. Values in the inverse matrix are rounded to 32-bit integer
values.

5. The integer form of Σ−1 is fed back to the FPGA NIC
memory via ioctl().

These steps are performed at the host periodically. A fre-
quency of these steps can be adjusted at run-time. As the
frequency increases, a quality of outlier detection is improved,
because the covariance matrix is built based on more fresh
sample data. However, as the frequency increases, the host
CPU workload and communications between host and FPGA
NIC device increase. We will evaluate the frequency of these
steps vs. a quality of outlier detection in Section 4 in order to
address the proper frequency.

4. EXPERIMENTAL RESULTS
The proposed filtering FPGA NIC that employs the Ma-

halanobis distance for outlier detection is evaluated in terms
of the maximum throughput, hardware amount, and outlier
detection precision.

4.1 Evaluation Environment
The NetFPGA-10G board has a Xilinx Virtex-5 XC5VTX240

and four SFP+ interfaces. Our outlier detection module is
operated at 160MHz. We use Xilinx ISE 13.4 for the design
synthesis and implementation.
The NetFPGA-10G board with our outlier detector is mounted

on a host machine (Intel Core i5-3470S @2.9GHz, 6GB RAM)
via a PCI Express Gen2 x8 interface. The NetFPGA-10G
machine is connected to an open-source hardwired 10GbE net-
work tester [1] via a SFP+ copper cable.

4.2 Maximum Throughput
Assuming that each packet contains a single sample data

set, the maximum throughput here is defined as the number
of sample data packets processed by the proposed filtering
FPGA NIC per a second. The packet length is 64Byte. The
sample data packets are fed to the proposed filtering FPGA
NIC in a 10Gbps line rate by the hardwired 10GbE network
tester. We added a packet counter in the FPGA NIC in order
to measure the number of packets processed during a certain
time period at the NIC.
The maximum throughput of the proposed filtering FPGA

NIC is compared to that without any outlier filtering at the

NIC and host. We use the original Reference NIC design for
the NetFPGA-10G board as the counterpart. In this case, all
the sample data packets are transferred to the host applica-
tion; thus the network protocol processing overhead is included
while any outlier detection overhead is not considered.

Table 1: Maximum throughputs with and without the
outlier detection

Measured throughput
FPGA NIC w/ outlier detect. 14,208,026 packets/sec
FPGA NIC w/o outlier detect. 840,112 packets/sec

Table 1 shows the evaluation results. Figure 5 compares a
measured maximum throughput of the proposed filtering NIC
with a 10GbE ideal line rate. The 10GbE ideal line rate is
calculated by taking into account 12Byte IFGs (Inter Frame
Gaps) and 8Byte preambles. The FPGA NIC without the out-
lier detection receives only 5.6% of packets compared to the
10GbE line rate assuming 64Byte packets. This significant
performance loss comes from 1) inefficiency of the NIC-host
interface and 2) software overheads of the NIC device driver,
network protocol stack, and user-space application that re-
ceives packets via a UDP socket. On the other hand, the
FPGA NIC with the outlier detection processes 95.8% of pack-
ets compared to the 10GbE line rate, because it can completely
eliminate the above-mentioned performance limitations. It im-
proves the measured maximum throughput by 17.1x compared
to that without the outlier detection at the NIC.

4.3 FPGA Resource Utilization
We evaluate the proposed filtering FPGA NIC in terms of

the CLB and DSP utilizations by varying the number of fea-
tures and the depth of the NIC FIFO buffers m.
Figures 6 and 7 show the CLB and DSP utilizations, re-

spectively. The horizontal lines of 149,760 and 96 in these
graphs denote the available resources of CLB and DSP in the
NetFPGA-10G device (Virtex-5 XC5VTX240), respectively.
Because the CLB utilization still has a space, the FIFO buffers
that temporarily store the sample data in the FPGA NIC
are implemented with CLBs (distributed RAM) for simplicity.
The sample data stored in the FIFO buffers are periodically
read by the host in order to calculate the covariance matrix.
They can be implemented as Block RAMs if needed.
DSP48E slices are used for the multipliers. To calculate the

Mahalanobis distance, a vector-matrix multiplication and a
vector-vector multiplication are performed, as shown in Figure
3. Thus, (N×N+N) scalar multiplications are performed for
the Mahalanobis distance, where N is the number of features.
Because these scalar multiplications are performed in parallel,
(N×N+N) multipliers are needed and their number increases
with the square of N . Figure 7 shows that the NetFPGA-10G
device can support up to four features. If sample data have
more features, CLBs are used for the multipliers or a part of
the multiplications are performed sequentially.

4.4 Outlier Detection Precision
The outlier detection precision of the proposed filtering FPGA

NIC may be affected, because the covariance matrix is calcu-
lated based on a limited number of samples read from the
FPGA NIC with a certain delay. The samples are rounded
as integer values. Here, the proposed filtering FPGA NIC is
compared to an ideal case, where the covariance matrix is re-
freshed every time when a sample is processed. In addition,
the samples are represented in double precision floating-point
type (not rounded).
Data sets for the experiments are generated as follows.



Figure 5: The measured maximum throughput
vs. 10GbE ideal line rate

Figure 6: CLB utilization Figure 7: DSP utilization

• A data set consists of 10,000,000 samples generated based
on Gaussian distribution.

• The percentage of outliers is 1% (occurrence position is
random).

• The number of features is 2 and the correlation is 0.8.

• The following Gaussian distribution parameters are used.

– Gaussian distribution f(x) = 1√
2πσ2

exp(− (x−µ)2

2σ2 )

– Normal parameter µ = 30, σ = 3

– Outlier parameter µ = 300, σ = 10

Given the purpose of the filtering FPGA NIC, passing nor-
mal samples is permissible, while filtering (discarding) anoma-
lous samples is not acceptable. Here, the misidentified rate is
the percentage of normal samples incorrectly classified as out-
liers, under a condition that 100% or 99% of anomalous values
are at least classified as outliers. A lower misidentified rate
means a higher precision.

4.4.1 Precision vs. Depth of FIFO Buffer
The proposed filtering FPGA NIC is evaluated in terms

of the outlier detection precision by varying the FIFO buffer
depth m. It refreshes a covariance matrix at every 30,000 sam-
ples. In addition, it is compared to the ideal case that refreshes
the covariance matrix every time using samples represented in
double precision type.

Figure 8 show how the precision is affected by the FIFO
buffer depth, under a condition that 100% or 99% of anoma-
lous values are classified as outliers, respectively. The precision
is lower when m is too small because the mean of each feature
is easily affected by outliers. Although the proposed filtering
FPGA NIC shows a quite low outlier detection precision when
the FIFO buffer depth is not enough, the precision is close to
the ideal case when the depth is 512 and the misidentified rate
is 0% when the depth is 2,048. Please note that the NetFPGA-
10G device can implement two 1,024-depth FIFO buffers as
evaluated in Section 4.3. That is, for data sets that have two
features, we can implement enough depth FIFO buffers that
provide a comparable precision to the ideal case while keeping
the 10GbE line rate performance.

4.4.2 Precision vs. Covariance Matrix Update Fre­
quency

In the proposed filtering FPGA NIC, while the outlier de-
tection is performed by the hardware, feedbacks to the out-
lier detection (e.g., a covariance matrix and data set model)
are computed by a more flexible software. To calculate the
covariance matrix, the application samples the FIFO buffer

infrequently (e.g., once per 30,000 samples). Here, the pro-
posed filtering FPGA NIC is evaluated by varying the refresh
frequency of a covariance matrix, assuming the FIFO buffer
depth is 1,024.

Figure 9 shows the results of the proposed filtering FPGA
NIC, in which the samples used for a covariance matrix are
rounded as integer values, under a condition that 100% of
anomalous values must be classified as outliers. As shown, the
misidentified rate is at most 1%. In addition, when samples
in the double precision floating point type are used for the
covariance matrix, the misidentified rate is 0% (the results are
omitted due to page limitation).

4.4.3 Precision vs. Unstable Center of Gravity
In the aforementioned experiments, the data samples were

generated based on a pure Gaussian distribution. In contrast,
here we evaluate the other cases, in which the center of gravity
µ of data sets (i.e., average value of one feature) is advisedly
incremented over time. That is, based on the Gaussian distri-
bution parameters listed in Section 4.4, the normal and outlier
data sets are changed so that their µ values (i.e., 30 for nor-
mal and 300 for outlier) are incremented by one for every N
samples, where N is 20 to 1,000. The FIFO buffer depth is set
to 1,024. We assume that the sample data are rounded as in-
teger values, and the refresh frequency of a covariance matrix
is either once per 1 sample or once per 30,000 samples.

Figure 10 shows the results for unstable data sets, under a
condition that 100% or 99% of anomalous values are at least
classified as outliers, respectively. As N goes beyond 25, the
misidentified rate becomes quite low. The precision degrada-
tion when N < 25 comes from the algorithm used, rather than
from the refresh frequency of a covariance matrix.

5. DISCUSSION
We selected the outlier detection using the Mahalanobis dis-

tance for the filtering FPGA NIC because of the simplicity.
Although this design is well suited to a hardware implemen-
tation, it is not good enough to learn more complicated mod-
els. This fact motivates us to explore more sophisticated data
mining algorithms applicable for the proposed filtering FPGA
NIC, such as Local Outlier Factor (LOF) algorithm, as a fu-
ture work. In this case, while a hardwired outlier detection
module is implemented on the FPGA NIC, a part of the com-
plicated learning phase is left to the software as proposed in
this paper. Our approach is thus widely applicable for such
unsupervised outlier detections.

Because (N × N + N) multipliers are still needed for the
FPGA NIC (where N is the number of features), the sample
values are rounded to integer values, in order to use faster inte-



(a) Outlier detection rate is 100% (b) Outlier detection rate is 99%

Figure 8: Misidentified rate vs. FIFO buffer depth

Figure 9: Precision vs. covariance ma-
trix update frequency (integer, outlier
detection rate is 100%)

(a) Outlier detection rate is 100% (b) Outlier detection rate is 99%

Figure 10: Precision for data sets where center of gravity is unstable
(data sets are changed so that the center of gravity is incremented per
N samples)

ger multipliers instead of the floating point version, at the cost
of precision slightly. Please note that our filtering FPGA NIC
is proposed to narrow down interesting samples to be trans-
ferred to a host, in order to mitigate the memory/storage de-
mands and software (e.g., network protocol stack) overheads.
Our integer-based filtering FPGA NIC demonstrates that, un-
der a condition that 100% of anomalous samples must be clas-
sified as outliers, most normal samples can be successfully
dropped at the NIC. Given this purpose, our integer-based
filtering FPGA NIC strikes an appropriate balance.

6. SUMMARY
In this paper, we proposed to move the unsupervised out-

lier detection from an application layer to NICs. Only anoma-
lous data or events are received for a host and the others are
discarded at the NIC. Thus, the memory/storage demands
and software (e.g., network protocol stack) overheads at the
receiver host are dramatically reduced. The learning phase
should be implemented at an application layer for the soft-
ware flexibility, though normal values are filtered at the NIC
and cannot be transferred to the application layer for learn-
ing. To address such chicken-and-egg problem, the host appli-
cation infrequently peeks at the NIC FIFO buffer via device
driver APIs. We designed and implemented an outlier de-
tection based on the Mahalanobis distance on NetFPGA-10G
board. The host application refreshes a covariance matrix at
every 30,000 samples. Real experiments demonstrated that
the proposed filtering FPGA NIC processes 95.8% of packets
compared to a 10GbE line rate. It also demonstrated that,
under a condition that 100% of anomalous samples must be
classified as outliers, most normal samples can be successfully
discarded at the NIC (only 1% of normal packets are wrongly
transferred to the host).
We believe that our approach, in which the outlier detection

is implemented on a hardware while a part of the complicated
learning phase is left to a software, would be widely applicable
for various machine learning NICs. This paper addresses such
a case. We are planning to implement more sophisticated data
mining algorithms, such as LOF, for the FPGA NIC as a future
work.

Acknowledgements A part of this work was supported by

JST PRESTO.

7. REFERENCES
[1] The NetFPGA Project. http://netfpga.org/.
[2] A. Das, D. Nguyen, J. Zambreno, G. Memik, and

A. Choudhary. An FPGA-Based Network Intrusion
Detection Architecture. IEEE Transaction on
Information Forensics and Security, 3(1):118–132, Mar.
2008.

[3] B. V. Essen, C. Macaraeg, M. Gokhale, and R. Prenger.
Accelerating a Random Forest Classifier: Multi-Core,
GP-GPU, or FPGA? In Proceedings of the International
Symposium on Field-Programmable Custom Computing
Machines (FCCM’12), pages 232–239, Apr. 2012.

[4] D. Popescu, D. Patirniche, R. Dobrescu, M. Nicolae, and
M. Dobrescu. Real Time Mobile Object Tracking Based
on Chromatic Information. In Proceedings of the
International Conference on Remote Sensing
(REMOTE’09), pages 13–18, Oct. 2009.

[5] F. Winterstein and S. Bayliss. FPGA-based K-means
Clustering using Tree-based Data Structures. In
Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL’13), pages
1–6, Sept. 2013.

[6] Y. Zhang, F. Zhang, Z. Jin, and J. D.Bakos. An
FPGA-Based Accelerator for Frequent Itemset Mining.
ACM Transactions on Reconfigurable Technology and
Systems, 6(1):1–17, May 2013.


