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Abstract—As data sets grow rapidly in size and the number,
an outlier detection that filters unnecessary normal information
becomes important. In this paper, we propose to move the outlier
detection from an application layer to a NIC (Network Interface
Card). Only anomalous items or events are delivered for a
network protocol stack and the other packets are discarded at
the NIC. The demands for storage and computation costs at
a host are thus drastically reduced. We employ lazy learning
algorithms for the outlier detection, because they can be applied
to complex reference data including different clusters. However,
it is challenging to offload the lazy learning to NIC hardware
because of high computational cost and huge reference data. In
this paper, we propose to cache only a frequently-accessed portion
of reference data in the NIC. This idea can be applied to lazy
learning algorithms in general. LOF (Local Outlier Factor) and
KNN (K-Nearest Neighbor) are thus implemented on an FPGA
(Field Programmable Gate Arrays) based NIC. Simulation results
of the proposed system using LOF with 100,000 reference data
show that 45% to 90% of queries are hit to the proposed cache
and filtered at the NIC. The results are corresponding to 1.82x to
10x throughput improvements on the outlier filtering compared
to that of a software-based execution.

I. INTRODUCTION

Data sets grow rapidly in size with the advances in informa-
tion and communication technologies and mobile and sensing
devices. Network bandwidth has continued to grow and it
becomes possible to collect enormous data in a high rate (e.g.,
ten Gbps). For this reason, it is a major issue to achieve a high
performance on-the-fly processing of continuously generated
data, called stream processing.

Online outlier detection is one of the most popular stream
processing. Only anomaly data are extracted online from the
data received continuously with an outlier detection algorithm.
This becomes more important as sensor data are increasing
in size due to the advance of IoT technology. Warning and
anomaly detection systems that handle enormous sensor data of-
ten rely on online outlier detection. If we drop the anomaly data,
we may overlook emergency situations such as service failure,
though anomaly data may appear at a very low frequency; thus
a high precision is required for the outlier detection. Outlier
detection using lazy learning is a non-parametric algorithm
which can be applied to various reference data. However, it is a
critical issue that its high computational cost would become a
bottleneck of stream processing. In this paper, we aim for high
efficiency of the online outlier detection using lazy learning.

In this paper, we offload the outlier detection to the NIC
(Network Interface Card) hardware. Figure 1 illustrates an
overview of our system. Sample data (e.g., temperature data
such as 20.0) generated from the clients, such as sensor nodes,
to the server through a network are examined by an outlier
detection algorithm at the server side NIC. Only anomaly data

Fig. 1. Overview of outlier filtering NIC

are delivered to a network protocol stack and the other packets
(most data) are discarded at the NIC. This method reduces not
only host workload by outlier detection but also host workload
by processing of network protocol stack. However, it is not
trivial to offload the outlier detection using lazy learning to
the NIC because of complex computation and huge reference
data required for the lazy learning. In particular, there is no
existing work that offloads LOF (Local Outlier Factor) to the
NIC hardware to the best of our knowledge. In this paper,
we propose to cache only a frequently-accessed portion of
reference data in the NIC. This idea is essential to offload LOF
to FPGA (Field Programmable Gate Array) based NIC (FPGA
NIC) for online outlier filtering and also applicable to the other
lazy learning algorithms.

The rest of this paper is organized as follows. Section II
introduces outlier detection based on lazy learning algorithms
and the FPGA-based accelerators. Section III illustrates our
outlier filtering NIC using lazy learning algorithms and Section
IV evaluates it in terms of resource utilization and performance.
Section V summarizes this paper.

II. BACKGROUND AND RELATED WORK

A. Outlier Detection Based on Lazy Learning

We employ lazy learning algorithms for an outlier detection.
These algorithms process queries (new sample data) mostly
without preprocessing to reference data, contrary to that based
on eager leaning which processes queries after generalization
of reference data. Lazy learning has the advantage that can
be applied to complex reference data since it is possible to
make a lot of local approximations. We adopt two lazy learning
algorithms, LOF and KNN (K-Nearest Neighbor), in this paper.

B. Outlier Detection Using Local Outlier Factor

LOF, proposed by Breunig et.al., is a non-parametric outlier
detection algorithm based on density [1]. Because LOF employs
the density as an index, it can detect outliers even if there are



datasets with different distribution models. The algorithm is
described below briefly.

Here we want to detect whether a query (new sample data)
p is outlier by comparing it with reference data D. First, k-
distance of p (denoted as k distance(p)) is calculated from
distance between p and data o ∈ D (denoted as d(p, o)). o ∈ D
is selected so that the following two conditions are satisfied,
assuming k is a positive integer parameter given by the user.

(Condition 1) k or more data (o′ ∈ D) satisfy the following
relationship.

d(p, o′) ≤ d(p, o) (1)

(Condition 2) k−1 or less data (o′ ∈ D) satisfy the following
relationship.

d(p, o′) < d(p, o) (2)

Then, k-distance neighborhood of p (denoted as
Nk distance(p)(p)) is defined by the following equation.

Nk distance(p)(p) = {q ∈ D|d(p, q) ≤ k distance(p)} (3)

In other words, Nk distance(p)(p) is a set of neighbor data
around p, which includes at least k data.

Reachability distance of p from o ∈ D (denoted as
reach distk(p, o)) is defined by the following equation.

reach distk(p, o) = max{k distance(o), d(p, o)} (4)

Reachability distance of p from o ∈ D is the distance between
p and o ∈ D, but the distance is at least k distance(o)
(calculated from o and neighborhoods of o).

Local reachability density of p (denoted as lrdk(p)) is
defined by the following equation.

lrdk(p) =
|Nk distance(p)(p)|

Σo∈Nk distance(p)(p)reach distk(p, o)
(5)

LOF of p is calculated from local reachability densities
lrdk(p) and lrdk(o), both of them are calculated by Equation
(5). LOF of p (denoted as LOF k(p)) is defined by the
following equation.

LOFk(p) =
Σo∈Nk distance(p)(p)

lrdk(o)
lrdk(p)

|Nk distance(p)(p)|
(6)

The query p is detected as an outlier when LOF k(p) is far
from 1 because we can estimate that the density of p is too
sparse compared to that of its neighborhoods. In other words,
the proposed system detects outliers by calculating LOF of
input queries p (sample data sent from clients to the server) to
the reference data D accumulated in the server.

C. Outlier Detection Based on k Nearest Neighbor

KNN is a classic and practical lazy learning algorithm [2].
An outlier is detected based on whether the distance between
the query and its k-th closest reference data is large or not. In
other words, it detects outliers based on k-distance. It computes
distances between the query and all the reference data and sorts
them in the closest order. As the k-th closest distance becomes
large, the possibility of outlier becomes high. Compared to
LOF, although the computation is simple, it would not be
suitable to deal with reference data including various clusters
whose variance is different.

D. FPGA-Based Accelerators

FPGA-based acceleration for machine learning algorithms is
an emerging research topic. There are prior works that offload
various algorithms on FPGAs. For example, Random forest is
one of the most popular machine learning algorithms [2]. Essen
et.al. offloaded Random forest to FPGAs in order to improve
the performance [3]. They employed CRF (Compact Random
Forest) that consists of trees whose depth is limited in order to
efficiently implement it on FPGAs.

In [4], the authors offloaded an outlier detection using
Mahalanobis distance on an FPGA NIC. The outlier detection
algorithm used in [4] is too naive. More practical outlier
detection algorithms that require huge reference data, such as
LOF, cannot be applied to [4]. Various applications can take
advantages of FPGA-based outlier detection. For example, Das
et.al. implemented a FEM (Feature Extraction Module) and
an outlier detection with PCA (Principal Component Analysis)
on FPGAs to accelerate NIDS (Network Intrusion Detection
System) application [5].

When we offload LOF and KNN to FPGA NIC, a huge
memory resource to store all reference data is required for
the FPGA NIC. In addition, a huge sorter whose length is
equivalent to the total number of reference data is required to
find the neighborhoods of the query. Due to these difficulties,
there is no prior work that offloads LOF algorithm to FPGAs
to the best of our knowledge, although there are accelerators
with other devices such as GPUs [6]. On the other hand, there
is prior work that accelerates KNN algorithm by offloading it
onto FPGAs with limited sizes of reference data (e.g., 10,000
∼ 20,000). They are introduced as follows.

Pu et.al. proposed an implementation of FPGA based hetero-
geneous computing architecture suitable for KNN with OpenCL
[7]. An efficient implementation by parallelizing the distance
computation and bubble sort achieved a high performance.
EER (Energy Efficiency Ratio) of their implementation on
an FPGA is 804x higher compared to that with a CPU and
3x higher compared to that with a GPU. Manolakos et.al.
proposed flexible IP cores for FPGA implementation of KNN
classifier [8]. They also proposed an efficient implementation
of the distance computation and sort. In [8], users can select
a suitable design from two proposed designs in according to
the magnitude of parameters and numbers of reference data
and features. Their proposed system processes ten thousands
of queries per seconds. In addition to the above works, various
FPGA implementations of KNN have been proposed such as
[9] and [10].

As described above, lazy learning algorithms have been
accelerated by GPUs. For example, a GPU implementation of
LOF proposed by [6] achieved a more than 100x speed up
over software and that of KNN proposed by [7] also achieved
a 410x speed up. GPUs are typically used as slave devices
of a host machine and thus input data are fed by the host
CPU to the accelerator devices via PCI-Express. In contrast,
this paper focuses on outlier filtering of packets coming from
high bandwidth networks. To this end, FPGA NIC is a practical
choice rather than GPUs since we can reduce the CPU workload
of host application by discarding unnecessary data (not outliers)
at the NIC. We propose a dataset cache (described in Section
III) in order to implement LOF and KNN on the FPGA NIC
with limited on-board memory. Thanks to the dataset cache, the
required memory resource and sorter circuit can be reduced in
proportional to the dataset cache size since our proposed outlier



Fig. 2. Outlier filtering NIC using lazy learning

detection uses the dataset cache as reference data. Please note
that our proposed dataset cache is orthogonal to the above
mentioned optimizing techniques. We are expecting further
improvements in cost and performance by combining various
optimization on distance computation and sorting with our
dataset cache approach.

E. Scalable-Effort Classifier

Venkataramani et.al. proposed scalable-effort classifiers for
energy-efficient machine learning [11]. Their approach scales
computational load depending on types of input queries. That
is, it dynamically adjusts the computational effort depending
on the difficulty of the input data, and the large majority can
be classified correctly with very low effort. In this paper, we
propose to detect outliers and discard them at the NIC by
introducing a dataset cache that caches frequently-accessed
portion of reference data in the NIC. Outlier queries are
transferred to the host and processed again with all the reference
data by the host application. In other words, queries which
are clearly detected as normal are discarded using dedicated
hardware at the NIC, while other queries are processed using
the full calculation by the host application. In this respect, our
proposed approach faces the same direction as [11] but we focus
on completely different and practical network-based systems
where easy queries are processed by the NIC.

III. DESIGN AND IMPLEMENTATION

In this section, the outlier filtering NIC with dataset cache is
proposed.

A. Outlier Filtering NIC Using Lazy Learning

Queries (sample data) are processed by the outlier detection
module using lazy learning in the FPGA NIC as illustrated
in Figure 1. A query is discarded at the NIC when it is not
detected as an outlier, while it is delivered to a network protocol
stack in the host when it is detected as an outlier. Figure 2
illustrates an overview of the proposed outlier filtering NIC
using lazy learning (i.e., details of “Server” part in Figure 1).
Reference data are accumulated in the host application. In our
proposal, the outlier detection is performed based on a part
of frequently-accessed reference data cached in the NIC. This
in-NIC cache is called “dataset cache.” The dataset cache has
two parameters: the number of lines (the maximum number of
datasets cached) and length of a line (the maximum number of
data in a dataset). These parameters can be customized to fit to
the available memory resource.

B. Processing Flow

An input query is processed with the following five steps.

1) A dateset supposed to be the nearest to the input query
is selected.

2) Outlier detection is performed using LOF or KNN with
the selected dataset as reference data.

3) The query is discarded when it is not an outlier, while it
is passed to the host application when it is an outlier.

4) The host application performs an outlier detection again
using complete reference data.

5) Neighbor data of the query are cached in the dataset cache
of the NIC when the query is not detected as an outlier
by the recalculation.

Each of these steps is described below.
Step 1: Distances between the query and central data of

each line (described in Step 5) are calculated and the line with
the shortest distance is selected. Dataset stored in the selected
line is used as reference data.

Step 2: The query is processed by the outlier detection
module with reference data selected in the previous step. The
computation of this step is different between LOF and KNN,
which will be illustrated in Section III-C.

Step 3: Only the query detected as an outlier is passed to
a network protocol stack of the host. Filtering non-outlier data
at the NIC reduces the workload of the host drastically.

Step 4: The query transferred from the NIC is then
processed by an outlier detection again with all the reference
data in the host application. Such a query has been detected
as an outlier by the outlier detection with only frequently-used
reference data cached in the NIC. If its neighborhoods have
not been cached in the NIC, the outlier detection at the NIC
may not work correctly. In this case, the distances between the
query and the neighborhoods (or the density) are not calculated
correctly, so the query may be detected as outlier erroneously.
Thus, it is essential to perform the outlier detection again with
full reference data to judge whether it is really outlier or not.

Step 5: This step is executed when the query passed from
the NIC is not an outlier. In other words, when the query is
detected as an outlier at the NIC but it is not detected as an
outlier at the host, Step 5 is executed. As mentioned in Step 4,
an erroneous detection at the NIC occurs when an appropriate
dataset for the query has not been cached at the NIC. Hence, in
this step, n neighbor data of the query are inserted to the dataset
cache in the NIC as a new dataset. Here, n is the line length
of the dataset cache, which means the number of data included
in a dataset. At this time, central data of the cache line where
the dataset is stored are regarded as the values of the nearest
data. Central data are used when the dataset is selected for the
outlier detection in the NIC (described in Step 1). Updating
the cache takes a certain number of cycles, because n data
are sent from the host application to the NIC; thus the dataset
cache cannot be updated by the query received from the NIC
until the previous update has been completed. We adopt LRU
(Least Recently Used) as the replacement algorithm and the
replacement is performed line by line.

In the proposed system, an input query is processed using
LOF or KNN with a frequently-accessed portion of the ref-
erence data cached in the NIC. The query is discarded at the
NIC when it is not detected as an outlier. The query detected as
an outlier at the NIC is transferred to the host. It is processed
again using LOF or KNN with all the reference data by the
host application.



Fig. 3. Overview of outlier detection module

The proposed system reduces not only host workload for
LOF or KNN algorithm but also that for network protocol
processing. Although LOF requires a large reference dataset
which may not be fit to the FPGA NIC, by introducing our
dataset cache we can offload it to the NIC. Since the proposed
system can detect a part of queries as non-outliers and discard
them at the NIC, we can significantly reduce the data size at
the NIC and host workload.

C. Design of Outlier Detection Module

In this section, a design of our outlier detection module
including the dataset cache (i.e., details of “FPGA NIC” part
in Figure 2) is illustrated. We first show the outlier detection
using LOF and then we summarize necessary changes for the
outlier detection of KNN.

Figure 3 shows an overview of the outlier detection module
based on LOF. In this figure, lnum is the number of the lines
in the dataset cache, llen is length of the line, and nmax is the
maximum number of neighborhoods. LINE ID LEN should
be wide enough to represent a line ID (depending on lnum).
NEIGH ID LEN should also be width enough to represent
neighbors’ ID (depending on llen). In this illustration, we
assume that the number of features is two and length of a
feature is 32-bit for simplicity.

This module consists of three modules and the dataset cache.
First, an input query is processed in cache select module and
a line id is selected. This process corresponds to Step 1 in
Section III-B. Then the following procedure is corresponding
to Step 2. A dataset referred by the outlier detection is selected
by line id and data included in this dataset are transferred to
k dist calc module. This module finds neighbor data and then
it outputs 1) neighbors’ ID (neigh id), 2) squared distances
between the query and neighborhoods (neigh dist), and 3) the
number of neighborhoods (neigh num). Neighbors’ k-distance
(k dist) and local reachability density (lrd) are read from the
dataset cache by neigh id and line id. As these neighbors’
information, square roots of distances between the query and
the neighborhoods (i.e., neigh dist) and neigh num are fed to
lof calc module. Reachability distances between the query and
its neighborhoods, its local reachability density, and its LOF
(lof) are calculated and lof is outputted from lof calc module.
Then, the query is judged as to whether it is an outlier or not by
comparing lof and an user-specified threshold (thr). The result
is outputted as a 1-bit signal.

When we employ KNN for the outlier detection, the square
root circuits and lof calc module are not necessary since the
distance between the query and k-th nearest data is directly
compared to thr. In addition, memory and wires for neighbors’
k distance and lrd are not necessary.

We will illustrate the overview of sub-modules (cache select,
k dist calc, and lof calc modules) and the proposed dataset
cache below.

1) cache select Module: cache select module is used for
both LOF and KNN algorithms. Central data (central data) and
the query (input query) are inputted to this module and ID of
dataset referred by the outlier detection are outputted as line id
from this module. First, squared distances between central data
and input query are computed. To compute them, 4 × feat
DSP Slices are consumed, because a distance calculator consists
of feat (the number of features) multipliers each of which
consumes 4 DSP Slices. Hence, a cache select module requires
4 × feat × lnum DSP Slices. Then, to find the minimum
distance (central data closest to the query), these distances are
compared in a tournament manner. It takes log2 lnum cycles
to find the minimum value.

2) k dist calc Module: Neighborhoods of the query (in-
put query) are selected from the reference data (cached data)
in k dist calc module. This module outputs IDs of neighbor-
hoods (neigh id), squared distances between the query and
neighborhoods and the number of neighborhoods (neigh num).
First, squared distances are computed as well as cache select
module. k dist calc module requires 4 × feat × llen DSP
Slices. Second, a partial sort is performed by partial sort
module. This module outputs top nmax (maximum number
of neighborhoods) smallest values and their IDs among all the
input values. In other words, the output values are squared
distances and their IDs of nmax neighborhoods. The number
of neighborhoods is also calculated with a circuit including a
comparator.

In the case of using KNN, only the squared distance between
the query and k-th nearest data is required. Therefore, circuits
to compute the other neighbors’ information are not required.

We illustrate partial sort module below. The partial sort here
requires a sorter that outputs only the top nmax smallest
values. In this paper, a partial sorter based on merge sort is
implemented in partial sort module because of the simplicity
and relatively low execution time. Figure 4 shows a detail
of partial sort module. Please note that width of “data” in
this figure is (NEIGH ID LEN+32)-bit although not specified
in this figure. This module is divided into multiple stages
(separated by broken lines in this figure) and these stages are
pipelined. First, the input values (each of which has an ID
based on its input port) are compared to their next values and
stored in registers in ascending order. Second, the pairs of these
registers are sorted. As shown in Figure 4, a value pointed by
an address of a register is compared to one after another and a
lower value is copied to another register. The first address points
to a minimum value in the register. The address is incremented
when a value pointed by the address is copied. The final (sorted)
sequence of values is obtained by repeating these reordering
steps. Please note that this is a partial sorter, so there is no
need to sort values except the top nmax smallest values. In
other words, in each stage, the reordering steps are stopped
as soon as the top nmax smallest values have been identified
in the stage. Assuming, for example, nmax = 8 in Figure 4,
only the top-eight smallest values are selected from two input
sequences each of which consists of eight values (i.e., sixteen



Fig. 4. partial sort module

values in total). Then only the eight values (not sixteen values)
are passed to the next stage. In this way, the number of cycles
and the area are reduced compared to the conventional sorter
circuit.

The number of cycles for the partial sort equals to the
maximum number of neighborhoods (nmax). In our imple-
mentation, the number of cycles for the partial sort affects the
performance of outlier detection at the proposed NIC.

3) lof calc Module: LOF of the input query is computed
based on distances between the query and neighborhoods
(neigh dist), neighbors’ k-distances (k dist), neighbors’ local
reachability density (lrd), and the number of neighborhoods
(neigh num) in lof calc module. Processing in this module
corresponds to Equations (4), (5), and (6) in Section II-B. This
module requires two multipliers and one divider. A multiplier
consists of 4 DSP Slices and a divider consists of 14 DSP
Slices, so this module requires 22 DPS Slices in total.

4) Dataset Cache: The dataset cache has three purposes:
1) to retain and provide central data, 2) to retain and provide
cached data based on a given line id, and 3) to retain and
provide k dist and lrd based on a given line id and neigh id.
Regarding the first purpose, it continuously outputs the same
values as long as there is no update on the cache. This part
is implemented with distributed RAMs. On the other hand, the
main body of the dataset cache is related to the second and third
purposes. These parts are implemented with BRAMs because
of the amount of data to be stored.

The dataset cache has separated read and write ports. The
read port is used to fetch the cached data, while the write port is
used to update the cache. Here we mainly explain the cache read
procedure since it determines the outlier detection performance.

Regarding the second purpose, it outputs all the feature
values (excluding k dist and lrd) included in the line selected by
a given line id. Although only a single read port is needed for
this purpose, multiple BRAM instances are consumed because

Fig. 5. Dataset cache for k dist and lrd

of its wide output data width. For example, it requires a 1kB
width if a single line contains 128 64-bit data.

The third part is illustrated in Figure 5. This part outputs
neighbors’ information of a specified line. In our design,
a separated BRAM instance is used to store a single line.
The output of the dataset cache is thus selected by a given
line id among outputs from all the BRAM instances. Please
note that there are nmax neighbors’ IDs in each line, which
means that nmax cycles are needed to read out the neighbors’
information from the cache line. We can reduce the number
of BRAM access cycles by distributing a single line data to
multiple BRAM instances, although the performance bottleneck
currently lies in the partial sorter, not the dataset cache. In the
case of KNN, this cache is not required.

IV. EVALUATIONS

The proposed outlier filtering NIC based on LOF and KNN
is evaluated in terms of hardware amount, hit ratio, and the
maximum throughput.

A. FPGA Resource Utilization

We evaluate the proposed outlier filtering NIC based on LOF
and KNN in terms of the LUT, BRAM, and DSP utilizations
by varying the dataset cache parameters (i.e., the number of
lines and the line length).

1) Environment: We assume NetFPGA-SUME [12] as a
target FPGA NIC board, so target FPGA device of the design
synthesis is Virtex-7 XC7VX690T. Xilinx ISE Design Suite
13.4 is used for the design synthesis.

We employ Reference NIC design provided by the NetFPGA
team [12] as a baseline NIC function and add our outlier
detection modules to the NIC. Since Reference NIC is not our
contribution, experimental results in this section focus only on
our outlier detection modules using lazy learning. Square root
circuits, multipliers, and dividers in our modules are generated
by Core Generator provided by Xilinx ISE. Memory resources
for the dataset cache are implemented as BRAMs.

2) Results: Tables I, II, and III show the LUT, BRAM,
and DSP utilizations of the proposed outlier detection module
using LOF and KNN, respectively. In addition, Tables IV and
V show the LUT and DSP utilizations of cache select module,
k dist calc module, lof calc module, and a square root circuits,
where “128 128” and “64 64” mean that the line length and
the number of lines are both 128 and 64, respectively. Their
ratios over the whole outlier detection module are also shown
in these tables.

Again, the challenges to offload the lazy learning to the NIC
are twofold: 1) necessity to retain huge reference data in the



TABLE I
NUMBER OF LUTS USED (LUT UTILIZATION)

Line length
64 128

Number of lines LOF 64 64,816 (15.0%) 106,451 (24.6%)
128 78,926 (18.2%) 121,304 (28.0%)

KNN 64 51,966 (12.0%) 90,336 (20.9%)
128 64,636 (14.9%) 103,008 (23.8%)

TABLE II
NUMBER OF BRAMS USED (BRAM UTILIZATION)

Line length
64 128

Number of lines LOF 64 129 (8.8%) 193 (13.1%)
128 193 (13.1%) 257 (17.5%)

KNN 64 64 (4.4%) 128 (8.7%)
128 64 (4.4%) 128 (8.7%)

TABLE III
NUMBER OF DSPS USED (DSP UTILIZATION)

Line length
64 128

Number of lines LOF 64 1,046 (29.1%) 1,588 (44.1%)
128 1,588 (44.1%) 2,070 (57.5%)

KNN 64 1,024 (28.4%) 1,536 (42.7%)
128 1,536 (42.7%) 2,048 (56.7%)

TABLE IV
NUMBER OF LUTS USED IN EACH MODULE (RATIO TO WHOLE OUTLIER

DETECTION MODULE USING LOF)

cache select k dist calc lof calc sqrt
128 128 17,276 (14.2%) 84,621 (69.8%) 2,782 (2.3%) 7,120 (5.9%)

64 64 8,277 (12.8%) 41,762 (64.4%) 2,782 (4.3%) 7,120 (11.0%)

TABLE V
NUMBER OF DSPS USED IN EACH MODULE (RATIO TO WHOLE OUTLIER

DETECTION MODULE USING LOF)

cache select k dist calc lof calc sqrt
128 128 1,024 (49.5%) 1,024 (49.5%) 22 (1.1%) 0 (0%)

64 64 512 (48.9%) 512 (48.9%) 22 (2.1%) 0 (0%)

NIC and 2) necessity to implement a large sorter that sorts
distances between the query and all the reference data in the
NIC.

Regarding the first challenge, as shown in Table II, the
BRAM utilization of outlier detection module using LOF is
17.5% when the dataset size is 128×128. Regarding the second
challenge, as shown in Table I, the LUT utilization of outlier
detection module using LOF is 28.0% when the dataset cache
size is 128×128. This result shows that the proposed design is
practical to implement. One notable advantage of the proposed
dataset cache is that we can reduce the number of reference
data to be sorted, resulting in a significant resource saving.

B. Hit Ratio

Here we evaluate the proposed system in terms of hit ratio
and discuss the relationship between input queries and the hit
ratio. In this paper, the hit ratio is defined as “the number
of queries judged as non-outlier at the NIC / (the number
of queries judged as non-outlier at the NIC + the number of
queries judged as outlier at the NIC but not at the host),” as
shown in Figure 6. In other words, the hit ratio is true negative
ratio.

1) Environment: To evaluate the hit ratio, we performed
simulations using R library. The reference data in the host and
input queries are prepared as follows.

Fig. 6. Relationship between detection results of input queries and hit ratio

• Number of features is two (32-bit floating point number
for each).

• Dataset model consists of ten clusters (Gaussian distribu-
tion or uniform distribution).

• Each cluster contains 10,000 data (100,000 data in total).
• Input queries are generated with the same parameters of

reference data.

Figures 7 and 8 show reference data used in the experiments.
X-axis and Y-axis in the figures show the two feature values.
We used four types of input queries generated in following
conditions.

1) Queries are belonging to all the clusters evenly.
2) 90% of queries are belonging to a specific cluster.
3) 90% of queries are belonging to one of two specific

clusters.
4) 90% of queries are belonging to one of three specific

clusters.

2) Results: We evaluate the hit ratio when the size of dataset
cache is 128 × 128 and k = 10, while thr is varied. Figures
9 and 10 show simulation results using LOF, while Figures 11
and 12 show those using KNN.

The outlier detection is performed in the host application only
if the query is detected as an outlier in the NIC. Thus, as the
hit ratio increases, more computational cost in the host can be
reduced. Assuming all the queries are not outlier, for example
when hit ratio is 90%, computational cost (i.e., outlier detection
and network protocol stack processing) is reduced by 90%. As
shown in these graphs, when the queries are concentrated on a
smaller cluster, the hit ratio becomes higher. In particular, the
proposed system can reduce more than 90% of workload in
the host when the queries are concentrated on a single cluster.
Furthermore, the hit ratio decreases slowly when the locality
of input queries becomes lower. The dataset cache used in
this evaluation retains only one-sixth of entire reference data
in the host (100,000 data) since 128 × 128 = 16, 384 data
can be cached. LOF (or k distance) is not calculated exactly
compared to using the original algorithm when the nearest
neighborhoods have not been cached. However, LOF would
not become high compared to that of outliers when reference
data relatively close to the input query have been cached; thus
such a query is not detected as an outlier. Thanks to such
relatively close neighborhoods cached, the hit ratio is kept high
enough. These results demonstrate that our proposed dataset
cache is suitable for outlier detection using lazy learning at the
NIC.

As shown in these graphs, as thr becomes higher, the hit
ratio is increased. When thr is high, an input query would
not be judged as an outlier unless distance between the query
and the dataset cached in the NIC is quite large. However, as
thr changes, the queries detected as outliers are changed. For



Fig. 7. Distribution of reference data based on Gaussian distribution Fig. 8. Distribution of reference data based on uniform distribution

Fig. 9. Characteristic of input queries vs. hit ratio with outlier detection
using LOF (Gaussian distribution)

Fig. 10. Characteristic of input queries vs. hit ratio with LOF outlier detection
using (uniform distribution)

Fig. 11. Characteristic of input queries vs. hit ratio with outlier detection
using KNN (Gaussian distribution)

Fig. 12. Characteristic of input queries vs. hit ratio with outlier detection
using KNN (uniform distribution)

example, in Figure 8 (KNN is used), both the red and blue
stars are detected as outliers with thr = 1, while the red star
is detected as an outlier but blue star is not with thr = 3.

C. Performance Estimation

The query detected as an outlier at the NIC is recalculated by
a host application. For example, assuming the hit ratio is 80%,
20% of queries are processed at the host application again while
100% of queries are processed at the NIC. Therefore, through-
put of outlier detection with the proposed system TProposal

[Queries/sec] is represented as the following equation.

TProposal = min{TNIC , THost/(1− PHit)}, (7)

where THost is the throughput of outlier detection at the host,
TNIC is that of outlier detection at the NIC, and PHit (0∼1)
is the hit ratio. The throughput improvement of the proposed
system compared to an outlier detection with only a host
application is represented as the following equation.

TProposal/THost = min{TNIC/THost, 1/(1− PHit)} (8)

TNIC is calculated from the number of cycles and the
maximum operation frequency of the outlier detection module.
It is mainly affected by the number of cycles for the partial
sorting. The partial sorting takes nmax cycles per query, as
mentioned in Section III-C2. It is not affected by the size of
dataset cache nor other parameters. In this section, we assume
k = 10 and nmax = 16. Maximum operation frequencies of



the outlier detection module with LOF and KNN are shown in
Table VI. Evaluation environment is the same as that in Section
IV-A. These results demonstrate that the maximum frequency is
approximately 130MHz; thus TNIC is approximately 8,000,000
[Queries/sec].

TABLE VI
MAXIMUM OPERATION FREQUENCY

Line length
64 128

Number of lines LOF 64 134.3MHz 132.5MHz
128 123.1MHz 131.4MHz

KNN 64 160.5MHz 159.6MHz
128 160.1MHZ 152.0MHZ

THost in the case of using LOF is evaluated in the following
environment.

• DMwR::lofactor of R library (extended to the proposed
system)

• Intel Core i7 (2.5GHz)
• 16GB RAM (DDR3, 1600MHz)
• OS X 10.9.5

Table VII shows the throughput of outlier detection with all
the reference data in the host. As the number of reference data
increases, the software performance degrades greatly due to
the large amount of distance computations and sortings. From
these results, in the case of LOF, TNIC is 8,000,000, THost

is 49∼3,585, and PHit ranges 0.9∼0.45 as shown in Figure
9. Using Equation (8), the proposed system achieves 10∼1.82
times higher performance compared to the software.

TABLE VII
THROUGHPUT OF OUTLIER DETECTION USING LOF BY HOST APPLICATION

Number of reference data Throughput [Queries/sec]
1,000 3,585

10,000 528
100,000 49

Here, we evaluated THost by a single thread execution
without further optimizations, so a performance improvement
might be obtained when we employ more optimized software
implementations. However, TNIC is much higher than THost,
and thus the advantage of the proposed system will not be
changed.

D. Discussions on Precision

Queries detected as outliers are recalculated by host appli-
cation, so false positive pattern (i.e., non-outlier detected as an
outlier at the NIC) does not affect the precision, while false
negative pattern (i.e., true outlier not detected as an outlier at
the NIC) affects the precision. The false positive pattern is likely
when neighborhoods of an input query are not cached, while the
false negative pattern is expected to be quite rare as illustrated
below. Assuming a query p is an outlier, p cannot be detected
as an outlier only when densities of neighborhoods cached in
the NIC are close to the density of p. However, because, in
our design, only frequently-used reference data are cached in
the NIC, the neighborhoods cached in the NIC should be far
from outliers. Because of this contradiction, the false negative
pattern should be quite rare and actually we have not observed
any false negative patterns throughout all the experiments in
this paper.

V. SUMMARY

The purpose of this paper is to perform the outlier detection
using lazy learning on FPGA NICs in order to filter outliers.
Since most queries are filtered at the NIC efficiently, CPU
workloads for network protocol processing and outlier detection
of the received queries is greatly reduced. However, it is
challenging to offload lazy learning algorithms to NICs because
of the high computational cost and huge reference data needed
for the outlier detection. In this paper, we solved this problem
by caching frequently-accessed reference data in the FPGA
NIC.

We designed and implemented the outlier detection based on
LOF and KNN, and evaluated them in terms of resource utiliza-
tion and maximum operation frequency. We also demonstrated
the feasibility to implement them on Xilinx Virtex-7 FPGA.
The query detected as an outlier at the NIC is passed to a
host application and an outlier detection using the full reference
data accumulated in the host is performed. Therefore, as the hit
ratio (true negative ratio) increases, the CPU workloads of the
host is reduced. Simulation results using 100,000 reference data
showed that 45%∼90% queries are hit to the proposed dataset
cache in the NIC. This corresponds to 1.82x∼10x performance
improvement compared to that without the outlier detection in
the NIC. As future work, we will increase the number of feature
dimensions. We are now improving the dataset cache so that it
can handle high dimensional data.
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