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Abstract Toward on-device learning on IoT devices, this paper implements an online sequential learning and unsupervised
anomaly detection core and explores its design options, such as pipeline structure. They are evaluated in terms of performance
and cost. (Keywords: On-device learning, Machine learning and Pipeline structure)

1 Introduction
Anomaly detection is one of practical applications on IoT devices. In practical environments, an expected anomaly detection
behavior sometimes varies with time due to noises or environmental changes after the deployment. In addition, collecting
training data sets for possible environments beforehand requires time and effort. Therefore, a divergence between expected
anomaly detection behavior and training data sets used for building the model is a crucial issue. One approach to address
this issue is on-device learning that performs both the anomaly detection and online sequential learning at the same time on
edge devices [1]. The on-device learning capability is expected to be embedded to environmental sensor chips. Since their
compute resources are strictly limited, in this paper we explore design options of the on-device learning core in terms of
pipeline structure and arithmetic unit reuse. The design options are implemented in Verilog HDL, synthesized with a 45nm
process technology, and evaluated in terms of on-device learning throughput and area.

2 Related Work
2.1 Online Sequential Extreme Learning Machine (OS-ELM)
OS-ELM [2] is used as an online sequential learning algorithm for single layer feedforward networks that consist of input
layer, hidden layer, and output layer. The numbers of their nodes are n, m, and n′. OS-ELM sequentially learns input data
x ∈ Rk×n, where k is batch size. As in [1], in this paper k is fixed to one in order to eliminate the pseudo inverse operations
of k×k matrix, except for initial training phase mentioned later. For the i-th input data xi ∈ R1×n, the hidden layer matrix is
defined as hi ≡ G(xi ·α+b) using activation function G, weight matrix α ∈ Rn×m between the input and hidden layers, and
bias b ∈ Rm of the hidden layer. α is initialized with random values. The optimized weight matrix βi ∈ Rm×n′

between the
hidden and output layers can be computed by the following equation using intermediate result Pi and training data ti ∈ Rn′

.
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In particular, the initial values P0 and β0 are obtained as follows.
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Here, H0 is the initial hidden layer matrix obtained from the initial data x0 ∈ Rk0×n, where k0 is the initial batch size which
should be greater than m. In this paper, P0 and β0 computed by software beforehand are fed to the on-device learning core.

2.2 Unsupervised Anomaly Detection
Autoencoder [3] is a dimensionality reduction approach, and it is used for unsupervised anomaly detection in combination
with OS-ELM as in [1]. In this case, n and n′ are the same. Input data xi is used also as training data ti. That is, the weight
βi is trained so that input data xi is reconstructed by the autoencoder. Assume that an autoencoder has been trained only
with normal patterns. In this case, when normal data is fed to the autoencoder, the difference between the input data and
reconstructed data (i.e., loss value) is small, while when anomaly data is fed, the loss value becomes large. This behavior is
used for the unsupervised anomaly detection.

3 Online Sequential Learning and Unsupervised Anomaly Detection Core
3.1 Overview
Figure 1 illustrates the online sequential learning and unsupervised anomaly detection core [1] written in Verilog HDL.
seq train module is used for the online sequential learning and predict module is used for the anomaly detection. More
specifically, seq train module updates the intermediate result P and weight β from a given input data x using Equation 1.
predict module computes loss value that represents the reconstruction error. When the loss value exceeds a certain threshold,
the input data is detected as anomaly. In addition to input data, a 1-bit mode signal is fed to the on-device learning core to
select either seq train module (mode = 0) or predict module (mode = 1).



predict module simply computes |xαβ − x| as loss. Both the modules are pipelined. Especially, pipeline structure of
seq train module affects the area and performance. Equation 1 is divided into six stages as shown in Figure 2. A pipeline
dependency exists in these stages. Until P of stage4 is updated for input data xi, stage2 cannot accept the next input data
xi+1. Figure 3 (left) illustrates the pipeline processing of data1, data2, and data3 by considering the pipeline dependency.
Here, the number of cycles for the j-th stage is denoted as Tstagej . The number of cycles required for a sequential learning of
each input data is represented as max{Tstage1, Tstage2 + Tstage3 + Tstage4}.

3.2 Pipeline Stage Design
The pipeline structure can be customized by changing the number of arithmetic units. Below are three pipeline designs.

• Design 1 is introduced for the minimum execution cycle. Dedicated arithmetic units are implemented for all the fixed-
point matrix operations denoted as fxadd, fxmult, and fxdiv.

• Design 2 is a low cost version, where fxmult units are reused in each stage.
• Design 3 is another low cost version, where fxadd and fxmult units are reused in each stage.

The learning throughput of design1 is the highest, followed by design2 and design3. Using design2 and design3, area for
arithmetic units can be reduced. Note that when the same arithmetic unit is reused temporally for different computations,
DFFs are required to store temporal results of the arithmetic unit.

In addition, throughputs of all the designs can be improved by speculative learning that performs stage2 of input data
xi+1 without waiting stage4 of xi. Figure 3 (right) illustrates the pipeline processing of the speculative learning. In this case,
although update of the weight β is slightly delayed, the negative impact is limited because value changes on P and β for each
sequential training are quite small. Assume input data trend changes at xi suddenly and the same trend continues from then.
Input data xi is detected as anomaly. In this situation, the successive inputs may be detected as anomaly too since they will be
evaluated with slightly-obsolete P and β. In this speculative pipeline processing, utilization rate of the slowest pipeline stage
is 100%. The number of cycles required for a sequential learning is thus shortened to max{Tstage1, Tstage4}.

4 Evaluations
All the designs were synthesized with Synopsys Design Compiler I-2013.12-SP2. The technology library used was Nangate
45nm Open Cell Library. Bitwidth of fixed-point arithmetic units (i.e., fxadd, fxmult, and fxdiv) can be customized, and we
used 12 bits for integer and 20 bits for fraction. fxadd and fxmult units were implemented as combinational logic, while fxdiv
unit was implemented as sequential logic with right-shift and subtract operations. Design space exploration of the arithmetic
units is omitted for page limitation.

Tables 1 and 2 show the cost models of seq train and predict modules for design1, design2, and design3, where Sa,
Sm, and Sd are costs of single fxadd, fxmult, and fxdiv units, respectively. Also, n′ is equal to n. Figure 4 shows their
logic areas [mm2] when n = 256 and m = 32 after the logic synthesis. design2 and design3 consume only 26% and 15%
of design1, respectively. Figure 5 shows the sequential learning throughputs [M samples per sec] of these designs. Those
improved by the speculative pipeline are also shown. By introducing the speculative pipeline, the throughputs of design1,
design2, and design3 are improved by 1.1x, 2.2x, and 1.0x, respectively. Note that, in design3, since Tstage1 is greater than
Tstage2 + Tstage3 + Tstage4, the throughput does not change even if the speculative learning is performed. Figure 6 compares
the baseline and speculative pipelines in terms of loss values. Input data is generated as sin(θ + ϕ), where 0◦ ≤ θ < 360◦

with noise. Those with ϕ = 0◦ are learned as normal. Loss values of the speculative pipeline are close to the baseline.

5 Summary
Toward on-device learning on IoT devices, in this paper the online sequential learning and unsupervised anomaly detection
core was implemented with three pipeline structures (i.e., design1, design2, and design3). Speculative learning was also
proposed to shorten the execution cycles. They were evaluated in terms of learning throughput and area. The evaluation
results showed that design2 plus the speculative learning strikes a good balance between the throughput and area.

We are planning to implement the on-device learning chip. Further design space exploration of arithmetic units and
fixed-point number representations in terms of performance, cost, and accuracy is also our future work.
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Figure 1: Online sequential learning and unsupervised
anomaly detection core Figure 2: Six pipeline stages of seq train module

Figure 3: Baseline pipeline (left) and speculative pipeline (right)

Table 1: Cost model of seq train module

design1
(
3nm+ 4m2 − 4m− 2

)
Sa+(

4m2 + 3mn+m
)
Sm +m2Sd

design2
(
3nm+ 4m2 − 4m− 2

)
Sa+

(4m+ 3n+ 1)Sm +m2Sd

design3
(
m2 + 2n+ 4m+ 1

)
Sa+

(4m+ 3n+ 1)Sm +m2Sd

Table 2: Cost model of predict module

design1 (2mn+ n−m− 1)Sa + 2mnSm

design2 (2mn+ n−m− 1)Sa + 2nSm

design3 (2n+m+ 1)Sa + 2nSm

Figure 4: Areas of design1, design2,
and design3

Figure 5: Learning throughputs of de-
sign1, design2, and design3

Figure 6: Accuracy of speculative
learning


