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SUMMARY In statistical analysis and data mining, change-point de-
tection that identifies the change-points which are times when the prob-
ability distribution of time series changes has been used for various pur-
poses, such as anomaly detections on network traffic and transaction data.
However, computation cost of a conventional AR (Auto-Regression) model
based approach is too high and infeasible for online. In this paper, an
AR model based online change-point detection algorithm, called Change-
Finder, is implemented on an FPGA (Field Programmable Gate Array)
based NIC (Network Interface Card). The proposed system computes the
change-point score from time series data received from 10GbE (10Gbit
Ethernet). More specifically, it computes the change-point score at the
10GbE NIC in advance of host applications. It can find change-points
on single or multiple streams using a context memory. This paper aims
to reduce the host workload and improve change-point detection perfor-
mance by offloading ChangeFinder algorithm from host to the NIC. As
evaluations, change-point detection in the FPGA NIC is compared with a
baseline software implementation and those enhanced by two network opti-
mization techniques using DPDK and Netfilter in terms of throughput. The
result demonstrates 16.8x improvement in change-point detection through-
put compared to the baseline software implementation. It is corresponding
to the 10GbE line rate. Performance and area overheads when supporting
multiple streams are also evaluated.
key words: Change-point detection, FPGA NIC, 10GbE

1. Introduction

Due to advances in information and communication technol-
ogy, datasets exchanged over networks are growing rapidly
in the size and the number. As the data sets grow, high-
bandwidth becomes more important for data analysis and
pattern recognition. Change-point detection is a method to
identify the change-points which are times when the prob-
ability distribution of time series changes. Popular applica-
tions of the change-point detection are related to a security
field [1], such as detecting a sudden increase in traffic vol-
ume by computer virus and worm. It is also used in other
application fields, such as transaction data, resource man-
agement, and trend analysis [2].

In a conventional change-point detection algorithm [3],
time series data are divided into two sets at time t. Then
AR (Auto-Regression) model is built for each set in addi-
tion to whole data. Time t is detected as a change-point if
a measured error in the whole model is larger than the sum
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of those in the two divided models by a certain level. The
computational cost is too high to use it as an online algo-
rithm since this operation is performed for each t. Change-
Finder algorithm [4] solves this issue and can be used as an
online change-point detection. However, its computational
cost is still high to detect change-points from data received
via high bandwidth networks, such as 1Gbps and 10Gbps,
due to heavy workload imposed to the host.

In this paper, change-point detection using Change-
Finder algorithm is implemented on an FPGA (Field Pro-
grammable Gate Array) based NIC (Network Interface
Card)∗. The proposed system computes the change-point
score from time series data received from 10GbE (10Gbit
Ethernet). More specifically, ChangeFinder algorithm im-
plemented in the FPGA NIC computes the score in advance
of host applications. It can find change-points on single or
multiple streams coming from a 10GbE interface using a
context memory. This paper aims to reduce the host work-
load and improve change-point detection performance by
offloading ChangeFinder algorithm from host to the NIC.
Xilinx Vivado HLS, a high-level synthesis tool, is used to
implement ChangeFinder on the FPGA. As evaluations,
change-point detection in the FPGA NIC is compared with
a baseline software implementation and those enhanced by
two network optimization techniques using DPDK and Net-
filter in terms of throughput. The result demonstrates 16.8x
improvement in change-point detection throughput com-
pared to the baseline software implementation, while keep-
ing the same change-point detection accuracy. Performance
and area overheads when supporting up to 32,768 streams
are also evaluated.

The rest of this paper is organized as follows. Section 2
introduces ChangeFinder algorithm and related FPGA-
based accelerators. Section 3 designs the ChangeFinder
module and Sect. 4 integrates it in the FPGA NIC. Section 5
extends the design to support multiple streams. Section 6
evaluates the design in terms of area and throughput. Sec-
tion 7 concludes this paper.

2. Background

In statistical analysis and data mining, change-point detec-
tion has been used for various purposes, such as step detec-

∗This paper is an extended version of our workshop paper [5],
by supporting change-point detections on multiple streams.
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tion, edge detection, and anomaly detection. Various algo-
rithms have been introduced in the past years. For example,
a paper [6] presents an algorithm for online change-point de-
tection based on the normalized maximum likelihood. a pa-
per [7] presents a non-parametric change-point detection al-
gorithm. Among them, since AR model is one of primary
approaches to describe time-varying process, in this paper
we will focus on those based on AR model for change-point
detection on time-series data. In this section, we will start
with a conventional change-point detection based on AR
model.

2.1 AR Model: A Conventional Way

Let xn
1 = x1, . . . , xn denote a time-series, and it is divided

into xt
1 and xn

t+1 by a time point t, where xt
1 = x1, . . . , xt

and xn
t+1 = xt+1, . . . , xn. Assuming the k-th order AR model,

the conditional probability density function of xt is given as
follows.

p(xt |xt−1
t−k) =

1

(2π)d/2|Σ|1/2 exp

[
− (xt − ωt)TΣ−1(xt − ωt)

2

]
,

(1)

where d and Σ denote the number of data dimensions and a
covariance matrix, respectively.
ωt is given as follows.

ωt =

k∑
i=1

αi(xt−i − μ) + μ, (2)

where α1, . . . , αk and μ are model parameters.
Let ω̂t denote an estimated ωt calculated by Eq. (2) us-

ing estimated model parameters. The model fitting error for
xn

1 is thus given as follows.

I(xn
1) =

n∑
t=1

||xt − ω̂t ||2 (3)

Here, time t is detected as a change-point when I(xt
1)+

I(xn
t+1) is sufficiently small compared to I(xn

1). Although this
method is simple, computation cost is O(n2) and thus cannot
be used for online change-point detection.

2.2 ChangeFinder Algorithm

The above mentioned problem is addressed by SDAR (Se-
quentially Discounting Auto-Regression model learning) al-
gorithm [8]. ChangeFinder algorithm employs SDAR algo-
rithm for the online change-point detection. Its computa-
tional cost is much lower than AR model approach. As one
of promising applications, for example, a paper [9] utilizes
the SDAR-based change-point detection for detecting fraud-
ulent calls. Apache Hivemall [10], which is a machine learn-
ing library on Apache Hive, releases a software module of
ChangeFinder. Nevertheless its FPGA-based acceleration
has not been reported yet.

Fig. 1 Flowchart of ChangeFinder

2.2.1 Overview

Figure 1 shows the ChangeFinder algorithm that consists of
five steps. Each step is described below.

Step 1 (Data Input)

xt is received at time point t.

Step 2 (First Learning)

For each t, an AR model is built. More specifically, a se-
quence of probability density functions pt(x) : t = 1, 2, . . . is
obtained by the SDAR model, which will be explained later.
Please note that pt−1 is learned based on xt−1. The “outlier”
score at xt is calculated as follows.

S core(xt) = − log pt−1(xt) (4)

Step 3 (First Smoothing)

For each t, a moving average of the outlier scores (obtained
in Step 2) in a time window is calculated. More specifi-
cally, a sequence of moving averages of the outlier scores
yt : t = 0, 1, 2 . . . is obtained as follows.

yt =
1

T

t∑
i=t−T+1

S core(xi), (5)

where T is the length of a time window.

Steps 4 & 5 (Second Learning & Smoothing)

For each t, an AR model is built for the new time-series data
yt : t = 0, 1, 2, . . . (obtained in Step 3), and a sequence of
new probability density functions qt(x) : t = 1, 2, . . . is ob-
tained by the SDAR model as well as Step 2. A smoothing
step is also applied as well as Step 3. Thus, a sequence of the
moving averages zt : t = 0, 1, 2, . . . is obtained as follows.

zt =
1

T

t∑
i=t−T+1

(− ln qt−1(yt)) (6)

Here, zt is denoted as the “change-point” score at time
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Fig. 2 Two-phase learning of ChangeFinder

t. A higher change-point score zt indicates a higher possibil-
ity of change-point at time t. As shown in Fig. 2, by using
the two-phase learning, outliers are eliminated by the first
smoothing step and thus only the change-points where the
probability distribution of time series changes are extracted.

2.2.2 SDAR Model

SDAR model is used for online discounting learning that
relies on AR model. ChangeFinder algorithm uses SDAR
model to obtain the sequences of probability density func-
tions pt(x) and qt(x). These probability density functions
are derived from ωt and Σ in Eq. (1). These parameters are
updated by following expressions each time.

μ̂ := (1 − r)μ̂ + rxt (7)

C j := (1 − r)C j + r(xt − μ̂)(xt− j − μ̂)T (8)

x̂t :=
k∑

i=1

ω̂i(xt−i − μ̂) + μ̂ (9)

Σ̂ := (1 − r)Σ̂ + r(xt − x̂t)(xt − x̂t)
T (10)

Here, r is a discounting rate. A smaller r indicates a greater
influence on past data. For each t, an weighted average μ̂ is
updated using r and xt in Eq. (7). Based on C j : j = 1, . . . , k
obtained in Eq. (8), estimatedω1, . . . , ωk (denoted as ω̂1, . . .,
ω̂k) are derived so that the following equation is satisfied.

k∑
i=1

ωiC j−i = C j (11)

Then ω̂1, . . . , ω̂k are used for Eq. (9).
By introducing the discounting effect, SDAR model

can be used for online learning on non-stationary time-series
data. In addition, the computation cost is reduced down to
O(n) and thus it is preferred for online change-point detec-
tion.

2.3 Related Work

In this paper, change-point detection using ChangeFinder
algorithm is implemented on an FPGA NIC that has four
10GbE interfaces. NPCUSUM (Non-Parametric Cumula-
tive SUM) is a classic and simple change-point detection al-
gorithm. In a paper [11], it is implemented on a high-speed
FPGA NIC in order to detect attacks from network. The net-
work attack detection using NPCUSUM is illustrated below.

S 0 = 0 (12)

S n = max{0, S n−1 + Xn − μ̂ − εθ̂}, (13)

where Xn denotes input data. μ̂ is an estimated value of Xn

before an attack, θ̂ is that after the attack, and ε is a tun-
ing parameter. An attack from the network is detected when
S n becomes unstable and changes drastically. Although this
approach is quite simple to implement, some parameters
must be known in advance depending on given applications.
In addition the design presented in the paper [11] achieves
100Gbps when fixed-point values are fed as inputs, while it
is 2.5Gbps when floating-point values are fed. Please note
that the proposed ChangeFinder NIC can process floating-
point inputs at 10Gbps, so it is superior than the paper [11]
in terms of throughput when floating-point values are used
in the application.

There are some prior works that present FPGA-based
outlier detection that detects anomaly values (not change-
points). In a paper [12], for example, an outlier detection
based on Mahalanobis distance is implemented in an FPGA
NIC. As a more practical outlier detection algorithm, in
a paper [13], LOF (Local Outlier Factor) algorithm is ac-
celerated by using an FPGA. Normal data are filtered at
the NIC and only anomaly data are transferred to the host
machine to reduce data size. In addition, KNN (K-Nearest
Neighbor) algorithm is accelerated by using FPGAs in pa-
pers [13], [14]. It can be used for outlier detection on time-
series data. Let Xt denote input data at time t. Among recent
data, k nearest neighbors from Xt are extracted by KNN al-
gorithm. If their average distance from Xt exceeds a given
threshold, then Xt is detected as an outlier.

In this paper, the proposed system can find change-
points on multiple streams coming from a 10GbE interface.
In other words, we assume multiple time-series data (or mul-
tiple streams) which are independent but coming from the
same interface. The design highly depends on whether com-
putation result of a single sample is influenced by the previ-
ous samples in the same stream. If it is not influenced by the
previous samples in the same stream, an incoming sample
is simply processed without considering the previous com-
putation result of the same stream; thus a context for each
stream is not considered.

On the other hand, if a computation result is influenced
by the previous samples in the same stream, a context must
be maintained for each stream. A straightforward approach
for such cases is to increase the number of stream processing
cores so that each core is in charge of a single stream. In this
case, workload can be distributed to multiple cores. In a pa-
per [15], an FPGA-based FFT processing for variable length
and multiple streams is proposed by using this method. In a
paper [16], a compression mechanism for floating-point nu-
merical data streams is proposed by using FPGA. In these
cases, multiple instances are introduced to handle multiple
streams. The number of instances should be carefully se-
lected by considering the expected number of streams.

Another approach is to handle multiple streams using
a single instance. In this case, a context for each stream
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is maintained, and it is switched depending on the sample
data currently being processed. For the context switching,
a context of the current stream is stored and then that of
the next stream is loaded. In papers [17], [18], a regular ex-
pression matching mechanism for virus detection is imple-
mented by using FPGA, and context memories for storing
context data to support multiple streams are implemented by
using distributed RAMs or external memory. In this paper,
we employ this approach to find change-points on multiple
streams.

Although our target is change-point detection to detect
trend changes, ChangeFinder algorithm can be used for both
the change-point detection and outlier detection. Actually,
the result of the first learning phase S core(xt) is used as
outlier score, while the final output zt is used as change-
point score. Please note that this paper is the first work that
accelerates ChangeFinder algorithm that supports both the
change-point and outlier detections by using FPGA NIC.

3. ChangeFinder on FPGA

ChangeFinder module on FPGA is illustrated in this section.
It is integrated into an FPGA NIC in Sect. 4. ChangeFinder
module is written in C. As a high-level synthesis tool we
use Xilinx Vivado HLS for the implementation.

3.1 Pipeline Structure

Figure 3 illustrates an overview of ChangeFinder module.
It consists of pipelined six stages as mentioned in Sect. 2.2.
As input data, a 32-bit float value is fed to the module. It is
processed as follows.

• sdar1: A probability density function pt(x) for input
data xt in the first learning phase is computed.
• log1: A logarithmic loss of the probability density

function is computed as an outlier score.
• smooth1: A moving average yt of the outlier scores is

computed as a result of the first learning phase.
• sdar2: A probability density function qt(x) for yt in the

second learning phase is computed.
• log2: A logarithmic loss of the probability density

function is computed as a log loss score.
• smooth2: A moving average zt of the log loss scores is

computed as a change-point score.

These stages operate at 125MHz. In Fig. 3, the num-
ber in each pipeline stage indicates the minimum interval
between two input data in the stage. For example, “1clk” in-
dicates that new data can be accepted in every cycle. Thus,
log1, smooth1, log2, and smooth2 can accept new data every
cycle, while sdar1 and sdar2 accept new data in every eight
cycles. Please note that sdar1 and sdar2, log1 and log2,
and smooth1 and smooth2 are identical, respectively. Each
module is pipelined by the HLS PIPELINE directive. The
input interval values in Fig. 3 represent the values obtained
by this pipelining. Also, the memory in each module is op-
timized by the HLS ARRAY PARTITION directive. The

Fig. 3 Pipeline of ChangeFinder module

Fig. 4 sdar module

input interval of sdar1 and sdar2 modules is currently eight
cycles. This is because update omega submodule of sdar1
and sdar2 modules takes eight cycles to process each input
data. Further optimization of the input interval is our future
work. In the following, sdar1, log1, and smooth1 modules
are illustrated.

3.2 SDAR Module

Figure 4 shows sdar module. Its inputs are r and xt. r is
a discounting parameter. Based on it, (1 − r) is computed.
xt is an input float value. The outputs are x̂ and Σ̂. x̂ is an
estimated value of xt and Σ̂ is that of Σt.

As shown, sdar1 is further divided into five pipelined
submodules: update mu, update c, update omega, up-
date estx, and update sigma. xt is stored in (k + 1) 32-bit
registers (pastData in the figure) to refer to past k data, where
k is the order of AR model. Similarly, Ci and ωi are accu-
mulated in (k + 1) 32-bit registers, respectively.

xt, r, and (1 − r) are fed to update mu submodule. It is
corresponding to Eq. (7) and computes μ. μ is then fed to up-
date c and update estx submodules. update c submodule is
corresponding to Eq. (8) and updates Ci registers. Using the
updated Ci registers, update omega submodule updates ωi

registers based on Eq. (11). update estx submodule is cor-
responding to Eq. (9). Using the updated ωi registers, past-
Data registers, and μ, it computes x̂t. Finally, update sigma
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submodule is corresponding to Eq. (10). Using x̂t and xt, it
computes Σ̂.

These five submodules work in a pipelined manner. As
a result, sdar1 module accepts new data xt in every eight
cycles.

3.3 Log and Smooth Modules

Regarding log1 module, its inputs are x̂t, Σ̂, and xt in a 32-
bit float format. The 32-bit output is used as an outlier score
(for log2, it is used as a log loss score). It performs a log-
arithmic computation as in Eq. (4). It is fully pipelined and
can accept new data in every cycle.

Regarding smooth1 module, its inputs are a window
size T and the 32-bit outlier score from log1 module (for
smooth2, it is the 32-bit log loss score from log2 module).
The 32-bit output is the result of the first learning phase yt

(for smooth2, it is the change-point score zt). The input
score is stored in (T + 1) 32-bit registers to refer to past
T data. Then it computes a moving average of recent T data
as in Eq. (5). The maximum T is set to eight in our design.
It is also fully pipelined and can accept new data in every
cycle.

4. ChangeFinder on FPGA NIC

ChangeFinder module is implemented on a 10GbE FPGA
NIC. It is denoted as ChangeFinder NIC in this paper. It
performs change-point detection for each numerical value
coming from the 10GbE network. The change-point score
computed at the NIC is passed to a host application so that
it can identify changes in given time series data. Users can
give some parameters (i.e., AR model order k, discounting
rate r, and smoothing window size T ) to the ChangeFinder
NIC via ioctl so that the users can tune ChangeFinder mod-
ule suitable for time series data of the target application.

In this paper, NetFPGA-SUME [19] is adopted as a
10GbE FPGA NIC. It has four 10GbE interfaces. Pack-
ets received by these interfaces are processed at an on-board
FPGA and the results are transferred to a host machine via
a PCI-Express Gen3 x8 interface. We use 10GbE MAC IP
core provided by Xilinx. We also use Reference NIC de-
sign provided by NetFPGA project [20] as a standard 10GbE
NIC function. ChangeFinder module is inserted along the
datapath of Reference NIC design.

We implemented a wrapper module along the datap-
ath of Reference NIC design so that all the received packets
go through the wrapper module. Then ChangeFinder mod-
ule designed with Xilinx Vivado HLS is implemented inside
the wrapper module. Figure 5 shows a block diagram of
ChangeFinder NIC consisting of ChangeFinder module and
Reference NIC. In Reference NIC, packets received by the
four 10GbE interfaces (i.e., RX0 to RX3) and host DMAC
are arbitrated at Input Arbiter module. Then, an output port
is selected among the four 10GbE interfaces (i.e., TX0 to
TX3) and host DMAC for each packet. Packets are stored
and transmitted via BRAM Output Queues corresponding

Fig. 5 ChageFinder on FPGA NIC

Fig. 6 Connection between wrapper and ChangeFinder modules

to the selected output ports. Packets are transferred between
these modules as AXI4 stream [21]. The wrapper module
is implemented between Input Arbiter and Outport Lookup
modules. We use UDP/IP as transport/network layer proto-
cols. ChangeFinder module computes a change-point score
for each incoming packet destined to a specific UDP port.
All the other packets including ARP and ICMP just skip the
wrapper module without any additional delay.

Figure 6 illustrates the wrapper module and in-
put/output signals of ChangeFinder module. Their con-
nection complies with AXI4 standard. A clock generator
of 125MHz and parameter registers are implemented for
ChangeFinder module. In addition, an input asynchronous
FIFO buffer is inserted between them. Because Change-
Finder module is operating at 125MHz and Reference NIC
is operating at 160MHz, the input FIFO buffer is used to
absorb their different clock frequencies.

The wrapper module identifies packets that contain
sample data. Then it extracts the sample data and feeds them
to ChangeFinder module. The packet conveys sample data
xt in a 32-bit float format in a UDP payload. UDP pack-
ets with a specific destination port number are extracted as
sample packets and they are fed to the input FIFO buffer.
As tuning parameters, AR model order k, discounting rate
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r, and smoothing window size T are stored in the parameter
registers. They are fed to ChangeFinder module in addition
to input data xt when ChangeFinder module is ready. Then
the change-point score zt is computed and fed to an output
asynchronous FIFO buffer. The score zt can be embedded in
the original packet and passed to host application. It is also
stored in a register inside the wrapper module which can be
accessed by the host application via ioctl.

5. Extension for Multiple Streams

ChangeFinder module illustrated so far is designed to find
change-points on a single stream. In this section, it is ex-
tended to support multiple streams coming from a 10GbE
interface. Actually, it is practical to assume that multiple
streams from one or more sources are fed to the proposed
ChangeFinder NIC. We are assuming some applications for
this implementation, such as a server that aggregates sensor
values from many sensor nodes. It can be applied to an in-
trusion detection system that monitors many network flows
between host and specific IP addresses. The change-point
detection requires a context for each stream, because com-
putation result of a sample is influenced by the previous re-
sults in the same stream. As discussed in Sect. 2, a straight-
forward design is to replicate the ChangeFinder module so
that each module is in charge of a single stream. However,
as shown in Sect. 6.3, the number of instances which can be
implemented on the FPGA NIC is at most eight, while the
number of streams can be easily increased depending on the
number of stream sources. In this section, we thus extend
the ChangeFinder module so that a single instance can sup-
port multiple streams by using a context memory to store
context of each stream.

In our design, a fine-grained context switching, where
a context switching occurs in each pipeline stage separately,
is implemented. Such a fine-grained context switching is
beneficial compared to the “Run-to-Completion” approach,
where context of all the pipeline stages is switched at the
same time, in terms of context switching latency. Figure 7
shows the multi-stream version assuming k = 2 and T = 8.
There are a BRAM-based context memory and six stages:
sdar1, log1, smooth1, sdar2, log2, and smooth2.

Each stage identifies the stream ID of the sample cur-
rently being processed. It loads and saves the necessary
context from/to the context memory based on the stream ID
currently being processed. That is, the stream ID is used as
address of the context memory.

Context data for all the streams must be maintained,
while the number of streams can be easily increased depend-
ing on the number of stream sources; thus context data size
should be minimized. Context data size depends on the or-
der of AR model k and the smoothing window size T . Ta-
ble 1 lists context data fields and their sizes when k = 2
and T = 8. In this case, the context size for each stream
is 76 bytes. Assuming Xilinx Virtex-7 XC7VX690T FPGA
is used for the implementation, because its BRAM capacity
is about 52.9 Mbits, up to 87,006 streams can be stored in

Fig. 7 ChangeFinder module for multiple streams

Table 1 Context data for each stream

Data Ci Σ pastData μ r ω index count
Size (byte) 12 4 32 4 4 12 4 4

the BRAM. Please note that only 32,768 streams could be
implemented in total after the placement and routing were
done. This is because the NIC part also consumes BRAM.
If the number of streams is less than the BRAM capacity, a
fast context switching can be simply implemented without
any external memories.

6. Evaluations

6.1 Preliminary Evaluations of Parameters

Context data size depends on the order of AR model k and
the smoothing window size T , so we conduct two prelimi-
nary evaluations using real datasets in order to find appro-
priate parameters of ChangeFinder.

First we apply ChangeFinder to a network intrusion de-
tection. We use CICIDS2017 dataset [22] provided by Uni-
versity of New Brunswick. This dataset consists of labeled
network flows during five days. We use Wednesday dataset
which includes various DDoS attacks, because papers [8]
and [23] show that detection of DDoS attack is one of appli-
cations for their change-point detection algorithm. The rate
of SYN flag and FIN flag which is updated every second is
used as input for ChangeFinder. r is set to 0.001. The eval-
uation results while changing k and T are shown in Figs. 9
and 10.

Figure 9 shows the result when k is changed to 2, 3,
and 4 while T is fixed to 3. The blue line represents the
input value, and the green line represents the change-point
score. X-axis shows the elapsed time and the time unit is
one second. The result shows that the point at which the
change-point score becomes high is almost the same in these
k values, and it is not necessary to set k larger than 2 for this
dataset.

Figure 10 shows the result when T is changed to 3, 4,
and 8 while k is fixed to 2. Since T is the smooth window
size, the change-point score decreases as T increases.

Secondly we apply ChangeFinder to analyze stock
data. We use TOPIX (Tokyo stock price index) data [24]
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Fig. 9 Behavior of change-point score when k is changed (IDS dataset)

Fig. 10 Behavior of change-point score when T is changed (IDS dataset)

from 1987 to 2019. r is set to 0.005. The evaluation results
while changing k and T are shown in Figs. 11 and 12. X-axis
shows the elapsed time and the time unit is one day.

As far as the two evaluation results are considered, it
can be said that k is enough high even at around 2. On the
other hand, T depends on the sensibility of the input value
and how much the change is ignored as an outlier. There was
no significant differences in the number of change points in
these evaluations. Please note that the maximum T must be
determined when ChangeFinder core is synthesized. In the
current implementation, the maximum T is set to 8 which is
the largest value confirmed in the preliminary evaluations.

6.2 Evaluation Environment

The target 10GbE FPGA NIC is NetFPGA-SUME that has a
Xilinx Virtex-7 XC7VX690T FPGA and four SFP+ 10GbE
interfaces. It is mounted to a host machine via PCI-Express
Gen3 x8 interface. We use Xilinx Vivado HLS version
2016.4 for the implementation. Reference NIC part is oper-
ating at 160MHz, while the proposed ChangeFinder module
is running at 125MHz in the case of single-stream design.

Figure 8 shows the evaluation environment using two
machines and Table 2 shows their specification. In the
throughput measurement, if a software program at the client
machine generates time series data and sends them to the
server, there is a possibility that the client cannot fully uti-

Fig. 8 Evaluation environment for throughput

Table 2 Machines used in the environment

Server (host) machine Client machine
CPU Intel Core i5-4460 Intel Core i5-4460
OS Ubuntu 14.04 CentOS 6.6
NIC NetFPGA-SUME (Proposal) NetFPGA-10G for OSNT

Intel X520-DA2 (Software)

lize the 10GbE bandwidth. Therefore, we used a hard-
ware packet generator, called Open Source Network Tester
(OSNT), as the client. OSNT is implemented on the FPGA
NIC and can generate packets at the throughput of 10GbE
line rate. The client and server machines are connected by a
SFP+ direct attached cable for 10GbE. The client machine
has an FPGA NIC with OSNT installed, and sends packets
to the server. In the server machine, the proposed Change-
Finder module is implemented on the FPGA NIC and pro-
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Fig. 11 Behavior of change-point score when k is changed (TOPIX dataset)

Fig. 12 Behavior of change-point score when T is changed (TOPIX dataset)

cesses incoming time series data. We measured the number
of sample data processed at the ChangeFinder module per a
second as throughput.

6.3 Resource Utilization

In this section, first, ChangeFinder module for a single
stream is evaluated in terms of resource utilization. That
for multiple streams is then evaluated.

Table 3 shows DSP, FF, and LUT utilizations of sub-
modules (i.e., sdar1, log1, smooth1, sdar2, log2, and
smooth2) in the proposed ChangeFinder module for a sin-
gle stream. Table 4 shows those of whole ChangeFinder
NIC including ChangeFinder module and Reference NIC.
Although log1 and log2 submodules that perform logarithm
computations in parallel consume more resources than the
others, their resource utilizations are still low. As shown in
Table 4, ChangeFinder module consumes up to 12.1% of the
FPGA resources. Even with 10GbE NIC functionality, the
entire resource utilizations are less than or equal to 18.8%.
Regarding the processing time, it takes 347 cycles to com-
plete all the processing for a single sample, so the latency of
all the processing is 2.78μsec.

Although up to eight ChangeFinder modules can be im-
plemented on the FPGA according to Table 4, in this pa-
per, as shown in Sect. 5, we do not increase the number of
ChangeFinder modules but increase the capacity of a single

Table 3 Resources used in single-stream ChangeFinder module

sdar1 log1 smooth1 sdar2 log2 smooth2
DSP 39 122 14 39 122 14
FF 5,426 9,070 2,777 5,426 9,070 2,777

LUT 5,202 11,491 2,864 5,202 11,491 2,864

Table 4 Resources used in single-stream ChangeFinder NIC

ChangeFinder ChangeFinder + Reference NIC
DSP 437 (12.1%) 437 (12.1%)
FF 35,081 (4.6%) 100,403 (11.6%)

LUT 37,131 (8.5%) 81,517 (18.8%)
BRAM 0 (0%) 198 (13.5%)

ChangeFinder module so that it can support many streams.
In this case, the size of the BRAM-based context mem-
ory increases as the maximum number of streams increases.
Figure 13 shows the BRAM utilization when increasing the
maximum number of streams. Up to 32,768 streams can
be implemented on the BRAM. When increasing the num-
ber of streams from one to 32,768, the operating frequency
dropped from 125MHz to 80MHz. When 32,768 streams
are implemented, the operating frequency is 80MHz and the
number of clock cycles to process a single sample is 260, so
the processing latency is 3.25μsec, which is 0.47μsec longer
than the original design that supports a single stream. Ta-
ble 5 shows the resource utilizations of ChangeFinder NIC
that supports 32,768 streams.
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Fig. 13 BRAM utilization for multiple streams

Table 5 Resources used in multi-stream ChangeFinder NIC

ChangeFinder ChangeFinder + Reference NIC
DSP 376 (10.4%) 376 (10.4%)
FF 25,213 (3.3%) 89,659 (10.4%)

LUT 36,766 (8.4%) 80,470 (18.6%)
BRAM 1,216 (82.7%) 1,414 (96.2%)

BRAM utilization is 96.2%, while the other resource
utilizations are less than 18.6%. FF utilization is lower than
that of the single-stream design since a part of FFs are re-
placed with BRAMs. The other resource utilizations, such
as DSP and LUT, are also reduced because of a relaxed tim-
ing constraint targeting 80MHz.

6.4 Throughput

As mentioned above, OSNT at the client machine transmits
time-series data at 10GbE line rate to the server machine,
and the number of sample data processed within one second
at the server machine is measured as throughput.

The proposed ChangeFinder NIC is compared with
three software-based counterparts implemented in C: Base-
line, DPDK, and Netfilter. In Baseline, a ChangeFinder
program is running on the application layer. A standard
UDP/IP processing is performed by Linux kernel for each
sample data. In DPDK, although the ChangeFinder program
is running on the application layer, the program directly ac-
cesses the NIC without kernel UDP/IP stack. In Netfilter,
the ChangeFinder program is implemented as a kernel mod-
ule using a Linux Netfilter framework. Please note that a
float value is approximated as a fixed-point format in the
Netfilter version. In all these cases, a single-stream Change-
Finder is used for the measurement.

Figure 14 shows their throughputs. The throughput of
our ChangeFinder module is denoted as FPGA(sim) and the
ChangeFinder NIC consisting of ChangeFinder and Refer-
ence NIC modules is denoted as FPGA(actual). FPGA(sim)
throughput is a theoretical value. It is the upper limit of
throughput via 10GbE. The throughput of ChangeFinder
module itself, which is derived by the number of cycles,
pipeline structure (i.e., interval), and operating frequency
of the ChangeFinder module, is 15.6M packets per second.

Fig. 14 Throughput of change-point detection [mega samples / sec]

Fig. 15 Packet format for the evaluation of multi-stream

FPGA(actual) is the measured throughput using real ma-
chines (Table 2). The throughput of FPGA(actual) achieves
16.8x throughput improvement compared to Baseline. It is
much higher than those with software-based optimizations
by DPDK and Netfilter. FPGA(actual) and FPGA(sim) are
almost the same.

In practical use cases, a specific field of received pack-
ets is extracted and fed to ChangeFinder module. In this
experiment, we used 46-byte UDP/IP packets containing a
single 32-bit float value. This assumption is pessimistic in
terms of throughput. sdar1 and sdar2 modules accept new
data in every eight cycles. Since internal data width of Ref-
erence NIC is 256 bits, these sdar modules are not bottle-
neck when packet length is greater than or equal to 256
bytes. S p denotes the packet length [bits] and S overhead de-
notes the total size [bits] of preamble, FCS, and IFG. Tactual

denotes the throughput [samples/sec] of FPGA(actual). Ra-
tio against the 10GbE line rate is denoted as L, and it is
calculated as follows.

L = Tactual(S p + S overhead)/10G[bits/sec] (14)

The proposed FPGA(actual) achieves 10GbE line rate.
We also evaluate the throughput of the multi-stream

implementation by RTL simulation. The packet format pro-
cessed in the NIC is shown in Fig. 15. The format includes
a float value and a stream ID which is generated randomly.
The throughput was calculated based on the number of clock
cycles required to process 10,000 packets. Figure 16 shows
their throughputs. Throughput of the multi-stream imple-
mentation is sightly lower than the single-stream implemen-
tation due to a reduced operating frequency.

7. Conclusions

Toward anomaly detection, change-point detection is used
to look for change in a probability distribution of time
series, while outlier detection is used to look for entity
being away from the mean of a probability distribution.
ChangeFinder algorithm based on SDAR model supports
both the outlier and change-point detections and can be used
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Fig. 16 Throughput evaluation of multi-stream

for online use. This paper is the first work that acceler-
ates ChangeFinder algorithm using FPGA and integrates it
into NetFPGA-SUME for high-speed change-point detec-
tion at 10GbE NICs. A single ChangeFinder module can
find change-points on many streams coming from the same
10GbE interface by using a BRAM-based fast context mem-
ory. The proposed ChangeFinder NIC is compared to a UDP
baseline and two software-based optimizations, i.e., DPDK
and Netfilter. The throughput is much higher than these
counterparts and it is 16.8x higher than the UDP baseline.
The throughput is corresponding to the 10GbE line rate. A
demonstration video of current design can be found in [25].
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