
dsODENet: Neural ODE and Depthwise Separable
Convolution for Domain Adaptation on FPGAs

Hiroki Kawakami, Hirohisa Watanabe, Keisuke Sugiura, and Hiroki Matsutani
Dept. of ICS, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan 223-8522

Email: {kawakami, watanabe, sugiura, matutani}@arc.ics.keio.ac.jp

Abstract—High-performance deep neural network (DNN)-based
systems are in high demand in edge environments. Due to its high
computational complexity, it is challenging to deploy DNNs on
edge devices with strict limitations on computational resources.
In this paper, we derive a compact while highly-accurate DNN
model, termed dsODENet, by combining recently-proposed pa-
rameter reduction techniques: Neural ODE (Ordinary Differential
Equation) and DSC (Depthwise Separable Convolution). Neural
ODE exploits a similarity between ResNet and ODE, and shares
most of weight parameters among multiple layers, which greatly
reduces the memory consumption. We apply dsODENet to a
domain adaptation as a practical use case with image classification
datasets. We also propose a resource-efficient FPGA-based design
for dsODENet, where all the parameters and feature maps except
for pre- and post-processing layers can be mapped onto on-
chip memories. It is implemented on Xilinx ZCU104 board and
evaluated in terms of domain adaptation accuracy, training speed,
FPGA resource utilization, and speedup rate compared to a
software counterpart. The results demonstrate that dsODENet
achieves comparable or slightly better domain adaptation accuracy
compared to our baseline Neural ODE implementation, while
the total parameter size without pre- and post-processing layers
is reduced by 54.2% to 79.8%. Our FPGA implementation
accelerates the inference speed by 27.9 times.

I. INTRODUCTION

To improve the accuracy of CNNs (Convolutional Neural
Networks) in image recognition tasks, a typical approach is to
build deeper models by stacking more convolutional layers [1].
Although such image recognition tasks are in high demand in
edge environments, computation resources are strictly limited in
edge devices, making it difficult to use high-performance CNN
models. To reduce the amount of parameters and mitigate this
issue, light-weight neural network models have been developed
[2]–[4]. Their key idea is to employ DSC (Depthwise Separable
Convolution) that decomposes a conventional convolutional
layer into two smaller convolutional steps.

ResNet [1] is one of conventional CNN models that stacks a
lot of layers for a higher accuracy. To reduce the parameter of
ResNet, by utilizing a similarity to ODE (Ordinary Differential
Equation), Neural ODE [5] repeatedly uses weight parameters
instead of having a lot of different parameters. Thus, Neural
ODE becomes significantly small compared to ResNet, and can
be implemented in resource-limited edge devices. Recently its
implementation on a low-end FPGA (Field-Programmable Gate
Array) device has been reported in [6]. However, its perfor-
mance improvement is limited since only one or two building
blocks are implemented on the programmable logic, and it
does not employ any other parameter reduction techniques. For
example, FPGA-based neural network accelerators and their

optimization techniques, such as binarization and quantization,
are surveyed in [7]. FPGA-optimized multipliers for DNNs that
minimize information loss from quantization are studied in [8].
DSC is applied to an FPGA-based CNN accelerator in [9].

In this paper, a combination of Neural ODE and DSC, called
dsODENet, is proposed and implemented for FPGAs to fully
utilize on-chip memory resources. As a practical use case,
dsODENet is applied to domain adaptation, which is useful
in a common edge AI deployment scenario. When a trained
model at server side is deployed to edge devices, the distribution
difference between training data and inference data acquired at
edge devices often causes a performance degradation, which
can be dealt with domain adaptation techniques. Note that our
approach is basically orthogonal to quantization techniques and
can be combined with them. dsODENet is implemented on
Xilinx ZCU104 board and evaluated in terms of the domain
adaptation accuracy using image classification datasets, training
speed, FPGA resource utilization, and speedup rate compared
to a software execution.

Section II introduces baseline technologies behind our pro-
posal. Section III introduces our domain adaptation method
and Section IV proposes dsODENet for FPGA-based domain
adaptation. Section V shows evaluation results and Section VI
concludes this paper.

II. RELATED WORK

A. Depthwise Separable Convolution

CNNs typically stack a set of convolutional layers for a
higher image recognition accuracy, and each convolutional layer
contains a lot of parameters. Let N , M , and K be the number
of input channels, the number of output channels, and the kernel
size, respectively. The weight parameter size of a conventional
convolutional layer is NMK2.

DSC decomposes the operation in a convolutional layer into
two simpler convolution steps: depthwise convolution step and
pointwise convolution step. In depthwise convolution step, a
convolution operation involving only spatial direction (the size
is K2) is applied for each of an input feature map. Different
weight parameters are used for each of N input channels; thus
its weight parameter size is NK2. Then, an output feature
map of the depthwise convolution step is fed to the pointwise
convolution step as an input. A 1 × 1 convolution operation
is applied for each of an input feature map and for each of
an output channel, thus its weight parameter size is NM . The
weight parameter size of DSC is NK2+NM in total, which is
approximately K2 times reduction, assuming that N,M ≫ K.

B. Neural ODE

ResNet is a well-known neural network architecture that can
increase the number of stacked layers or building blocks by
introducing shortcut connections. Using a shortcut connection,
an input feature map to a building block is temporarily saved
and then it is added to the original output of the building block
to generate the final output of the block.

ODE is composed of an unknown function and its ordinary
derivatives. To obtain an approximate numerical solution, an
ODE solver such as first-order Euler method and higher-order
Runge-Kutta method can be used. Based on a similarity found
in shortcut connection and an ODE solver, one building block
can be interpreted as one step in the ODE solver [5]. Assuming
that Euler method is used as an ODE solver, it can be interpreted
that a first-order approximation is applied to solve the output of
the building block. In this paper, one building block is called
ODEBlock and the whole network architecture consisting of
ODEBlocks is called ODENet.

Each ODEBlock is repeatedly executed C times in ODENet,
while in ResNet, C different building blocks are executed
once. Let O(L) be the parameter size of one building block
or ODEBlock. Total parameter sizes of convolutional layers in
ResNet and ODENet are O(CL) and O(L), respectively; thus
ODENet can significantly reduce the parameter size.

C. Edge Domain Adaptation

Domain adaptation is a kind of transfer learning, where
knowledge obtained at a source domain is transferred to a
different domain (target domain). It is typically assumed that
the source domain has enough labeled training data while the
target domain does not. As explained in Section I, it is useful
in a common edge AI deployment scenario. MobileDA [10]
is a domain adaptation technique for edge devices based on
knowledge distillation and DeepCORAL [11]. DeepCORAL
is a method to reduce the distance between domains. Since
the target domain is an edge environment in the edge domain
adaptation scenario, the target model should be further reduced
in parameter size and computation cost. Although pruning,
quantization, and distillation are very common model compres-
sion techniques, in this paper we propose a combination of
ODENet and DSC to further reduce the number of parameters
of the target domain model.

III. DOMAIN ADAPTATION METHOD

In this paper, a modified version of MobileDA is used
as an edge domain adaptation procedure to gain a higher
performance. While MobileDA uses one teacher model and one
student model as knowledge distillation, our approach uses one
teacher model and two student models. ResNet is used as the
teacher model, while the combination of ODENet and DSC,
called dsODENet, is used in the two student models. In Section
V, our approach will be compared to the original MobileDA.

The training phase consists of three steps. First, a teacher
model is trained with source domain data in Step 1, and then
two student models are trained in Steps 2 and 3. Finally, the
student model makes inferences. Steps 2 and 3 of the learning
process are shown in Figure 1.

Fig. 1. Training steps of our approach.

In Step 2, the teacher model is fixed, and parameters of
student model1 are trained by the help of the teacher model. In
Step 3, the student model1 is fixed, and parameters of student
model2 are trained by the help of the student model1. Step 3
is optional, and either student model1 or model2 can be used
for the prediction. As shown in Figure 1, two loss functions are
used in this domain adaptation: LSoft and LDC . LSoft is a soft
target loss of knowledge distillation and it is defined in Equation
1. LDC is a loss function borrowed from DeepCORAL [11] and
it is defined in Equation 2.

LSoft = Ext∼Xt

∑
k

[L(MT (xt),MS(xt))] (1)

LDC =
1

4d2
||Cs − Ct||2F , (2)

where L(·) is a loss function, MS(xt) is an output when target
domain data is fed to a student model, MT (xt) is an output
when target domain data is fed to a teacher model, Cs is a
covariance matrix of MS(xs), Ct is a covariance matrix of
MS(xt), d is degree of the covariance matrix (e.g., the number
of samples), and || · ||2F is Frobenius norm, respectively. Given
that target domain labels are produced by a teacher model,
LSoft is a loss value computed by comparing the generated
target domain labels and those predicted by a student model.
LDC is computed by the distance between the covariance
matrices of the two domains. The final loss function combines
LSoft and LDC as shown in Equation 3.

L =LSoft + λLDC (3)
LDC is weighted by a hyper-parameter λ that controls the
strength of domain confusion. A smaller λ increases the impor-
tance of class prediction results by a teacher model, which was
trained by the source domain data. On the other hand, a larger
λ increases the importance of domain invariant representation.

Here, target domain samples to be trained are selected by a
given threshold value. Specifically, target domain samples are
first fed to the teacher model in Step 2 or the student model1 in
Step 3. Softmax function is then applied to the class prediction
results so that the sum of the probability of each class is 1.0.
If the highest class probability value of a sample is greater
than a given threshold value, the sample is used for the student
model training. This can prevent situations that incorrect labels

produced by the teacher model in Step 2 or student model1
in Step 3 are used for the student model training. The flow of
Step2 is summarized in Algorithm 1. Step 3 is done in the same
way.

Algorithm 1 Domain adaptation method (Step 2)
Pretrain: Training of teacher model
for each epoch do

1) Obtain xt from teacher model if the highest predicted
probability value is higher than threshold

2) Calculate the Soft Target Loss (Equation 1)
3) Calculate the DC Loss (Equation 2)
4) Train student model1 by the loss function (Equation 3)

Output: student model1

IV. DEPTHWISE SEPARABLE NEURAL ODE FOR FPGA

A. Models

Here, we propose a resource-efficient and lightweight DNN
model, termed dsODENet, that takes advantages of both
ODENet and DSC for resource-limited FPGAs. Figure 2 shows
dsODENet models with three ODEBlocks.

Fig. 2. Model with three ODEBlocks

In Figure 2, the right box shows an internal structure of
ODEBlocks and the left box shows that of a downsampling
block. The structures of ODEBlocks and downsampling blocks
are similar, but in the ODEBlocks, input and output feature
map sizes are the same (i.e., M = N), while in downsampling
block, input feature map size is scaled down to 1/2× 1/2 and
thus M = 2N . Each ODEBlock is executed C times, while
the downsampling block is executed once. In the downsampling
blocks, a 1× 1 convolutional operation with stride 2 (denoted
as Conv) is additionally applied to the shortcut connection.
We observed that the accuracy is sometimes sensitive to the
DSC on the downsampling block that rescales the feature map.
Considering the stability, it is not applied to the Downsam-
pling1. As a smaller version, we consider a model with two
ODEBlocks consisting of only ODEBlock1, Downsampling1
and ODEBlock2.

Note that the total parameter size of ODEBlock1, Down-
sampling1, ODEBlock2, Downsampling2, and ODEBlock3 in

the ODENet without DSC is 2,695,168. In dsODENet, the
total parameter size is 544,000, which is 79.8% reduction.
When a 32-bit fixed-point representation is employed, their
sizes are 86.2Mb and 17.4Mb, respectively. This parameter size
reduction by DSC is significant since these parameters can be
implemented on BRAM or URAM of modest FPGA devices for
simplicity. In Section V, ResNet, ODENet, and dsODENet are
used as student models of the domain adaptation as mentioned
in Section III.

B. FPGA Implementation

As an implementation target, we assume SoC-type FPGA
devices that consist of PL (programmable logic) and PS (pro-
cessing system) parts, and we select Xilinx ZCU104 evaluation
board in this paper. The proposed dsODENet models are
designed with C/C++ language, and Xilinx Vivado HLS 2020.2
is used as a high-level synthesis tool. The operating frequency
of PL part is set to 100MHz. A 32-bit fixed-point format is
used to represent numbers.

The weight parameters and feature maps are implemented
on BRAM or URAM of the FPGA to fully enjoy benefits of
using fast on-chip memories. BRAM and URAM sizes are
11Mb and 27Mb in total, respectively. Their instance sizes
are 36kb and 288kb. Depending on the number and sizes of
parameter arrays, a part of BRAM and URAM instances is
underutilized. In our design, each parameter array is carefully
implemented on either BRAM or URAM instances to minimize
the underutilized on-chip memories. In the three ODEBlocks
case, parameter arrays of normal convolutional layers of Down-
sampling1, those of depthwise and pointwise convolutional
layers of Downsampling2, and those of pointwise convolutional
layers of ODEBlock3 are implemented on the URAM instances;
and the others are implemented on BRAM instances. Regarding
the feature maps, an input feature map array, an output feature
map array, and a temporary feature map array that stores the
input to be fed to the output directly via a shortcut connection
are needed. Their sizes are varied depending on the input image
size, which is also varied by the downsampling blocks. In our
design, all of them are implemented on BRAM instances for
better flexibility.

V. EVALUATIONS

The proposed dsODENet for FPGAs is evaluated with
an edge domain adaptation scenario using image recognition
datasets. For accuracy evaluations, it is implemented with
Pytorch 1.8.1 and torchvision 0.9.1. For resource utilization and
performance evaluations, it is implemented with Xilinx Vivado
v2020.2 for ZCU104 FPGA board. The board runs the Pynq
Linux (Ubuntu 18.04) with ARM Cortex-A53 @ 1.5GHz, 2GB
DRAM, and Zynq UltraScale+ XCZU7EV-2FFVC1156.

A. Datasets

For accuracy evaluations, Office-31 dataset (Office-31 [12])
and digit datasets (SVHN [13] and MNIST [14]) are used.
Their input image sizes are 256×256 and 32×32, respectively.
The MNIST images are grayscale, while SVHN images are
RGB colored; thus the MNIST images are duplicated for three

channels so that they are compatible with the 3-channel SVHN
images. Office-31 is a popular dataset used for domain adaption
tasks. It contains 4,110 images, and they are divided into
three domains: Amazon (A-domain), Webcam (W-domain), and
DSLR (D-domain). A→W means a domain adaptation scenario
in which A-domain and W-domain are the source and target,
respectively. A→W and A→D scenarios are examined in this
paper because domain adaptation from a domain with more
images to that with less images is a typical use case. The edge
domain adaptation procedure proposed in Section III is used.
All the labeled source domain data and all the unlabeled target
domain data are used for the training phase. The accuracy is
then evaluated with all the labeled target data.

B. Accuracy

Either SGD or Adam is selected as an optimizer. The learning
rate is reduced based on Equation 4.

η =
η0

(1 + αp)β
, (4)

where η0 = 0.01, α = 10, β = 0.75, and p is linearly changed
from 0 to 1. In the evaluations, the same experiments are
executed three times and their accuracy values are averaged
and reported. As for a teacher model, an initial model was
pre-trained with ImageNet dataset, and using this initial model
without the final fully-connected layer, the teacher model is
trained. The learning rate is reduced to 1/10 for these pre-
trained layers. Different student models that use ResNet-50,
ODENet, and dsODENet are compared in terms of accuracy.
ODENet and dsODENet use three ODEBlocks as shown in
Figure 2. The number of executions C of an ODEBlock is set
to 10. They are also compared to a teacher model of ResNet-50
and other domain adaptation techniques [10], [15]–[17].

1) Office-31 Dataset: As a counterpart, MobileDA uses
AlexNet as a student model and ResNet-50 as a teacher model.
80% of target domain data is used for the training. As another
counterpart, CDAN [15] is also considered, which is a domain
adaptation technique based on adversarial training. Table I
shows the evaluation results of CDAN, MobileDA, and our
approach with different student models.

TABLE I
DOMAIN ADAPTATION ACCURACY OF OFFICE-31 DATASET

Model A→W A→D
CDAN [15] 77.9 75.1
MobileDA [10] 71.5 75.3
Teacher model ResNet-50 75.8 78.3
Student model1 ResNet-50 80.6 80.9
Student model1 ODENet 71.3 78.8
Student model1 dsODENet 80.4 79.1
Student model2 dsODENet 83.2 79.1

“Student model1 dsODENet” and “Student model2 dsO-
DENet” are our proposed models, where dsODENet is used
for student model1 and student model2, respectively. As shown
in the table, the accuracy of A→W is improved by 4.6% and
2.8% for the teacher model to “Student model1 dsODENet” and
“Student model1 dsODENet” to “Student model2 dsODENet”,
respectively. Also, the accuracy of A→D is improved by
0.8% for the teacher model to “Student model1 dsODENet”.

However, there is no improvement in accuracy from the student
model1 to the student model2.

Note that the loss function used in the proposed method is
different from that of MobileDA. The difference is that a hard
target loss, which is computed by labeled source domain data,
is used in MobileDA. The soft target loss learns output values
of a teacher model in target domain data, while the hard target
loss learns one-hot vectors of labeled source domain data. This
indicates that the hard target loss may cause an overfitting to
the source domain. Also, in edge domain adaptation, the model
is considered to be smaller, which weakens the feature learning.
These make it easy to overfit in the source domain. Therefore,
only soft target loss is used in the proposed method.

Fig. 3. Training speed of different student models in Offce-31 dataset

Figure 3 shows the training speeds of different student mod-
els (ResNet-50, ODENet, and dsODENet) for A→D scenario.
As shown in the figure, the student model of ResNet-50 is
converged faster than the others, followed by those of dsO-
DENet and ODENet. In ResNet-50, the number of implemented
building blocks is optimized for each feature map size in this
experiment. These numbers in ResNet-50 are interpreted as the
numbers of continuous executions of ODEBlocks in the cases of
ODENet and dsODENet. Reducing the number of executions C
of an ODEBlock degrades the approximation performance and
reduces the accuracy. To obtain a stable accuracy, the number
of continuous executions C of an ODEBlock is equally set to
10 for each feature map size in ODENet and dsODENet cases,
though there is still a room for optimization. Note that the
training speed of dsODENet is faster than ODENet, because in
dsODENet the number of parameters to be trained is reduced
by 54.2% to 79.8% by DSC.

2) Digit Dataset: As a counterpart, ADDA [17] which
is also a domain adaptation based on adversarial training is
considered. Table II shows the evaluation results of ADDA and
our approach with different student models. As shown in the

TABLE II
DOMAIN ADAPTATION ACCURACY OF DIGIT DATASETS

Model SVHN→MNIST
ADDA [17] 76.0
Teacher model ResNet-50 76.5
Student model1 ResNet-50 82.6
Student model1 ODENet 82.5
Student model1 dsODENet 83.5
Student model2 dsODENet 85.2

table, there is an improvement of 7.0% and 1.7% in accuracy
from teacher model to “Student model1 dsODENet” and from

“Student model1 dsODENet” to “Student model2 dsODENet”.
We consider that this two-step improvement in accuracy is the
result of both the domain adaptation and knowledge distillation.
We set a high threshold for knowledge distillation from the
teacher model to the student model1. On the other hand, for
knowledge distillation from student model1 to student model2,
we set a lower threshold. We consider that student model1 is
already domain-adapted when learning from the teacher model,
and student model2 has the same effect as general knowledge
distillation. This results in a further improvement in accuracy
just by using a similar architecture.

Fig. 4. Comparison of the numbers of parameters of three models

C. FPGA Resource and Performance
Figure 4 compares the number of parameters of the three

models: ResNet, ODENet, and dsODENet, with two or three
building blocks (denoted as Block2 and Block3). dsODENet
has the least number of parameters, followed by ODENet and
ResNet, and dsODENet (Block3) has the 97% fewer parameters
compared to ResNet (Block3).

dsODENet is implemented on the FPGA and evaluated in
terms of resource utilization and execution time. dsODENets
with two and three ODEBlocks were implemented on the PL
part, while only pre- and post-processing layers were executed
on the PS part. Table III shows resource utilizations of the two
and three ODEBlocks. In both cases, buffers for weight param-
eters and feature maps can be implemented only using BRAM
and URAM, and thus external DRAM is not required. Table
IV compares the execution time of each block for a single data
sample between our FPGA implementation and its software
counterpart (denoted as FPGA and CPU). In FPGA case, a
DMA transfer between PS–PL is additionally required, while
it accounts for a negligible portion of the entire inference time.
Both ODEBlocks and downsampling blocks were accelerated
by 18.7–49.5 times, which contributes to the overall speedup of
27.9 times. The downsampling blocks achieved better speedups
than ODEBlocks, as they involve normal convolution, which is
more compute-intensive than DSC.

TABLE III
FPGA RESOURCE UTILIZATION OF DSODENET

BRAM DSP FF LUT URAM
Block2 462 (74%) 3 (∼0%) 12,762 (2%) 53,886 (23%) 18 (18%)
Block3 584 (93%) 5 (∼0%) 20,839 (4%) 88,055 (38%) 84 (87%)

VI. SUMMARY

In this paper, a combination of Neural ODE and DSC, called
dsODENet, is proposed and implemented for FPGAs. dsO-

TABLE IV
EXECUTION TIME OF EACH BLOCK ON FPGA

FPGA (ms) CPU (ms) Speedup
ODEBlock1 13.80 445 32.2
Downsampling1 7.75 384 49.5
ODEBlock2 14.40 400 27.8
Downsampling2 2.72 54 19.9
ODEBlock3 21.20 397 18.7
DMA transfer 0.35 0 -
Total 60.23 1681 27.9

DENet is applied to a distillation-based edge domain adaptation
as student models. All the dsODENet blocks except the pre- and
post-processing layers are implemented on PL part of Xilinx
ZCU104 FPGA board and the others are executed on PS part.
The total parameter size of dsODENets without pre- and post-
processing layers is reduced by 54.2% to 79.8%. The FPGA
implementation accelerates the prediction tasks by 27.9 times
than a software implementation running on PS part.

Acknowledgements This work was partially supported by JSPS
KAKENHI Grant Number 19H04117, Japan.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” arXiv:1512.03385, 2015.

[2] F. Chollet, “Xception: Deep Learning with Depthwise Separable Convo-
lutions,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jul 2017, pp. 1800–1807.

[3] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications,” arXiv:1704.04861, 2017.

[4] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam, “Searching
for MobileNetV3,” in Proceedings of the International Conference on
Computer Vision, Oct 2019, pp. 1314–1324.

[5] R. T. Q. Chen et al., “Neural Ordinary Differential Equations,” in
Proceedings of the Annual Conference on Neural Information Processing
Systems (NeuroIPS’18), Dec 2018, pp. 6572–6583.

[6] H. Watanabe and H. Matsutani, “Accelerating ODE-Based Neural Net-
works on Low-Cost FPGAs,” in Proceedings of the IEEE International
Parallel and Distributed Processing Symposium Workshops, Mar 2021,
pp. 88–95.

[7] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A Survey of FPGA-Based
Neural Network Accelerator,” arXiv:1712.08934v3, Dec 2018.

[8] J. Faraone et al., “AddNet: Deep Neural Networks Using FPGA-
Optimized Multipliers,” IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 28, no. 1, pp. 115–128, Jan 2020.

[9] L. Bai, Y. Zhao, and X. Huang, “A CNN Accelerator on FPGA Using
Depthwise Separable Convolution,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 65, no. 10, pp. 1415–1419, Oct 2018.

[10] J. Yang et al., “MobileDA: Toward Edge-Domain Adaptation,” IEEE
Internet of Things Journal, vol. 7, no. 8, pp. 6909–6918, Aug 2020.

[11] B. Sun and K. Saenko, “Deep CORAL: Correlation Alignment for Deep
Domain Adaptation,” arXiv:1607.01719, 2016.

[12] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting Visual Category
Models to New Domains,” Proceedings of the European Conference in
Computer Vision (ECCV’10), vol. 6314, pp. 213–226, Sep 2010.

[13] Netzer et al., “Reading Digits in Natural Images with Unsupervised
Feature Learning,” in Proceedings of the NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, Dec 2011.

[14] Y. Lecun et al., “Gradient-based Learning Applied to Document Recog-
nition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[15] M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Conditional Adversarial
Domain Adaptation,” in Proceedings of the Annual Conference on Neural
Information Processing Systems (NeuroIPS’18), Dec 2018, pp. 1640–
1650.

[16] K. Bousmalis et al., “Domain Separation Networks,” in Proceedings
of the Annual Conference on Neural Information Processing Systems
(NeuroIPS’16), Dec 2016, pp. 343–351.

[17] E. Tzeng et al., “Adversarial Discriminative Domain Adaptation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR’17), Jul 2017, pp. 2962–2971.

