
Non-Minimal Routing Strategy for Application-Specific Networks-on-Chips

Hiroki Matsutani, Michihiro Koibuchi ∗, Yutaka Yamada,
Akiya Jouraku, Hideharu Amano

Department of Information and Computer Science, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, JAPAN 223-8522

{matutani,koibuchi,yamada,jouraku,hunga}@am.ics.keio.ac.jp

Abstract

We propose a deterministic routing strategy called flee
which introduces non-minimal paths in order to distribute
traffic with a high degree of communication locality in
Networks-on-Chips. In the recent design methodology, tar-
get system and its application of the Systems-on-a-Chip are
designed in system level description language like System-
C, and simulated in the early stage of design. The task dis-
tribution is statically decided in this stage, and the amount
of traffic between nodes can be analyzed. According to
the analysis, a path that transfers a large amount of to-
tal data is firstly assigned with a relaxed limitation, thus
it is mostly minimal. On the other hand, paths for small
amount of total data, are secondly established so as not to
disturb previously established paths, thus they are some-
times non-minimal. Simulation results show that the flee
routing strategy improves up to 28.6% of throughput against
the dimension-order routing on typical stream processing
application programs.

1 Introduction

On-chip interconnect, which connects intellectual prop-
erty (IP) cores, is one of the most crucial components in
Systems-on-a-Chips (SoCs), in terms of performance and
hardware cost. An on-chip bus, which transfers data logi-
cally on wires shared by all connected modules, has been
widely used as an on-chip interconnect. Despite various
techniques to improve performance [2][13], buses still cre-
ate bandwidth bottlenecks when connecting larger numbers
of modules, and their clock frequencies are difficult to in-
crease because wiring delays have become relatively in-
creased in recent process technologies.

In order to avoid both bandwidth and wiring-delay bot-
tlenecks which bus structures create, Networks-on-Chips
∗Presently with National Institute of Informatics

(NoCs)[5][10][1][9] have been studied as on-chip intercon-
nects for the next generation. NoC architectures are sim-
ilar to those used in parallel computers and System Area
Networks (SANs). In these networks, source nodes 1 gen-
erate packets that include headers as well as data, then
routers transfer them through connected links, and destina-
tion nodes decompose them. Since different packets can be
simultaneously transferred on multiple links, bandwidth of
NoCs is much larger than that of buses. Also, the wiring-
delay problem is resolved, since each flit of a packet is trans-
ferred on a limited-length point-to-point link, and stored in
the buffers of each router. By introducing error detection
and re-transmission protocols, dynamic transmission errors
caused by crosstalk, which will come up in future process
technologies, can be also solved.

Since a node is often a simple special-purpose unit,
the corresponding router should be small. Thus, a router
in NoCs usually employs a deadlock-free deterministic
routing[10][1][9]. The NoC architecture itself is desired
to be flexible, scalable and applicable so as to fit for vari-
ous types of SoCs. However, once an SoC architecture is
fabricated, the number of nodes, achievable performance of
nodes, their functionalities, and connection topologies are
fixed, and never changed in most cases. Thus, a network
architecture should be customized for its application rather
than that for general purpose.

One of the major targets of SoCs is embedded applica-
tions, like media processing[8] mostly for consumer equip-
ments. In the recent design methodology, target system and
its application are designed in system level description lan-
guage like System-C, and simulated in the early stage of de-
sign. The task distribution is statically decided in this stage,
and the amount of traffic between nodes can be analyzed.
Topology design policy according to the analysis of traffic
patterns has been researched[7]. However, a routing algo-
rithm has not been widely investigated, and simple minimal
routing methods for parallel computers[4] have been used.

1In this paper, we use the term “nodes” for IP cores, which are the
connection targets in a chip.

In this paper, we propose a deterministic routing strat-
egy called flee by introducing non-minimal paths for NoCs
according to records of traffic analysis in the design stage
of SoCs. Access traffic of streaming application often in-
cludes a high degree of communication locality, in which
distance between communication pairs of nodes is too short
to distribute a path by minimal routing. By introducing non-
minimal paths, the flee routing strategy increases alternative
paths to avoid congestion links. Then, it establishes a deter-
ministic path taking account into the data sizes communi-
cated by each pair of nodes.

The rest of this paper is organized as follows. In Sec-
tion 2, characteristics of stream processing are described.
In Section 3, existing deadlock-free routing methods which
can be used for NoCs are surveyed, and in Section 4, the
flee routing strategy is proposed. In Section 5, evaluation
results using real application traces are shown, and Section
6 is the conclusions.

2 Stream Processing

In most streams processing such as Viterbi, JPEG or
MPEG coder, a series of processing is performed to a cer-
tain amount of data. A unit of such processing is called
the “Task”. Figure 1 shows a task diagram of JPEG2000
decoding. In the processing, each task can be mapped onto
each node, and is performed in the pipelined manner. In this
case, communication is limited only between neighboring
two nodes. However, the framed part called EBCOT (Em-
bedded Block Coding with Optimal Truncation) requires a
high computation power and bottlenecks the whole stream
flow if each processing in EBCOT is assigned into a sin-
gle node. For equalizing the stream flow, the processing of
EBCOT should be distributed into several nodes and exe-
cuted in parallel as shown in task flow graphs of Figure 2
and 3. In parallelized one, the communication pattern be-
tween nodes includes stream fork and join.

NoCs usually employ simple network topologies, such
as a two-dimensional mesh[1][9] or a folded torus[5][10].
When assigning such tasks into those topologies, access
patterns between nodes include a high degree of locality as
shown in Figure 3. Thus, by pre-analyzing the target appli-
cation, routing strategies should cope with its high access
locality, so that communication paths are well-distributed.

3 Existing Routing Methods

Existing NoCs employ deadlock-free deterministic rout-
ing in most cases[10][1][9]. Unlike adaptive routing that
dynamically changes paths of packets, a path is fixed stat-
ically in deterministic routing, and it has the following
advantages: 1) simple switch without selecting an output

DC / Color
transform

Wavelet
transform Quantization

Coefficient
Modeling

Arithmatic
Encoding

Code sequence
control

EBCOT

Figure 1. A task graph for JPEG2000 decod-
ing. EBCOT requires high computation load.

Task 1

Task 2

Task 3

Task 4

2 3 41

Task flow graph Tile mapping

Heavy

Figure 2. Sequential model. Task 2 bears a
heavy load.

Task 1

Task 2

Task 3

Task 4

Task 2Task 2

2 2 21

34

Task flow graph Tile mapping

Figure 3. Parallel model. Task 2 is distributed
into three nodes and executed in parallel.

channel dynamically from alternative channels can be used;
2) in-order packet delivery, which communication protocol
often requires, is guaranteed.

A simple and popular deterministic routing in NoCs is
dimension-order routing[4], which uses y-dimension chan-
nels after using x-dimension channels in 2-D mesh and
torus. Dimension-order routing uniformly distributes mini-
mal paths between all pairs of nodes.

On the other hand, path selection techniques used for
selecting a path from alternative paths in adaptive rout-
ing will be considerable to arrange a deterministic path
set, because the traffic pattern of stream application is pre-
dictable. The path selection techniques in SANs with irreg-
ular topologies[12] could be applied to this strategy. Since
various kinds of parallel programs are executed in paral-
lel computers, access patterns are difficult to be predicted
in networks for SANs. Thus, such techniques are mainly
intended to make shortest paths to achieve stable and high
throughput under unknown general traffic in PC clusters. In
addition, pairs of nodes make different amount of commu-
nication data, which would be a key factor to establish paths
in NoCs. However, current path selection methods and de-
terministic routings don’t consider this directly, and they are
not optimized to make application-specific paths.

4 Flee Routing Strategy

In this section, a deterministic routing strategy called
flee, which exploits non-minimal paths, is proposed. As
demonstrated in Section 2, access traffic of streaming appli-
cation often includes a high degree of access locality. The
flee routing strategy increases alternative path sets by sim-
ply introducing non-minimal paths so as to mitigate path
congestion. It establishes a deterministic path taking ac-
count into the data sizes, which each pair communicates.

This strategy is divided into two steps: 1) static analysis
of communication pattern, and 2) path establishment un-
der deadlock-free condition. In this algorithm, a path that
transfers a large amount of total data is firstly assigned with
a relaxed limitation, thus it is mostly minimal. On the other
hand, paths for small amount of total data, are secondly es-
tablished so as not to disturb previously established paths,
thus they are sometimes non-minimal.

4.1 Communication Analysis

In the recent design methodology, target application is
described in system level description language including
System-C or Spec-C, and simulated in the early stage of de-
sign. After fixing the type of nodes and assignment of task,
the communication pattern can be analyzed with System-C
level simulation. Through this analysis, the total amount of
communication data between each pair of nodes is ranked
as follows:

1. Count the total size of data transferred between each
pair of nodes in the target application.

2. Sort communication pairs by their total data amount.

As shown in Figure 4, communication pattern, which
consists of clock, source, destination, and data size, is listed
during the simulation for the design. Then all source-
destination pairs are sorted in order of total communication
amount to give priority of pairs, and recorded as an “analy-
sis record”. That is, a source-destination pair with the large
amount of total communication data has high priority to set
paths in the next stage.

It is rarely possible that the communication data size can-
not be known even in stream processing. In this case, only
communication-pair list is used instead of the list shown in
Figure 4. Although an analysis record including commu-
nication data amount is better to establish well-distributed
paths, we can employ the flee even when the amount of
communication data is unknown. We show the influence of
the analysis records (completely analyzed case and incom-
pletely analyzed case) on performance of the flee in Sec-
tion 5.2.3.

(1) (2) (3)

(4) (5) (6) (7)

(0)

Communication pattern Analysis record (*)

clk src-->dst size
10000 (0) (1) 32
10000 (0) (2) 4
10000 (0) (3) 4
10010 (1) (2) 32
10010 (0) (1) 32
10010 (0) (2) 4
10010 (0) (3) 4
10020 (2) (3) 32
10020 (1) (2) 32
10030 (2) (3) 32

src-->dst totalsize
 (0) --> (1) 8192
 (1) --> (2) 8192
 (2) --> (3) 8192
 (0) --> (2) 1024
 (0) --> (3) 1024
 ...

(*)This is completely analyzed case.

Figure 4. Communication pattern analysis.
Communication pattern of target application
is given and all source-destination pairs are
sorted in order of total traffic amount.

4.2 Building Paths

Each path is established in order of the priority in the
analysis record shown in Section 4.1. The deadlock-free
deterministic path is made based on the total cost of chan-
nels passed through as follows.

1. Set the cost of all channels to 1 (minimum channel
cost).

2. Select a source-destination pair, whose path is still
not assigned, with the highest priority in the analysis
record.

(a) Establish a minimum cost path (not always min-
imal hop path) by means of the Dijkstra’s algo-
rithm, which finds the shortest path in a weighted
direct graph, under the condition that all assigned
paths are deadlock-free.

(b) Increase the cost of all channels passed through
by its total data amount, or 1.

3. Repeat Steps 2-3 until all source-destination pairs are
assigned into paths.

In Step 2 (a), deadlock-free condition is satisfied by
employing the restriction of existing deadlock-free non-
minimal adaptive routing, such as the Turn-Model[6].

In Step 2 (b), when communication pairs are completely
analyzed, that is, the total amount of communication data
is known, increase by the communication amount between
the pair. In this case, total bit-length or byte-length of the
communication data can be applied as the unit of commu-
nication amount. Otherwise, at incompletely analyzed case,
increase by 1.

(1) (2) (3)

(4) (5) (6) (7)

(0)(0) --> (1) 8192
(1) --> (2) 8192
(2) --> (3) 8192

(1) (2) (3)

(4) (5) (6) (7)

(0)(0) --> (1) 8192
(1) --> (2) 8192
(2) --> (3) 8192

(1) (2) (3)

(4) (5) (6) (7)

(0)(0) --> (1) 8192
(1) --> (2) 8192
(2) --> (3) 8192

(0) --> (2) 1024

(0) --> (2) 1024
(0) --> (3) 1024

non-min.

non-min.

8193 8193 1-->8193

1 1 1 1

1 1 1

8193 8193 8193

1-->1025 1 11-->1025

1-->1025 1-->1025

8193 8193 8193

1025-->2049 1 1-->10251025-->2049

1025-->2049 1025-->2049 1-->1025

Figure 5. Paths of the flee. The communica-
tion pair (0)-(2) and (0)-(3) take a non-minimal
path.

Figure 5 shows an example of path search under the
West-first Turn-Model[6], when communication pairs of
nodes are completely analyzed. As shown in Figure 5,
high-priority paths, which transfer a large amount of data,
are routed first, and almost minimal paths are assigned.
As the routing progresses, the channel cost is increased
from 1. That is, hot-spots channels will have high cost.
Low-priority paths sometimes become non-minimal so as to
avoid such hot-spot channels. The flee routing keeps main-
stream minimal paths, while low-priority paths try to be es-
tablished to make the best use of entire network resources.

The time complexity to establish all paths with flee rout-
ing strategy is O(n2k), where n is the number of switches
and k is the number of paths to be established.

5 Performance Evaluation

In this section, we firstly evaluate the flee routing strat-
egy and dimension-order routing on mesh and torus. Sec-
ond, we compare the flee routing strategy and existing
path selection algorithms[12] in collaboration with the
up*/down* rule on mesh with faults.

Fault-tolerant system is sometimes required in NoCs,
for link or node faults in the fabrication process. In
such cases, fault redundant techniques for memory yield
improvement[3] can be applied. That is, spare nodes are
reserved for fault recovery, and faulty nodes are replaced
after initialization. Thus, we use not only completely regu-
lar topologies but also those with faults.

Since access data of most stream applications can be pre-

analyzed, we use the completely analyzed record to build
paths in both first and second evaluations. However, in
the last subsection, we will compare the incomplete- and
complete-analyzed records on the flee.

5.1 Simulation Environment

5.1.1 Network Model

A flit-level simulator written in C++ was developed for
analysis. As target topologies, 16-node 2-D mesh and torus
are used. They are known as typical connection topologies
of NoCs [5][1][9]. Every router has five ports; a port is con-
nected to a single node, and others are used for neighbor-
ing routers. A simple model consisting of channel buffers,
crossbar, link controller, and control circuits is used for the
switching fabric in the router. A header flit requires at least
three clock cycles to be transferred; one cycle for routing,
one cycle for transferring a flit from an input channel to an
output channel through a crossbar, and the remaining cycle
for transferring the flit to the next router or host. Wormhole
switching is used as a switching method for the router. The
simulation time is set to more than 1,000,000 cycles.

We employ the West-First Turn-Model[6] to perform
deadlock-free condition in the flee routing strategy on mesh
and torus without faults. In this method and dimension-
order routing, the number of virtual channels is one or two
in mesh or torus, respectively. On the other hand, the
up*/down* routing (rule) with one virtual channel is used
for the flee, and path selection algorithms in mesh and torus
with faults. Two faulty links are randomly selected among
the links that bear the highest communication load through
each application to be simulated. We employ the same
breadth-first spanning tree for the up*/down* routing. Here,
the flee routing strategy is compared with the two path se-
lection algorithms: 1) random selection, and 2) the traffic
balancing algorithm, which uses static analysis of routing
paths, proposed by Sancho et al.[12] for SANs. In the sim-
ulations, the random and Sancho’s algorithm select a path
from only shortest paths, but the flee routing strategy uses
both shortest and non-shortest paths.

5.1.2 Traffic Pattern

In the flee routing strategy, since traffic pattern is an impor-
tant performance factor, we used practical stream process-
ing application programs: JPEG codec, Viterbi decoder and
IPsec accelerator[14]. They were originally developed for
implementation on NEC electronics’ dynamically reconfig-
urable processor DRP[11]. The target systems are consist-
ing of 16 tiles, each of which can process a task of the
target streaming processing. In this case, it is assumed to
be a node. These applications are designed with C-level

Header
Analysis

Huffman
Decode

Inverse
Quantization

1-D Inverse
DCT for row

1-D Inverse
DCT for col

MCU
Mapping

YUV-RGB
Convert

DECODER ENCODER

RGB-YUV
Convert

MCU
Sampling

Quantization

1-D Inverse
DCT for row

1-D Inverse
DCT for col

Stream
Generation

Huffman
Code

Task flow graph Tile mapping

Header
Analysis

Huffman
Decode

Inverse
Quant.

I-DCT
for row

Yuv-rgb
 Convert

MCU
Mapping

I-DCT
for col

Rgb-yuv
 Convert

MCU
Sampling

I-DCT
for col

I-DCT
for row

Huffman
Code Quant.

Stream
Gen.

(1)(0) (2) (3)

(5)(4) (6) (7)

(9)(8) (10) (11)

(13)(12) (14) (15)

Figure 6. Task flow graph and mapping result
for JPEG decoder and encoder.

ACS

 MKPM

 FIFO0

 FIFO1

 FIFO2

 FIFO3

 DELTA SOTB0 SOTB1

 SOTB2 SOTB3

TB2 TB3

TB0 TB1

Task flow graph
Tile mapping

ACS

(1)(0) (2) (3)

(5)(4) (6) (7)

(9)(8) (10) (11)

(13)(12) (14) (15)

 MKPM FIFO0 FIFO1

 FIFO2 FIFO3 DELTA TB0

TB1 TB2 TB3 SOTB0

 SOTB1 SOTB2 SOTB3

Figure 7. Task flow graph and mapping result
for Viterbi decoder.

language, and the amount of communication data is ana-
lyzed in the C-level simulation. In this evaluation, total
bit-length of each communication pair is used as its total
amount of communication, which increases the cost of all
channel passed through.

The JPEG encoder and decoder derived from [1] have
been mapped onto 16-node 2-D mesh and torus. Their
task flow graph and mapping results are shown in Figure
6. Tasks for the JPEG decoder are mapped onto nodes (0)-
(7), while tasks for the encoder are mapped onto (8)-(15).
A 16× 16 pixel data is sequentially processed by each task
in the pipelined manner.

The Soft-Input Soft-Output (SISO) Viterbi decoder has
been implemented for 16-node NoCs as shown in Figure
7. The input data is transferred to the Add-Compare-Select
(ACS) logic. ACS logic generates the Branch Metric and
stores it into an FIFO. ACS also generates the Path Met-
ric. Then, the most probable state is selected in Make Path
Metric (MKPM), and the most probable Branch Metric is
selected in DELTA. Finally, an error corrected code is gen-
erated in Trace Back (TB) and Soft Output Trace Back
(SOTB).

Figure 8 shows task flow graph and mapping results for

Tile mapping

(1)(0) (2) (3)

(5)(4) (6) (7)

(9)(8) (10) (11)

(13)(12) (14) (15)

MD5 SHA-1

Input
Buffer

AH
HMAC

SAD
SPD

3DES
Encrypt

Output
Buffer

ESP
CBC

3DES
Decrypt

AES
Encrypt

AES
Decrypt

Input
Buffer

ESP
CBC-mode

ENCRYPTION DECRYPTION

AH
HMAC

Task flow graph

Input
Buffer

ESP
CBC-mode

AH
HMAC

Output
Buffer

Output
Buffer

SAD
SPD

Crypto
Cores

3DES, AES
MD5, SHA1

Figure 8. Task flow graph and mapping result
for IPsec accelerator.

IPsec accelerator. The cryptographic parameters such as al-
gorithm and key to be used are stored in Security Associa-
tion Database (SAD), and security policies are managed in
Security Policy Database (SPD). For Encapsulated Security
Payload (ESP), input packets are encrypted/decrypted with
Triple-DES-CBC or AES-CBC. For Authentication Header
(AH), the hashed value is calculated with HMAC-MD5 or
HMAC-SHA-1.

For comparison, we also evaluated the case when uni-
form traffic is used. It is a synthetic traffic in which all nodes
sends packets to every other node randomly. A host injects
a packet independently of each other, and we set packet
length for 259 flits including two header flits.

The main stream of the JPEG trace is sequentially pro-
cessed, and the Viterbi trace includes fork and join patterns.
As mentioned at Section 2, most of stream applications have
more than one stream in which a series of task is sequen-
tially processed. Thus, we consider that simulation results
of the three traces, which are used in this evaluation, can be
applicable for other stream processings.

5.2 Simulation Results

5.2.1 Two-dimensional Mesh and Torus

The flee routing strategy under the Turn-Model is compared
with dimension-order routing (DOR) on regular topologies
with the three stream applications and uniform traffic.

Figure 9 and 10 show the accepted traffic versus latency
with the traffic from Viterbi on mesh and torus, respec-
tively. In these figures, “Flee” shows the latency when the
flee is used, while “DOR” is for the dimension-order rout-
ing. The average hops of both methods are also shown in
the parenthesis. On the 2-D mesh topology (Figure 9), the
average hops of packets are 2.52 for the flee, and 1.84 for
the dimension-order routing. Thus, the flee actually takes
a number of non-minimal paths in the stream application.
By employing non-minimal paths, the flee routing strat-
egy distributes the paths, and improves the accepted traffic

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

nc
y

[c
yc

le
]

Accepted traffic [flit/cycle/node]

(14.2% up)

(14.0% up)

DOR (1.84 hops)
Flee (2.52 hops)

Figure 9. Viterbi trace on 4x4 mesh.

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

nc
y

[c
yc

le
]

Accepted traffic [flit/cycle/node]

(22.2% up)

(18.2% up)

DOR (1.48 hops)
Flee (1.87 hops)

Figure 10. Viterbi trace on 4x4 torus.

0

500

1000

1500

2000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

La
te

nc
y

[c
yc

le
]

Accepted traffic [flit/cycle/node]

DOR (1.00 hops)
Flee (1.01 hops)

Figure 11. JPEG trace on 4x4 mesh.

(throughput) up to 14.2% of dimension-order routing. In
addition, on the 2-D torus (Figure 10), the flee improves the
throughput up to 22.2% of the dimension-order routing.

Figure 11 and 12 show the accepted traffic versus latency
under the JPEG traffic on the two topologies. In this ap-
plication, the main-stream data is almost sequentially pro-
cessed in each task as depicted in Figure 6, and each task is
manually mapped onto nodes to minimize the average hops.
In this case, most communications are between neighboring
nodes, and the number of effective alternative non-minimal
paths is limited. Thus, this comparison shows no significant
difference between the flee and dimension-order routing.

Figure 13 and 14 show the network performance under
the IPsec trace on the two topologies. The former graph also
shows the up to 28.6% of throughput improvement against
dimension-order routing. As shown in Figure 8, since all
data streams are encrypted, decrypted, or hashed in crypto-
graphic cores, each cryptographic core tends to be bottle-
necks. Like Viterbi trace, non-minimal paths are effective
for distributing traffic and reducing the congestion in this
application.

For comparison, we also evaluated using uniform traffic.
Although the flee routing strategy is designed to cope with

0

500

1000

1500

2000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

La
te

nc
y

[c
yc

le
]

Accepted traffic [flit/cycle/node]

DOR (1.00 hops)
Flee (1.00 hops)

Figure 12. JPEG trace on 4x4 torus.

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

nc
y

[c
yc

le
]

Accepted traffic [flit/cycle/node]

(28.6% up)

(25.0% up)

DOR (1.26 hops)
Flee (1.51 hops)

Figure 13. IPsec trace on 4x4 mesh.

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

nc
y

[c
yc

le
]

Accepted traffic [flit/cycle/node]

DOR (1.26 hops)
Flee (1.79 hops)

Figure 14. IPsec trace on 4x4 torus.

a high degree of communication locality, we must know
how it works in the worst condition. Figure 15 shows the
accepted traffic versus latency on 4 × 4 2-D mesh topol-
ogy, and Figure 16 shows that on 4 × 4 2-D torus. In
both cases, any further path distributions are difficult to find
even though the non-minimal paths are introduced. This is
because the dimension-order routing already achieves the
well-distributed paths. Thus, non-minimal paths only con-
sume network resources but hardly decrease the hotspots,
and these figures show the inefficiency of the flee on the
uniform traffic. Notice that, the flee routing strategy tends
to make non-minimal paths even in uniform traffic, because
each path is assigned in order of priority in the analysis
record and it tries so as not to disturb the previous paths.

Consequently, the flee routing strategy improves the net-
work performance, when the network has a high degree of
communication locality, typical streaming processing gen-
erates.

5.2.2 Two-dimensional Mesh With Link Faults

In this subsection, we evaluate the flee routing strategy on
mesh with link-faults, that is the fewer available link cases.

0

500

1000

1500

2000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

La
te

nc
y

[c
yc

le
]

Accepted traffic [flit/cycle/node]

(12.3% down)

DOR (2.65 hops)
Flee (2.69 hops)

Figure 15. Uniform traffic on 4x4 mesh.

0

500

1000

1500

2000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

La
te

nc
y

[c
yc

le
]

Accepted traffic [flit/cycle/node]

DOR (2.13 hops)
Flee (2.22 hops)

Figure 16. Uniform traffic on 4x4 torus.

Accepted traffic versus latency for the Viterbi trace is shown
in Figure 17 for 2-D mesh without any faulty link, and Fig-
ure 18 shows the case with two faulty links. As shown in
the fault free case (Figure 17), the average hops are 3.01 for
the flee, and 1.84 for Sancho’s algorithm, then the flee in-
creases the throughput up to 12.0% compared with other
path selection algorithms which use only minimal paths.
Contrastively, in the case of two faulty links, the flee still
outperforms other path selection algorithms, however its
advantage is degraded as shown in Figure 18. The non-
minimal path originally consumes, more or less, additional
network resources by just increased hops. When some of
alternative paths are disabled by link-faults, the network re-
sources of employing non-minimal paths become not neg-
ligible in the case with two faulty links. This is the reason
why the flee degrades its advantages in the case with two
faulty links.

Same evaluation is also conducted with JPEG trace and
IPsec trace. For JPEG trace, as the same reason mentioned
at Section 5.2.1, no significant difference is shown between
the flee and other path selection algorithms. On the other
hand, the evaluation result for IPsec trace is similar to that
for Viterbi trace. In the fault free case, the flee reduces the
latency compared with the path selection algorithms, which
employ only minimal paths. In the case with two faulty
links, the flee still outperforms others, but the difference be-
tween the flee and other path selection algorithms becomes
small because of the fewer links.

Consequently, the flee successfully distributes the con-
gestion especially at traffic patterns with high degree of
access locality, and it improves throughput and latency of
most of typical stream application under various conditions.

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

nc
y

[c
yc

le
]

Accepted traffic [flit/cycle/node]

(11.6% up)

(12.0% up)

Random (1.84 hops)
Sancho (1.84 hops)

Flee (3.01 hops)

Figure 17. Viterbi trace on 4x4 mesh with no
link-fault.

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

nc
y

[c
yc

le
]

Accepted traffic [flit/cycle/node]

Random (2.03 hops)
Sancho (2.03 hops)

Flee (2.78 hops)

Figure 18. Viterbi trace on 4x4 mesh with two
link-faults.

5.2.3 Effect of Analysis Records

To demonstrate the effect of analysis records in the flee, we
shift to compare the complete analysis record, and incom-
plete analysis record including no entries of communication
data amount. Figure 19, 20, and 21 show evaluation results
under various access patterns. In these figures, “Flee.in”
and “Flee” are the flee with incomplete- and completely-
analysis records. When using incomplete analysis record,
the performance of the flee is not stable, and sometimes, it
is close to that of the dimension-order routing as shown in
Figure 19. This is because that paths transfer various sizes
of communication data, and communication data sizes are
a key factor to improve routing paths. At incomplete analy-
sis case, the flee still establishes paths based on the order of
heavy-communication pairs, but channel cost function to in-
crement by 1 is not enough to balance traffic in some cases.
As described in Section 4, both a flow and size of data are
completely pre-analyzed in most of stream processing ap-
plications. However, at incomplete analysis case (it is rare),
the flee is sometimes infirm compared with that with com-
plete analysis record.

6 Conclusions

In this paper, we proposed a deadlock-free determinis-
tic routing strategy called flee for NoCs. The access pattern
is often predictable in NoCs, and it includes a high degree
of access locality, in which distance between communica-

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

nc
y

[c
yc

le
]

Accepted traffic [flit/cycle/node]

DOR (1.84 hops)
Flee (2.52 hops)

Flee.in (1.94 hops)

Figure 19. Incomplete analysis with Viterbi
trace on 4x4 mesh under Turn-Model.

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

nc
y

[c
yc

le
]

Accepted traffic [flit/cycle/node]

Flee (22.2% up)

Flee incomplete (11.0% up)

DOR (1.48 hops)
Flee (1.87 hops)

Flee.in (1.48 hops)

Figure 20. Incomplete analysis with Viterbi
trace on 4x4 torus under Turn-Model.

0

500

1000

1500

2000

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

La
te

nc
y

[c
yc

le
]

Accepted traffic [flit/cycle/node]

Sancho (1.84 hops)
Flee (3.01 hops)

Flee.in (2.81 hops)

Figure 21. Incomplete analysis with Viterbi
trace on 4x4 mesh under up*/down* rule.

tion pair is too short to distribute a path by minimal routing.
Thus, the flee routing strategy introduces non-minimal paths
so as to avoid path congestion. In the flee, the amount of
communication which is estimated in the early stage of SoC
design is taken into account to establish paths. According
to the amount of communication, minimal paths are mostly
assigned for communication pairs with a large amount of
total communication data. Whereas paths that communi-
cate a small data sometimes becomes non-minimal so as
not to disturb the former paths. Simulation results show that
the flee routing strategy successfully distributes the conges-
tion over the NoCs using non-minimal paths, and improves
up to 28.6% of throughput against existing minimal rout-
ing strategies on typical stream application programs. The
flee routing strategy is able to be applied both when appli-
cation traffic is completely analyzed, and when it is not.
Simulation results also show that, by completely analyzing
a total amount of data, the flee routing strategy improves

performance compared with that using incompletely analy-
sis record under part of applications.

References

[1] K. Anjo, Y. Yamada, M. Koibuchi, A. Jouraku, and
H. Amano. BLACK-BUS: A New Data-Transfer Technique
using Local Address on Networks-on-Chips. In Proceedings
of IEEE International Parallel and Distributed Processing
Symposium, page 10a, Apr. 2004.

[2] ARM Ltd. Multi-Layer AHB Overview, 2001. available at
http://www.arm.com/miscPDFs/1745.pdf.

[3] K. Chakraborty and P. Mazumder. Fault-Tolerance and Re-
liability Techniques for High-Density Random-Access Mem-
ories. Prentice Hall PTR, 2002.

[4] W. J. Dally and C. L. Seitz. Deadlock-Free Message Routing
in Multiprocessor Interconnection Networks. IEEE Transac-
tion on Computers, 36(5):547–553, May 1987.

[5] W. J. Dally and B. Towles. Route Packets, Not Wires: On-
Chip Interconnection Networks. In Proceedings of the 38th
Design Automation Conference, pages 684–689, June 2001.

[6] C. J. Glass and L. M. Ni. The Turn Model for Adaptive Rout-
ing. Proceedings of International Symposium on Computer
Architecture, pages 278–287, 1992.

[7] W. H. Ho and T. M. Pinkston. A Methodology for Designing
Efficient On-Chip Interconnects on Well-Behaved Commu-
nication Patterns. In Proceedings of the Ninth International
Symposium on High-Performance Computer Architecture,
pages 377–388, Feb. 2003.

[8] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H. Ahn,
P. Mattson, and J. D. Owens. Programmable Stream Proces-
sors. In IEEE Computer, pages 54–62, Aug. 2003.

[9] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier. An Archi-
tecture and Compiler for Scalable On-Chip Communication.
IEEE Transactions on Very Large Scale Integration Systems,
12(7):711–726, July 2004.

[10] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and
R. Lauwereins. Interconnection Networks Enable Fine-
Grain Dynamic Multi-Tasking on FPGAs. In Proceedings
of the Field-Programmable Logic and Applications (FPL),
pages 795–805, Sept. 2002.

[11] M. Motomura. A Dynamically Reconfigurable Processor
Architecture, Oct. 2002. presented in Microprocessor Fo-
rum.

[12] J. C. Sancho and A. Robles. Improving the Up*/Down*
Routing Scheme for Networks of Workstations. In Proceed-
ings of the European Conference on Parallel Computing,
pages 882–889, Aug. 2000.

[13] Sonics Inc. SONICS Network Technical Overview, Jan.
2002. available at http://www.sonicsinc.com/.

[14] M. Suzuki, Y. Hasegawa, Y. Yamada, N. Kaneko,
K. Deguchi, H. Amano, K. Anjo, M. Motomura, K. Wak-
abayashi, T. Toi, and T. Awashima. Stream Applications on
the Dynamically Reconfigurable Processor. In Proceedings
of International Conference on Field Programmable Tech-
nology (FPT), pages 137–144, Dec. 2004.

