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Abstract

Three-dimensional Network-on-Chip (3-D NoC) is
an emerging research area exploring the network archi-
tecture of 3-D ICs that stack several smaller wafers or
dice for reducing wire length and wire delay.

Various network topologies such as meshes, tori, and
trees have been used for NoCs. In particular, much at-
tention has been focused on tree-based topologies, such
as Fat Trees and Fat H-Tree, because of their relatively
short hop-count that enables lower latency communica-
tion compared to meshes or tori. However, since on-
chip tree-based networks in their 2-D layouts have long
wire links around the root, they generate serious wire
delay, posing severe problems to modern VLSI design.
In this paper, we propose a 3-D layout scheme of trees
including Fat Trees and Fat H-Tree for 3-D ICs in or-
der to resolve the trees’ intrinsic disadvantage. The
3-D layouts are compared with the original 2-D layouts
in terms of network logic area, wire length, wire delay,
number of repeaters inserted, and energy consumption.
Evaluation results show that 1) total wire length is re-
duced by 25.0% to 50.0%; 2) wire delay is improved and
repeater buffers that consume considerable energy can
be removed; 3) flit transmission energy is reduced by
up to 47.0%; 4) area overhead is at most 7.8%, which
compares favorably to those for 3-D mesh and torus.

1 Introduction

As semiconductor technology improves, the number
of processing cores integrated on a single chip has con-
tinually increased. To connect many cores on a chip,
Network-on-Chips (NoCs) [4, 1, 14] that introduce a
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packet-switched network structure have been widely
employed instead of traditional bus-based on-chip in-
terconnects.

On-chip network topology is a crucial factor of the
chip in terms of performance, cost, and energy con-
sumption. Various network topologies have been stud-
ied for NoCs. Especially, two-dimensional mesh[14]
and torus[4] are popularly used in NoCs, because their
grid-based regular arrangement is intuitively consid-
ered to be matched to the two-dimensional VLSI lay-
out. On the other hand, much attention has been fo-
cused on tree-based topologies, such as Fat Trees[10],
because of their relatively short hop-count that en-
ables lower latency communication compared to that
for mesh or torus. As an extension to Fat Trees, we pro-
posed a novel tree-based topology called Fat H-Tree[12]
that provides a torus structure by combining two trees.
We also proposed its 2-D layout. Fat H-Tree and its 2-
D layout were evaluated in terms of network logic area,
wire length, wire delay, and energy consumption[12].
As a result, Fat H-Tree outperforms Fat Trees in terms
of cost-performance, and it also achieves comparable
performance to torus while its hardware cost is less
than torus. However, since on-chip tree-based inter-
connects have long wire links near the root of the tree,
they have been found to generate a serious wire delay
which poses severe problems in VLSI design.

An attractive solution to the wire delay problem is
3-D IC technology that stacks multiple wafers or dice
using vertical interconnects[2, 5, 6]. Various 3-D inter-
connect approaches have been proposed: wire-bonding
between stacked chips, microbump technology[2], con-
tactless (i.e., wireless), and through-via between
stacked wafers[5, 6]. By using these techniques, current
concept of NoCs is being extended to 3-D NoCs[11, 9,
13]. In this paper, we assume through-wafer via tech-
nology, which is expected to offer both very high den-
sity of vertical interconnects and very short distance
between wafers. The distance between wafers can range
from 5µm to 50µm[11], which is much shorter than the



wire length between cores on a tier, and the pitches
of a through-wafer via can range from 1µm to 10µm
square[5, 6, 11], depending on the manufacturing pro-
cess such as wafer-to-wafer alignment.

From the view point of graph theory, 3-D layout
methods of de Bruijn and Pyramid networks have been
proposed[15, 16]. In this paper, we propose a 3-D lay-
out method of Fat Trees and Fat H-Tree, and the pro-
posed method is evaluated in terms of network logic
area, wire length, wire delay, and energy consumption
by using NoC circuits. The rest of this paper is orga-
nized as follows. Section 2 introduces Fat Trees and
Fat H-Tree, and Section 3 proposes their 3-D layouts.
Section 4 compares the proposed 3-D layouts with the
original 2-D layouts and Section 5 concludes this paper.

2 Two-Dimensional Layout

Figures 1-6 show examples of tree-based topologies
with 64 cores, where a white circle represents a network
interface of the core and a shaded square represents a
router connecting other routers or network interfaces.
They have different numbers of routers, different link
lengths, and different numbers of ports per router, all
of which affect throughput, amount of hardware for
network resources, and energy consumption.

2.1 Fat Trees

Fat Trees[10] can be expressed with a tuple (p, q, c),
where p is the number of upward connections, q is the
number of downward connections, and c is the number
of upward connections that each core has. Figure 2
shows a Fat Tree (2,4,1), in which each router (except
for top-rank routers) has two upward and four down-
ward connections, and each core has one upward link.
Fat Tree (2,4,1) is used in [7]. Note that a Fat Tree
(1,4,1) is identical to the H-Tree (Figure 1).

The top-rank link between a top-rank router and
its children requires the longest wire whose length is
L/2 in a tree placed in an L × L chip. Thus, the wire
delay on these links grows quadratically as the chip size
enlarges, or repeater buffers that consume additional
power will be inserted to mitigate the wire delay.

2.2 Fat H-Tree

Fat H-Tree[12] is a novel tree-based network with a
torus structure. It is formed by combining two H-Tree
networks, called red tree and black tree. Similar to
the Fat Tree (2,4,2), every processing core in a Fat H-
Tree has two ports: one for connecting to the red tree
and the other to the black tree. The network interface
in a Fat H-Tree has a function which is capable of for-
warding packets from the red tree to the black tree and
vice versa. This function provides torus-like alternative
paths, which greatly improve its performance.

a) Red Tree Figure 3 shows a Fat H-Tree with a red
tree, where the number labeled at a router (e.g., 1,2, or
3) is the rank of that router in the tree. Assume that
4n = 22n cores are aligned in a 2n×2n two-dimensional
grid square, and two-dimensional coordinates (x, y) are
assigned to each core. We call such a core a rank-0
router from the network point of view. For a rank-0
router (x, y), the red-tree coordinates R(r0, r1, ...rn−1)
are assigned as follows.

ri = ((x/2i) mod 2) + 2 × ((y/2i) mod 2) (1)

For each i from 0 to n − 1, four rank-i red routers
R(ri, ...rn−1) having the same part of coordinates
R(ri+1, ...rn−1) are connected to the rank-(i + 1) red
router labeled with R(ri+1, ...rn−1). The top-rank
router in the red tree has thus coordinates R. Figure
3 shows R, R(0), R(2, 0), and R(2, 2, 0) as examples of
red-tree coordinates.
b) Black Tree Figure 4 shows the black tree,

which is located to the lower right of the red tree.
For a rank-0 router (x, y), the black-tree coordinates
B(b0, b1, ...bn−1) are assigned as follows.

bi = ((((x − 1) mod 2n)/2i) mod 2) +

2 × ((((y − 1) mod 2n)/2i) mod 2) (2)

For each i from 0 to n − 1, four rank-i black
routers B(bi, ...bn−1) having the same part of coordi-
nates B(bi+1, ...bn−1) are connected to the rank-(i+1)
black router labeled with B(bi+1, ...bn−1). Figure 4
shows B, B(2), B(1, 2), and B(0, 1, 2) as examples of
black-tree coordinates.
c) Fat H-Tree On the set of 2n×2n = N×N rank-0
routers (or cores), a Fat H-Tree FH(N) is formed with
an n-rank red tree and an n-rank black tree. Fat H-
Tree has a torus structure, which is formed with rank-0
and rank-1 routers in both trees.

In the same manner as a folded two-dimensional
torus, a Fat H-Tree can be folded to avoid long feedback
links laid across the chip (e.g., links connecting the
rightmost/top router and the leftmost/bottom router).
As shown in Figure 6, the order of nodes is changed so
that every link is connected to the next neighboring
node. However, each link, except for top-rank links
connecting to the top-rank router, requires twice the
wire length of the same-sized H-Tree. The top-rank
links become very short because of the folded layout
(see Section 4.2). Thus, the next link from the root
becomes the longest in a folded Fat H-Tree, and its
length is the same as that of the longest link in the
H-Tree and Fat Trees.

3 Three-Dimensional Layout

Tree-based topologies such as Fat Trees and Fat H-
Tree in their 2-D layouts use relatively large wire re-
sources as their network size increases. Here, we pro-
pose a 3-D layout method that divides the original pla-
nar network into several parts and connects them by
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Figure 2. Fat Tree (2,4,1)
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Figure 6. Folded Fat H-Tree
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not shown)

using vertical links in order to reduce their wire length,
wire delay, and energy consumption in the wires.

Three-dimensional layouts of Fat Trees and Fat H-
Tree are proposed in Section 3.1 and 3.2 respectively.

3.1 Fat Trees

For Fat Trees, we first show the 4-split method that
divides the original planar tree into four parts. Then,
we show a more general 2n-split method.
Four-Split Method The original 2-D layout of a

given Fat Tree is divided into four tiers (e.g., tier-
0, tier-1, tier-2, and tier-3), and then these tiers are
stacked together using vertical interconnects.

The original 2-D layout uses long wires for top-rank
links near the root of the tree. Since the distance be-
tween neighboring tiers is very short (e.g., 5µm-50µm)
in a 3-D IC, we aim to replace these long wires with
vertical links. This replacement would shorten the wire
length and mitigate the delay on these lines.

Here is the procedure that splits a given Fat Tree
into four tiers.

1. Chip partitioning: Assume that the number of
cores in a given Fat Tree is 2n×2n and 2-D coordi-
nates (x2D, y2D) are assigned to each core. For the
3-D layout, the 2-D coordinates of each core are
transformed into 3-D coordinates (x3D , y3D, z3D),
as follows:

x3D = x2D mod 2n−1

y3D = y2D mod 2n−1

z3D = 2 × �y2D/2n−1� + �x2D/2n−1�
For example, a 64-core Fat Tree (2,4,1) can be
divided into four tiers, each of which has 16 cores,
as shown in Figure 7.

2. Allocation of routers: Routers are distributed
across all tiers evenly so that each tier has the
same number of routers for each tree level. In Fig-
ure 7, each tier has four rank-1 routers, two rank-2
routers, and a single rank-3 router.

3. Allocation of vertical links: Routers are connected
by horizontal wires and/or vertical links so as to
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minimize the wire length. In order to connect
routers at different tiers, vertical links such as
through-wafer vias are placed between the tiers.

4. Reallocation of routers: The locations of routers
are adjusted so as not to overlap vertical links,
since a vertical interconnect consumes the over-
head area. Hence, the overhead area is much
smaller than router area with vertical links not
overlapping each other. As shown in Figure 7,
a single rank-3 router is placed at the center of
each tier, and two rank-2 routers are placed closely
around the rank-3 router.

As a consequence, every top-rank link that requires
the longest wire to connect rank-2 and rank-3 routers
is replaced by a very short vertical link that enables
low-latency communication. Hence, the connection be-
tween rank-1 and rank-2 routers becomes the longest
in the 3-D layout. That is, compared with the original
2-D layout, the longest link length in the 3-D layout is
reduced by half.

This layout method can be also applied to the other
types of Fat Trees, such as (2,4,2). This method is
called “4-split method”, since the original 2-D layout
is divided into four parts.

Two-Split Method More generally, a given Fat
Tree can be divided into 2i tiers, by combining the
4-split method with another method called “2-split
method”, where i is a positive integer. When a given
Fat Tree is divided into two pieces by the 2-split
method, the 2-D coordinates of each core are trans-
formed as follows:

x3D = x2D

y3D = y2D mod 2n−1

z3D = �y2D/2n−1�
The other steps (i.e., allocations of routers and ver-

tical links) are the same as the 4-split method.

3.2 Fat H-Tree

Since Fat H-Tree network includes a torus structure,
its 3-D layout must keep the torus structure intact even
though the network is partitioned into several tiers con-
nected by vertical links.
Four-Split Method Here is the procedure to split

a given Fat H-Tree into four tiers.

1. Chip partitioning: Assume that the number of
cores in a given Fat H-Tree is 2n × 2n and 2-
D coordinates (x2D, y2D) are assigned to each
core. For the 3-D layout, the 2-D coordinates
of each core are transformed into 3-D coordinates
(x3D, y3D, z3D), as follows:

x3D =
{

x2D mod 2n−1 x2D < 2n−1

2n−1 − (x2D mod 2n−1) x2D ≥ 2n−1

y3D =
{

y2D mod 2n−1 y2D < 2n−1

2n−1 − (y2D mod 2n−1) y2D ≥ 2n−1

z3D = 2 × �y2D/2n−1� + �x2D/2n−1�
As a result, the original 2-D layout of Fat H-Tree
is folded in both vertical and horizontal directions,
resulting in four folded pieces. In the case of a 64-
core Fat H-Tree, 2-D layouts of red tree and black
tree are transformed into their 3-D layouts shown
in Figure 8 and 9, respectively.

2. Allocation of routers: Routers are evenly dis-
tributed across all tiers. In this example, each tier
has eight rank-1 routers (four for red tree and the
others for black) and two rank-2 routers (one for
red and the other for black). Also, tier-1 has a
rank-3 red-tree router, whereas tier-2 has a rank-3
black one.

3. Allocation of vertical links: Vertical links such as
through-wafer vias are placed so as to shorten the
horizontal wire length between two linked routers



mounted on different tiers. Notice that several
links in black tree (Figure 9) are labeled as “to
tier n”. This means that these links are connected
to an associated rank-1 black-tree router mounted
on tier-n.

Although we have considered the red tree and the
black tree separately, the 3-D layout of Fat H-Tree is
formed by superimposing the 3-D layouts of red tree
and black tree on the same tiers.

To show that the 3-D layout of Fat H-Tree is keeping
its torus (ring) structure, here we illustrate a packet
that moves to y+ direction from core (1,0,0). This
packet goes around the ring and then it reaches the
core (1,0,0) again. After moving two hops in y+ direc-
tion from core (1,0,0), the packet reaches core (1,1,0),
as shown with arrow 1 in Figure 8. The next core from
core (1,1,0) is core (1,2,0) as shown with arrow 2 (Fig-
ure 9), and the next is core (1,3,0) as shown with arrow
3 (Figure 8). Then the packet moves up to core (1,3,2)
on tier-2, as shown with arrow 4. On tier-2, in the same
way, the packet goes through core (1,3,2), core (1,2,2),
core (1,1,2), and core (1,0,2). Finally, the packet gets
back to core (1,0,0) on tier-0, as shown with arrow 8.

As mentioned above, the 3-D layout of a given Fat H-
Tree is obtained by folding the original Fat H-Tree one
or more times until the number of folded pieces meets
the number of tiers the 3-D chip has (e.g., two foldings
for 4-split). Such a folding-based transformation from
2-D into 3-D layout has been also proposed in 3-D IC
placement techniques[3] to generate a 3-D layout with
small number of vertical links.
Two-Split Method Like Fat Trees, a given Fat H-

Tree can be divided into 2i tiers, by combining the 4-
split and 2-split methods of Fat H-Tree. In the 2-split
method, 2-D coordinates are transformed as follows:

x3D = x2D

y3D =
{

y2D mod 2n−1 y2D < 2n−1

2n−1 − (y2D mod 2n−1) y2D ≥ 2n−1

z3D = �y2D/2n−1�
Note that every ring structure in y direction is

formed across two tiers, whereas that in x direction
is formed within a single tier. In the 2-split method,
therefore, every ring in x direction must be folded
within a single tier as well as 2-D layout of rings or
tori. That is, a series of nodes in y direction are placed
adjacently, whereas those in x direction are interleaved.

The other steps are the same as the 4-split method.

4 Evaluations

In this section, the proposed 3-D layouts of trees
are compared to the original 2-D layouts in terms of
network logic area, wire length, and energy consump-
tion. Note that we omit the performance evaluations
here, because there is no difference of network through-
put between 2-D layouts and 3-D layouts of trees. The
performance comparisons of trees were shown in [12].
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4.1 Network Logic Area

The network logic area in a 3-D NoC is composed of
routers, network interfaces, and vertical links. To ob-
tain the network logic area for each topology, we first
estimate the area used in routers and network inter-
faces and then calculate the area for vertical links.

To estimate the size of routers and network inter-
faces in a topology, we have implemented a wormhole
router that supports various node degrees. We have
also developed an NoC generator that automatically
connects the routers and network interfaces in the ar-
bitrary network topologies. Using the Synopsys Design
Compiler, we synthesized the generated NoC design
with ASPLA 90nm standard cell library and estimated
the network logic area. The behavior of the synthesized
NoC routers was confirmed through a gate-level simu-
lation assuming an operating frequency of 500MHz.

The router architecture is fully pipelined. It trans-
fers a header flit through four pipeline stages consisting
of a routing computation, virtual-channel allocation,
crossbar allocation, and crossbar traversal. The flit-
width is set to 64-bit, and each pipeline stage has a
buffer for storing one flit. The routing decisions are
stored in the header flit prior to packet injection (i.e.,
source routing); thus routing tables that require regis-
ter files for storing routing paths are not needed in each
router, resulting a low cost router implementation.

The network interface (NI) has to be designed to
interface between a processing core and a network with
a minimum hardware amount. We have implemented
a simple NI that employs a 2-flit FIFO buffer for both
the core-to-network and network-to-core interfaces. In
addition, we have implemented a different type of NI
for Fat H-Tree, because Fat H-Tree uses 2-port NIs
that can forward packets from red tree to black and
vice versa, as described in [12].

The pitches of a through-wafer via can range from
1µm to 10µm square[5, 6, 11], depending on the man-
ufacturing process (e.g., accuracy of wafer-to-wafer
alignment). In this evaluation, the size of a through-
wafer via was set to 10µm square, and the flit-width
was set to 64-bit. Then, we calculated the through-via
area according to the number of all unidirectional 1-bit
links between tiers.

Figure 10 shows the network logic area of vari-



ous topologies: “HT” for H-Tree, “FT1” for Fat Tree
(2,4,1), “FT2” for Fat Tree (2,4,2), and “FHT” for Fat
H-Tree. In the graph, the hardware amounts of 2-D
and 3-D layouts are shown in different colors. In addi-
tion, we estimated the hardware amounts of 2-D mesh,
3-D mesh, 2-D torus, and 3-D torus for comparison.

In all topologies, their 3-D layout increases the to-
tal network logic area from their original 2-D layout.
The 3-D layouts of trees use through-wafer vias accord-
ing to the number of vertical links that cross tiers, as
the additional hardware resources for the 3-D stacking.
On the other hand, 3-D mesh and torus require much
more hardware resources compared with 2-D mesh and
torus, because a router in 3-D mesh (or torus) requires
two additional channels for vertical connections (i.e.,
up and down), which require a larger crossbar switch
and more channel buffers, in addition to the through-
via area they need.

Although the 3-D layout of Fat H-Tree consumes a
relatively larger area for through-vias than other tree-
based topologies do and its hardware amount is in-
creased by 7.8%, this area overhead is still smaller than
those required for 3-D mesh and torus. Note that we
have assumed that the size of a through-wafer via was
10µm square. This area overhead would be further re-
duced when the pitch becomes 1µm square.

4.2 Total Wire Length

In this section, we calculate the total wire length
of Fat Trees, Fat H-Tree, and other typical topologies.
Assuming that the distance between neighboring two
cores aligned in a 2-D grid square is 1-unit, we define
L as the total unit-length of links in a given network.

In Section 4.2.1, we obtain the total unit-length of
2-D layouts. Then in Section 4.2.2, we obtain the to-
tal unit-length of 3-D layouts assuming that a given
network is divided into four tiers. That is, 16-core, 64-
core, and 256-core networks are divided into four tiers,
each of which contains 2×2 cores, 4×4 cores, and 8×8
cores, respectively.

4.2.1 Two-Dimensional Layout

The total unit-length of links in an n-rank H-Tree net-
work, L2D,ht, can be expressed as

L2D,ht =
n∑

i=1

liht · ri
ht (3)

where liht is the total unit-length of links between a
rank-i router and its four child routers, and ri

ht is the
number of rank-i routers in the H-Tree. Assuming that
the number of cores is N = 2n × 2n, liht = 2i+1 and
ri
ht = N/4i, where 1 ≤ i ≤ n. Therefore, Equation 3

can be transformed as follows.

L2D,ht =
n∑

i=1

liht · ri
ht =

n∑
i=1

2i+1 · N

4i
= 2(N − 2n) (4)

Table 1. Total link length, L, of 2-D layouts (1-
unit = distance between neighboring cores)

N-core 16core 64core 256core
HT 2(N − 2n) 24 112 480
FT1 nN 32 192 1,024
FT2 2nN 64 384 2,048
FHT 8 + 8(N − 2n+1) 72 392 1,800
2Dmesh 2(N − 2n) 24 112 480
2Dtorus 4(N − 2n) 48 224 960

Table 2. Total link length, L, of 3-D layouts (1-
unit = distance between neighboring cores)

N-core 16core 64core 256core
HT 2(N − 2n+1) 16 96 448
FT1 (n − 1)N 16 128 768
FT2 2(n − 1)N 32 256 1,536
FHT 8 + 4(N − 2n+1) 40 200 904
3Dmesh 2(N − 2n+1) 16 96 448
3Dtorus 4(N − 2n+1) 32 192 896

Similarly, the total unit-length of links in a Fat Tree
(2,4,1) network, L2D,ft1, is nN . A Fat Tree (2,4,2) has
twice the number of routers in the Fat Tree (2,4,1); so
L2D,ft2 = 2L2D,ft1.

A Fat H-Tree has two folded H-Tree networks, in
which each link, except for the links connecting to the
top-rank router, requires twice the wire resources of an
ordinary H-Tree. By folding the H-Tree, only the top-
rank router and its four child routers can be placed in-
side a 1-unit × 1-unit grid square. Therefore, the total
unit-length of links in a Fat H-Tree network, L2D,fht,
can be expressed as follows.

lifht =
{

2liht 1 ≤ i ≤ n − 1
4 i = n

(5)

L2D,fht =
n∑

i=1

lifht · ri
fht = 8 + 8(N − 2n+1) (6)

Total unit-lengths of 2-D layouts mentioned above
are summarized in Table 1. Although a Fat H-Tree
uses slightly more wire resources compared to the Fat
Tree (2,4,2) in 16- and 64-core networks, the impact
on the chip design is considered to be modest. This
is because enormous wire resources are available in an
NoC, thanks to the current CMOS technology that has
six or more metal layers.

4.2.2 Three-Dimensional Layout

Here we estimate the total unit-length required for the
3-D layout of each topology. Since the distance between
wafers (i.e., tiers) can range from 5µm to 50µm[11],
which is much shorter than that of horizontal links, we
do not consider the vertical link length for simplicity.

Assuming that an n-rank H-Tree network is divided
into four tiers, we estimate the total link length of its
3-D layout, L3D,ht. Every top-rank link is replaced by
a vertical link that connects routers on different tiers



or a very short horizontal link that connects routers
in the same tier. Neither do we consider the length of
such very short horizontal links for simplicity. In the
case of 3-D layout for an n-rank H-Tree, Equation 4
takes the following:

L3D,ht =
n−1∑
i=1

2i+1·N
4i

= 2N

(
2n−1 − 1

2n−1

)
= 2(N−2n+1)

(7)
For Fat H-Tree, we consider red tree and black tree

separately. The 3-D layout of a red tree is equivalent
to that of a same-sized H-Tree. Therefore its total wire
length can be expressed with Equation 7. The layout
of a 3-D black tree includes a same-sized H-Tree as well
as that of a red tree. Moreover, the black tree requires
four 2-unit links for its top-rank links (Figure 9). Thus,
the total wire resources required for 3-D layout of a
given Fat H-Tree can be expressed as follows:

L3D,fht = 8 + 2L3D,ht = 8 + 4(N − 2n+1) (8)

Total unit-lengths of 3-D layouts mentioned above
are summarized in Table 2. Compared with the original
2-D layouts, the 3-D layouts reduce their total wire
length by 44.4%-49.8% for Fat H-Tree and by 25.0%-
50.0% for Fat Trees. Although the total unit-length of
a Fat H-Tree is much longer than that of a torus in the
cases of 2-D layouts, their differences are narrower in
the cases of 3-D layouts. Since one of trees’ drawbacks
is their wire length, it can be mitigated by using the
3-D layout method proposed here. The 3-D layout of a
Fat H-Tree can reduce more wire resources compared
with that of a Fat Tree (2,4,2), in the cases of large
networks such as 64-core or more. Actually, the 3-D
layout of a 64-core Fat H-Tree requires 21.9% less wires
compared with the same-sized Fat Tree (2,4,2).

Here we discuss why the 3-D layout of Fat H-Tree
reduces more wires than those of Fat Trees. In the case
of 2-D layout, a given Fat H-Tree must be folded by in-
terleaving a series of nodes in each ring, thus resulting
in longer wires between neighboring cores. In its 3-D
layout, on the other hand, a given Fat H-Tree does not
interleave a series of nodes in each ring, since every ring
structure can be formed across two tiers without fold-
ing within a single tier (Figure 8 and 9). As a result,
the 3-D layout that does not interleave cores requires
less wire resources to connect neighboring cores com-
pared with the original 2-D layout. This is the reason
why the 3-D layout of Fat H-Tree could effectively re-
duce its wire length compared with Fat Trees.

4.3 Energy Consumption

The average energy consumption needed to transmit
one flit from source to destination can be estimated as

Eflit = wHave(Esw + Elink) (9)

where w is the flit-width, Have is the average hop count,
Esw is the average energy to switch a 1-bit data inside
a router, and Elink is a 1-bit energy consumed in a link.

We used the Synopsys Power Compiler to extract
Esw of the router synthesized with the 90nm standard
cell library (the details are shown in Section 4.1). The
switching activity of the running router was captured
through the gate-level simulation of the synthesized
router. Gate-level power analysis based on this switch-
ing activity shows that Esw is 0.183pJ when the router
is operating at 500MHz with a 1.0V supply voltage.

Elink can be calculated as

Elink = dV 2Cwire/2 (10)

where d is the average 1-hop distance (in millimeters),
V is the supply voltage, and Cwire is the wire capaci-
tance per millimeter. Cwire can be estimated using the
method proposed in [8], and is 300fF/mm in the case
of a semi-global interconnect in the 90nm CMOS tech-
nology. For instance, Elink is 0.150pJ when the 1-hop
distance is 1mm on average.

We assume 64-bit 16- and 64-core networks placed
in an 8mm × 8mm chip. In the 16-core networks, Have

tends to be short but d becomes long, while they are op-
posite in the case of 64-core. We estimated the average
1-hop distance, d, using a flit-level network simulator,
as in [12]. Then we derived Eflit based on Equation 9
with the various parameters mentioned above.

4.3.1 Two-Dimensional Layout

First, we show the average flit transmission energy,
Eflit, of various topologies in the cases of 2-D lay-
outs without inserting repeater buffers that mitigate
the wire delay but add their gate capacitance on the
wires. Then, we show that with repeater buffers.

Figure 11(a) shows the results on unrepeated lines.
Although the average 1-hop distance, d, of Fat H-Tree
is longer than the other tree-based topologies because
of its folded layout, its average hop count is the short-
est among them[12]. As a result, Eflit of Fat H-Tree
is less than those of Fat Trees, as shown in the graph.
Fat Trees offer relatively short hop counts, but the en-
ergy consumption in their network links increases as
network size enlarges, because the moving distance of
packets is stretched by the long wires around the root.

Since these evaluation results mentioned above as-
sume unrepeated semi-global lines, the wire delay of
these lines grows quadratically with the wire length.
Figure 11(b) shows the average flit transmission energy
on repeated lines, in which repeater buffers are inserted
so as to keep their wire delay less than 8 FO4s. As for
Fat Trees, since six repeater buffers are inserted on
their longest links on average, their Eflit is increased
especially in the cases of 16-core networks. On the
other hand, the impact of repeater buffers on total
energy becomes small in the cases of larger networks,
because the energy consumption in switches, Esw , be-
comes large due to their long hop counts. As for Fat H-
Tree and torus, their link lengths are stretched due to
their folded layout, resulting in larger Eflit in 16-core
networks. Although repeaters are inserted in a 16-core
torus with 4mm links, no repeaters are inserted in a
64-core torus whose wire length is at most 2mm.
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(a) 2-D layout without repeaters
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(b) 2-D layout with repeaters
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(c) 3-D layout with no repeaters

Figure 11. Average flit transmission energy Eflit [pJ]

4.3.2 Three-Dimensional Layout

We estimate the average flit transmission energy on
3-D layouts of Fat Trees and Fat H-Tree. They are
placed on four 4mm × 4mm wafers in this experiment.
The capacitance of a vertical link is very small (e.g.,
4.34fF [6]) compared with that of horizontal links (e.g.,
300fF/mm in the 90nm technology). Hence, we do not
assess the capacitance of vertical links for simplicity.

Figure 11(c) shows the results. No repeater buffers
are inserted on network links of all topologies, since
their wire delay is reduced by downsizing each wafer
size into half in the 3-D layouts. Compared with the
2-D layouts on unrepeated lines, Eflit is reduced by up
to 42.9% for Fat Trees, and 30.8% for Fat H-Tree. In
addition, comparison with the 2-D layouts on repeated
lines shows that Eflit is reduced by up to 47.0% for
Fat Trees, and 34.8% for Fat H-Tree.

We can see that the 3-D layouts of trees proposed
here can shorten the wire length and remove energy-
hungry repeaters from these wires. As a result, the
energy efficiency of trees can be much improved.

5 Conclusions

Tree-based topologies have been considered to gen-
erate a serious wire delay problem because of their long
wire links around the root of the tree. And their wire
delay problem will be more serious as the process tech-
nologies are scaled down beyond 65nm rules or finer.
In this paper, we proposed a 3-D layout scheme of Fat
Trees and Fat H-Tree. The 3-D layouts of Fat Trees
and Fat H-Tree divided into four tiers were compared
with original 2-D layouts in terms of network logic area,
wire length, wire delay, number of repeaters inserted,
and energy consumption. The results show that 1) to-
tal wire length is reduced by 25.0% to 50.0%; 2) wire
delay is improved and repeater buffers that consume
considerable energy and area can be removed; 3) flit
transmission energy is reduced by up to 47.0%; 4) area
overhead is at most 7.8%, which compares favorably
to those for 3-D mesh and torus. Therefore, we have
demonstrated that the 3-D layouts proposed here can
shorten the trees’ long wires and reduce the energy con-
sumption by removing energy-hungry repeaters from
these wire lines.
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