Carning 3 [1]**Approach for Unsupervised Anomaly Detection**

Hiroki Matsutani (Keio University, Japan) Masaaki Kondo (University of Tokyo, Japan)

[1] KUKA Roboter GmbH, Bachmann (Public Domain) [2] http://www.fatcow.com/data-center-photos [3] Josh Sorenson (Public Domain) [4] Raysonho @ Open Grid Scheduler / Grid Engine (Public Domain) [5] Sanderflight at Dutch Wikipedia (Public Domain)

Real-world edge AI: Requirements

[3]

• Factory, warehouse, robot, HE, security,

Real-world anomaly detection Normal/anomaly patterns vary depending on a given environment and situation E.g., noise patterns fluctuate Location of sensors, status of noise sources, ...

E.g., normal patterns vary with time Temperature, workload, human behavior, wear, ... Environment/status are changing Not easy to prepare training data sets beforehand [4]

[1] KUKA Roboter GmbH, Bachmann (Public Domain) [2] http://www.fatcow.com/data-center-photos [3] Josh Sore [4] Raysonho @ Open Grid Scheduler / Grid Engine (Public Domain) [5] Sanderflight at Dutch Wikipedia (Public Doma

Our approach: On-device learning

One of the biggest issues when applying AI to industry is to prepare accurate training data sets

Online learning

Basic concept

Labeled training

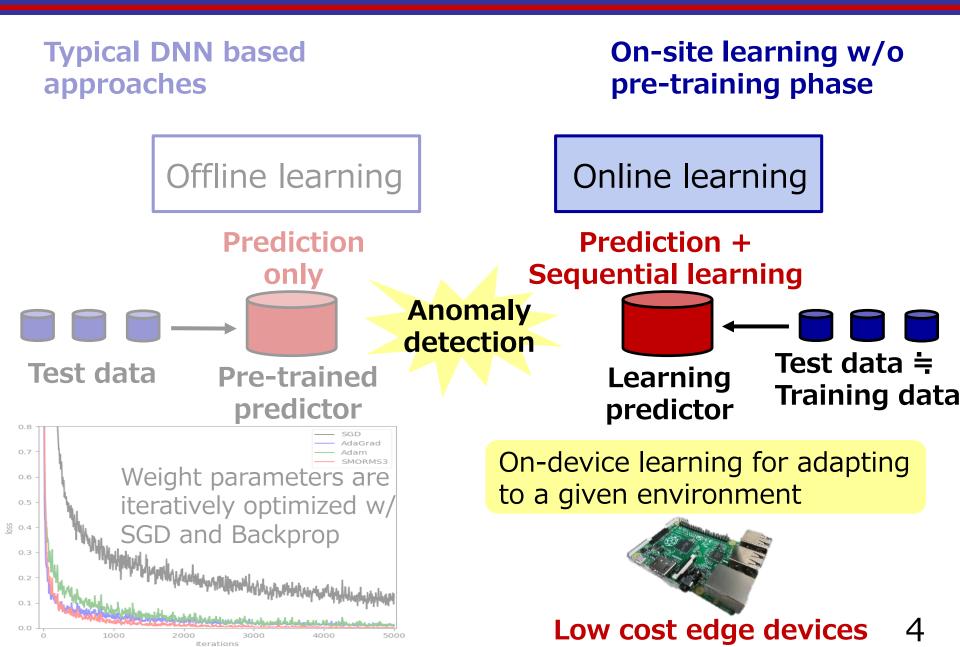
Unsupervised

data is not required

Normal pattern including noise

(1) Anomaly detector is deployed
(2) Normal pattern incl. noise is learned (initialization)
(3) Unsupervised anomaly detection

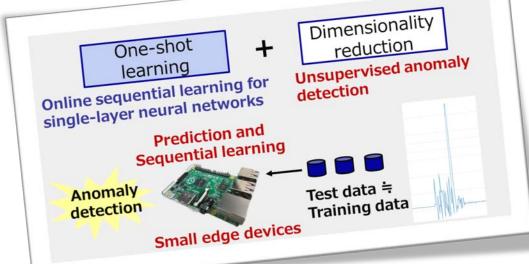
Our approach: On-device learning

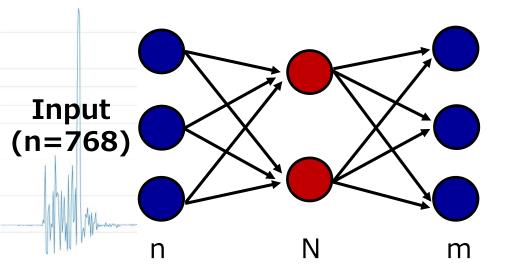


On-device learning: A baseline

(1) Baseline

Online learning in a deployed environment





Analytically compute weight parameters w/ "memoization"

E.g., data *i*+1 is learned using result of data *i*

Reduced computation cost 5

Case 1: Manufacture process

Finding defects and predictive maintenance

Applied to anomaly detection in manufacture process Normal samples Not ideal samples [1]

[1] KUKA Roboter GmbH, Bachmann (Public Domain) [2] http://www.fatcow.com/data-center-photos [3] Josh Sorenson (Public Domain) [4] Raysonho @ Open Grid Scheduler / Grid Engine (Public Domain) [5] Sanderflight at Dutch Wikipedia (Public Domain)

Case 1: Manufacture process

 Vibration pattern is learned → Detect unusual event (e.g., air-spray from red tube)



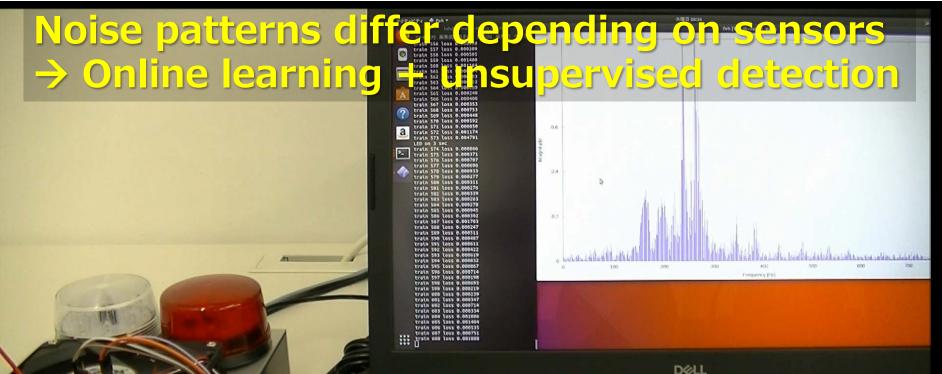
Step 1: Normal pattern including regular noise is learned **Step 2:** Air-spray is blew to the fan

Step 3: Anomaly pattern (air-spray) is detected

Our approach: On-site learning in a deployed environment and detecting unusual patterns

Case 1: Manufacture process

 Vibration pattern is learned → Detect unusual event (e.g., air-spray from red tube)

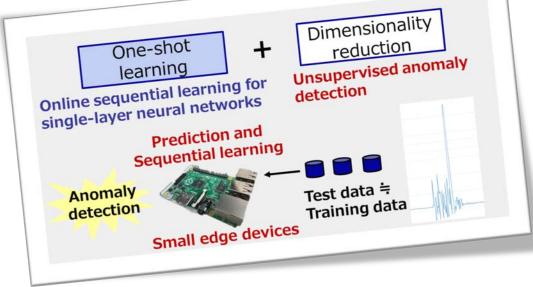


Our approach: On-site learning in a deployed environment and detecting unusual patterns → No training data and no offline training 8

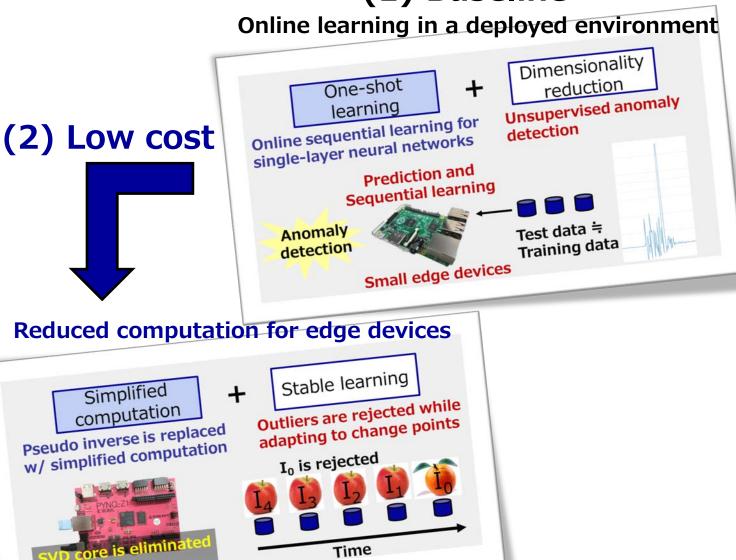
On-device learning: Extensions

(1) Baseline

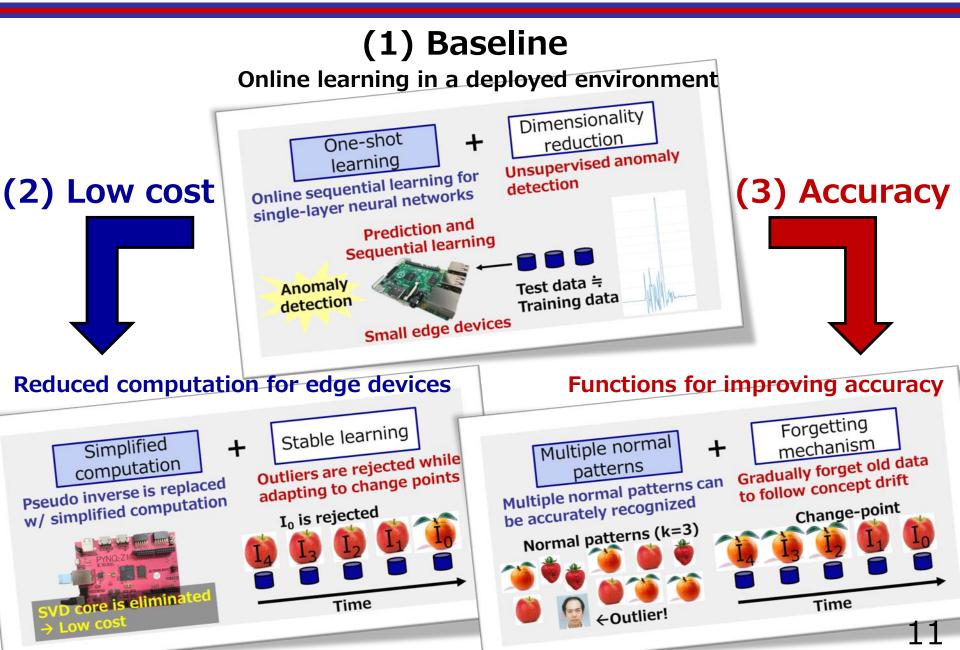
Online learning in a deployed environment



On-device learning: Extensions



On-device learning: Extensions

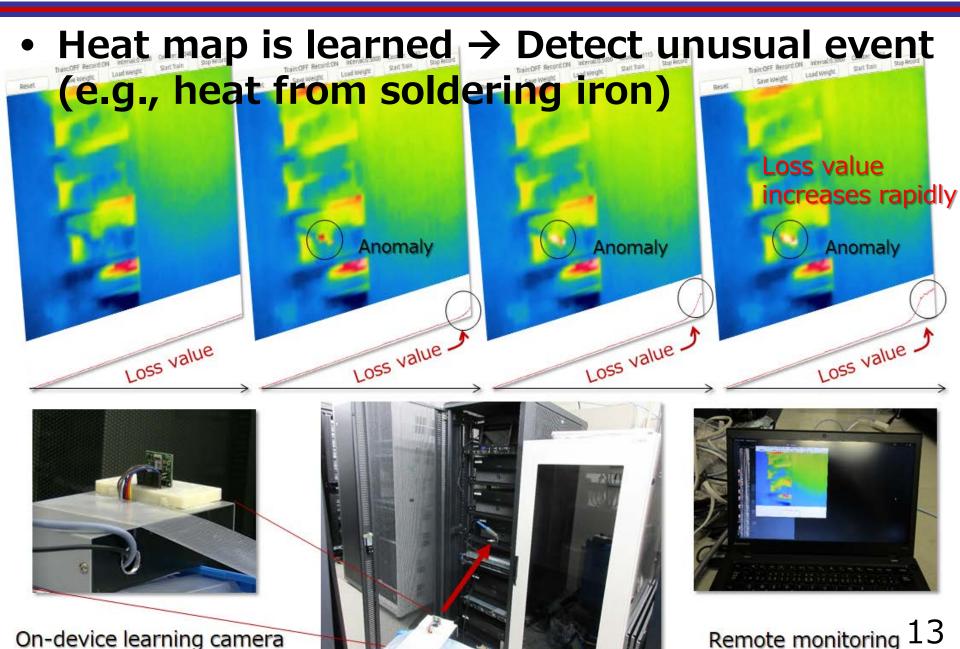


Case 2: Server rack & computer

Computers and power/cooling components

[1] KUKA Roboter GmbH, Bachmann (Public Domain)
 [2] http://www.fatcow.com/data-center-photos
 [3] Josh Sorenson (Public Domain)
 [4] Raysonho @ Open Grid Scheduler / Grid Engine (Public Domain)
 [5] Sanderflight at Dutch Wikipedia (Public Domain)

Case 2: Server rack & computer



Case 2: Server rack & computer

- Heat map is learned → Detect unusual event (e.g., heat from soldering iron)
 - Normal heat map differs for each rack -> Online learning + unsupervised detection

Our approach: On-site learning in a deployed environment and detecting unusual patterns

Case 3: Mobile robot (UAV)

UAV's status depends on payload/condition

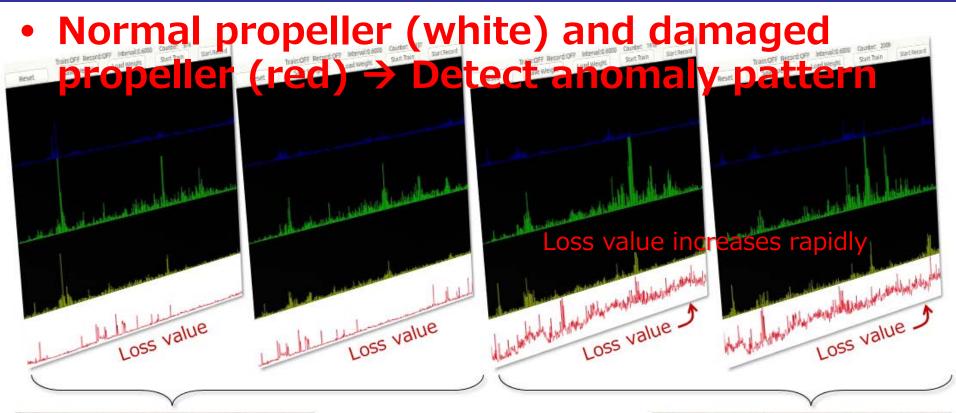


[4] [4] [6]

Normal vibration

[1] KUKA Roboter GmbH, Bachmann (Public Domain) [2] http://www.fatcow.com/data-center-photos [3] Josh Sorenson (Public Domain)
 [4] Raysonho @ Open Grid Scheduler / Grid Engine (Public Domain) [5] Sanderflight at Dutch Wikipedia (Public Domain)

Case 3: Mobile robot (UAV)



On-device learning board & battery are attached to UAV

Case 3: Mobile robot (UAV)

 Normal propeller (white) and damaged propeller (red) → Detect anomaly pattern

UAV's status depends on payload/condition
→ Online learning + unsupervised detection

Battery and on-device learning module is attached to the flying UAV

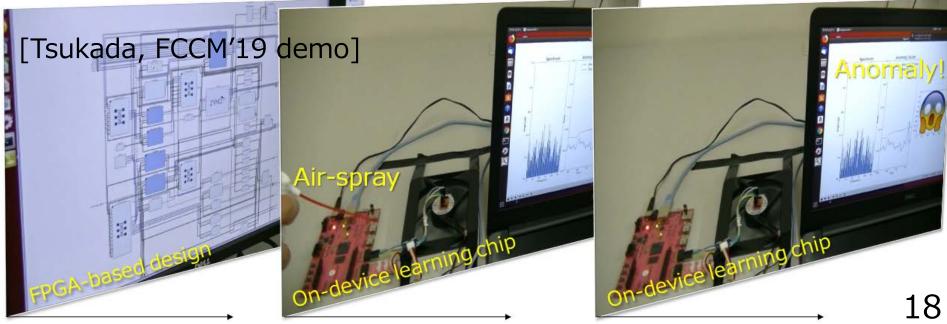
On-device learning: Summary

One of the biggest issues when applying AI to industry is to prepare accurate training data sets

On-device learning

On-site learning w/o pre-training phase Labeled training data is not required

Unsupervised



References (1/2)

- On-device learning anomaly detection
 - Mineto Tsukada, et al., "A Neural Network Based On-Device Learning Anomaly Detector for Edge Devices", arXiv:1907.10147 (2019).
 - Mineto Tsukada, et al., "An FPGA-based Ondevice Sequential Learning Approach for Unsupervised Anomaly Detection", FCCM 2019 Demo Night.
 - Mineto Tsukada, et al., "OS-ELM-FPGA: An FPGA-Based Online Sequential Unsupervised Anomaly Detector", Euro-Par Workshops 2018.

References (2/2)

- On-device learning core
 - Tomoya Itsubo, et al., "Performance and Cost Evaluations of Online Sequential Learning and Unsupervised Anomaly Detection Core", IEEE COOL Chips 2019.
- Abnormal behavior detection
 - Rei Ito, et al., "An Adaptive Abnormal Behavior Detection using Online Sequential Learning", IEEE EUC 2019.