Keio University

A Building Block 3D System with Inductive-Coupling Through Chip Interfaces

Hiroki Matsutani Keio University, Japan

Apr 24th, 2018

Outline: 3D Wireless NoC Designs

This part also explores 3D NoC architecture with inductive-coupling wireless links and shows some prototype designs

• 3D IC technologies: Wired vs. Wireless [5min]

- Prototype systems: Cube-0 & Cube-1 [5min]
 3D Ring network
- Prototype system: Cube-2 [5min]
 - 3D Linear network
- Summary and Q&A [5min]

Apr 24th, 2018

Design cost of LSI is increasing

- System-on-Chip (SoC)
 - Required components are integrated on a single chip
 - Different LSI must be developed for each application
- System-in-Package (SiP) or 3D IC
 - Required components are stacked for each application

By changing the chips in a package, we can provide a wider range of chip family with modest design cost

Next slides show techniques for stacking multiple chips

3D IC technology for going vertical

Inductive coupling link for 3D ICs

Stacking after chip fabrication

Only know-good-dies selected

We have developed some prototype systems of wireless 3D ICs using the inductive coupling

Inductor for transceiver Implemented as a square coil with metal in common CMOS

Footprint of inductor Not a serious problem. Only metal layers are occupied

Bonding wires

for power supply

Stacking method: Staircase stacking

- Inductive-coupling link
 - Local clock @ 4GHz
 - Serial data

System clock for NoC: 200MHz

 \rightarrow 35-bit transfer for each clock

Outline: 3D Wireless NoC Designs

This part also explores 3D NoC architecture with inductive-coupling wireless links and shows some prototype designs

- 3D IC technologies: Wired vs. Wireless [5min]
- Prototype systems: Cube-0 & Cube-1 [5min]
 3D Ring network
- Prototype system: Cube-2 [5min]
 - 3D Linear network
- Summary and Q&A [5min]

Apr 24th, 2018

Wireless 3D chip stacking for IoT

- System-in-Package (SiP) for IoT devices

 Required chips are selected and stacked in package
 E.g., CPU chip, Accelerator chip, Memory chip, ...
- Wireless inductive-coupling for vertical links
 - Not electrically-connected
 - Add, remove, and swap chips for given applications

- Test chip for vertical communication schemes
 - Vertical point-to-point link between adjacent chips
 - Vertical shared bus (broadcast) [Matsutani, NOCS'11]
- Each chip has
 - 2 cores (packet counter)
 - 2 routers
 - Inductors (P2P ring)
 - Inductors (vertical bus)

Process: Fujitsu 65nm (CS202SZ) Voltage: 1.2V System clock: 200MHz Apr 24th, 2018 IEEE VLSI Test Symposium (V

- Test chip for vertical communication schemes
 - Vertical point-to-point link between adjacent chips
- Vertical shared bus (broadcast) 2.1mm x 2.1mm [Matsutani, NOCS'11] đ C Inductors (P2P) TΧ RX **Core 0 &** Stacking for **Ring network** Router 0 & 1 Inductors (bus) de t Symposium (V Apr 24th, 20

• Test chip for vertical communication schemes - Vertical point-to-point link between adjacent chips - Vertical shared bus (broadcast) [Matsutani, NOCS'11] TΧ RX Stacking for Ring network **Router** Slide stac st Symposium (VTS) 2018 Apr 24th, 20 12

- Test chips for building-block 3D systems
 - Two chip types: Host CPU chip & Accelerator chip
 - We can customize number & types of chips in SiP

[Miura, IEEE Micro 13]

- Cube-1 Host CPU chip
 - Two 3D wireless routers
 - MIPS-like CPU
- Cube-1 Accelerator chip
 - Two 3D wireless routers
 - Processing element array

Apr 24th, 2018

• Microphotographs of test chips

[Miura, IEEE Micro 13]

Outline: 3D Wireless NoC Designs

This part also explores 3D NoC architecture with inductive-coupling wireless links and shows some prototype designs

- 3D IC technologies: Wired vs. Wireless [5min]
- Prototype systems: Cube-0 & Cube-1 [5min]
 3D Ring network
- Prototype system: Cube-2 [5min]
 3D Linear network
- Summary and Q&A [5min]

Apr 24th, 2018

Current design: Cube-2 (2016)

- A practical building-block 3D systems
 - CPU chip, Accelerator chip, NN chip, and KVS chip
 - Renesas Electronics SOTB 65nm with Body biasing
- Cube-2 Host CPU chip
 MIPS-like CPU
- Cube-2 Accelerator chip
 Processing element array
- Cube-2 NN chip
 - Neural network prediction
- Cube-2 KVS chip

Apr 24th, 2018 y-value Estorestymps RAWs

Current design: Cube-2 (2016)

- A practical building-block 3D systems
 - CPU chip, Accelerator chip, NN chip, and KVS chip
 - Renesas Electronics SOTB 65nm with Body biasing
- Cube-2 Host CPU chip
 MIPS-like CPU
- Cube-2 Accelerator chip
 Processing element array
- Cube-2 NN chip
 - Neural network prediction
- Cube-2 KVS chip

Apr 24th, 2018 y-value Estores Mymps RAMs)

- Simpler vertical network for Cube-2
 - Vertical linear network (8 VCs)
 - Credit signal for flow control is piggybacked on packets on the opposite link

- Simpler vertical network for Cube-2
 - Vertical linear network (8 VCs)
 - Credit signal for flow control is piggybacked on packets on the opposite link

- Simpler vertical network for Cube-2
 - Vertical linear network (8 VCs)
 - Credit signal for flow control is <u>piggybacked</u> on packets on the opposite link

- Simpler vertical network for Cube-2
 - Vertical linear network (8 VCs)
 - Credit signal for flow control is piggybacked on packets on the opposite link

- ThruChip Interface
 - 400um x 500um
 - 36bit/50MHz
 - Including SER/DES
 - Half-duplex transfer

Outline: 3D Wireless NoC Designs

This part also explores 3D NoC architecture with inductive-coupling wireless links and shows some prototype designs

- 3D IC technologies: Wired vs. Wireless [5min]
- Prototype systems: Cube-0 & Cube-1 [5min]
 3D Ring network
- Prototype system: Cube-2 [5min]
 - 3D Linear network

Summary and Q&A [5min]

Summary: 3D Wireless NoC Designs

- Inductive-coupling 3D SiP
 - A low cost alternative to build low-volume custom systems by stacking off-the-shelf known-good-dies
 - No special process technology is required; inductors are implemented with metal layers
- Our history
 - Cube-0 (2010): Test (3D Wireless NoC only)
 - Cube-1 (2012): Host CPU chip and Accelerator chip

Summary: 3D Wireless NoC Designs

- Inductive-coupl
 A low cost alter
 - systems by sta
 - No special proc are implemente
- Our history
 - Cube-0 (2010)
 - Cube-1 (2012)

• Cube-2 (2016): A practical 3D WiNoC system

- CPU chip, Accelerator chip, NN chip, and KVS chip

– We can customize number & types of chips in SiP

Apr 24th, 2018

References (1/2)

- Cube-0: The first real 3D WiNoC
 - H. Matsutani, et.al., "A Vertical Bubble Flow Network using Inductive-Coupling for 3-D CMPs", NOCS 2011.
 - Y. Take, et.al., "3D NoC with Inductive-Coupling Links for Building-Block SiPs", IEEE Trans on Computers (2014).
- Cube-1: The heterogeneous 3D WiNoC
 - N. Miura, et.al., "A Scalable 3D Heterogeneous Multicore with an Inductive ThruChip Interface", IEEE Micro (2013).
- MuCCRA-Cube: Dynamically reconfigurable processor
 - Saito, et.al., "MuCCRA-Cube: a 3D Dynamically Reconfigurable Processor with Inductive-Coupling Link", FPL 2009.

References (2/2)

• Vertical bubble flow control on Cube-0

 H. Matsutani, et.al., "A Vertical Bubble Flow Network using Inductive-Coupling for 3-D CMPs", NOCS 2011.

- Spanning trees optimization for 3D WiNoCs
 - H. Matsutani, et.al., "A Case for Wireless 3D NoCs for CMPs", ASP-DAC 2013 (Best Paper Award).
- Small-world effect in 3D WiNoCs
 - H. Matsutani, et.al., "Low-Latency Wireless 3D NoCs via Randomized Shortcut Chips", DATE 2014.
- CSMA/CD vertical bus using inductive-coupling
 - T. Kagami, et.al., "Efficient 3-D Bus Architectures for Inductive-Coupling ThruChip Interfaces", IEEE Trans on VLSI (2015).

Apr 24th, 2018