
In-Switch Approximate Processing: Delayed Tasks
Management for MapReduce Applications

Koya Mitsuzuka∗, Ami Hayashi∗, Michihiro Koibuchi†, Hideharu Amano∗, Hiroki Matsutani∗
∗Dept. of ICS, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan

Email: {koya@arc,hayashi@arc,hunga@am,matutani@arc}.ics.keio.ac.jp
†National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

Email: koibuchi@nii.ac.jp

Abstract—In MapReduce, the parallel processing performance
is often limited by only a few compute nodes that delay to
complete given tasks. Although various techniques have been
invented to handle such stragglers, these techniques mostly
impose a burden on master node to monitor the progress of all
the compute nodes, resulting in a new bottleneck as the number
of compute nodes increases. As an alternative approach, in this
paper, we propose to move such straggler management burden
from master node to network switch that connects the master
and compute nodes, because all the information goes through the
switch. More specifically, the proposed network switch monitors
output packets from Map tasks to detect stragglers. When
detected, the proposed switch generates a response instead of the
straggler based on the outputs of the other normal Map tasks,
so that Reduce tasks can be started without delay. We introduce
some approximate techniques for the proxy computation and
response at the switch; thus our switch is called “ApproxSW.” We
implement ApproxSW on NetFPGA-SUME board that has four
10Gbit Ethernet (10GbE) interfaces and a Virtex-7 FPGA. An
experiment shows that the ApproxSW functions do not degrade
the original 10GbE switch performance. We also analyze the
accuracy of the proxy computation and response for stragglers
and show that the proposed approximation based on task
similarity achieves the best accuracy.

I. INTRODUCTION

As the data sets grow rapidly in size, parallel processing
frameworks such as MapReduce [1] are becoming more im-
portant. MapReduce consists of two types of nodes: worker
nodes (i.e., compute nodes) that perform parallelized tasks and
a master node that manages the entire system including worker
nodes. MapReduce job is divided into finer tasks and assigned
to workers for parallel processing. Although the granularity of
tasks depends on applications, in this paper we focus on a fine-
grain parallel processing that processes thousands or tens of
thousands of Map tasks, each of which finishes in subseconds.

The parallel processing performance is often limited by
only a few worker nodes that process given tasks with low
performance due to machine troubles and/or excessive work-
loads. These workers are called stragglers. Although various
techniques have been invented to handle the stragglers, they
mostly impose a burden on master node to monitor the
progress of all the worker nodes. In Backup Task [1], for
example, when a straggler is detected, the delayed task is
assigned to worker node that has been completing its task
faster than the others. Backup Task that reruns delayed tasks
on fast worker nodes can always return correct results even
with stragglers. The master node is in charge of monitoring
all the worker nodes for Backup Task. However, as the
number of worker nodes increases, the management overhead

of the master node increases, resulting in a new performance
bottleneck in massively parallel processing. Because such
management tasks by the master node do not contribute to
application performance, spending a lot of CPU times for
the management is a waste of CPU resources; thus the CPU
resources should be devoted for the application performance.
Please note that the ratio of delayed tasks over all the tasks
is quite small in the case of a large degree of parallelism
[2]. Depending on applications, especially for those that do
not require exact results, additional costs for Backup Task
cannot be justified. Although replication of master nodes can
distribute the management overhead, more efficient approach
is required.

As an alternative approach, in this paper, we propose to
move such straggler management burden from master node to
network switch that connects the master and worker nodes,
because all the information goes through the switch. More
specifically, the proposed network switch monitors output
packets from Map tasks to detect stragglers. When detected,
the proposed switch generates a response instead of the
straggler based on the outputs of the other Map tasks, so
that Reduce tasks can be started without delay. We introduce
some approximate techniques for the proxy computation and
response at the switch; thus our switch is called “ApproxSW.”
We implement ApproxSW on NetFPGA-SUME board that has
four 10Gbit Ethernet (10GbE) interfaces and a Virtex-7 FPGA
and demonstrate that the ApproxSW functions do not degrade
the original 10GbE switch performance.

The rest of this paper is organized as follows. Section
II overviews related work. Section III proposes ApproxSW
architecture and Section IV illustrates its implementation on
NetFPGA-SUME board. Section V shows experimental results
and Section VI concludes this paper.

II. RELATED WORK

Backup Task [1] is the conventional solution for the
straggler problem in MapReduce framework. Sophisticated
scheduling algorithms for Backup Task have been proposed
in [3][4]. They focus on detecting stragglers as early and
correctly as possible and thus they impose more burden on
the master node to collect more detailed progress report
from worker nodes. A distributed scheduling algorithm for
large-scale clusters is also proposed in [5]. However, it does
not discuss how to monitor the tasks in parallel in detail.
Although Backup Task can obtain accurate results while
mitigating the effect of stragglers, it imposes more burden on



the master node and the network to monitor progresses of
a number of worker nodes. In addition, speculative rerunning
consumes extra power and compute resources. Our ApproxSW
is completely different from these prior works but is a natural
approach because all the information goes through the switch.
A prototype of ApproxSW is demonstrated on NetFPGA-
SUME board.

Approximate computing improves the compute performance
and the energy efficiency in exchange for acceptable degrada-
tion in computation accuracy. ApproxHadoop [6] adopts an
approximation technique that consists of input data sampling
and task dropping in MapReduce. The input data sampling
computes a partial result based on a part of input data and
estimates the entire result based on the partial result. Task
dropping reduces the computational cost and execution time
by dropping some tasks. Especially, tasks that take longer time
to complete compared to the others and those that have not
been started are dropped, in order to reduce the execution time.
Our ApproxSW also employs the dropping technique in the
network switch and implements it on NetFPGA-SUME board.

III. DESIGN

This paper proposes ApproxSW, a network switch based
solution for the straggler problem to eliminate a burden
of master/worker nodes to handle stragglers. In general, a
straggler solution consists of two stages: detection and proxy
response. A simple network switch based solution is to just
detect delayed tasks and request the master node to reschedule
them as well as Backup Task. On the other hand, ApproxSW
creates proxy responses instead of detected stragglers; thus no
computation and communication overheads are imposed in any
master/worker nodes to handle stragglers. Although there are
Map and Reduce tasks, in this paper we focus on stragglers
of Map phase for the proxy response by a network switch.

A. Straggler Detection at Network Switch
ApproxSW monitors Map outputs to check the progress of

each task and detect stragglers. More specifically, ApproxSW
counts the number of key-value pairs from each Map task,
and the task whose counter value is less than θ (Slow Task
Threshold) from the average is detected as a straggler. This
assumes that each Map task processes almost the same number
of keys. The other cases can be also handled by adjusting θ
appropriately. When Combiner function that aggregates the
Map task results within the Map phase is applied, ApproxSW
is modified to monitor the Combiner function to detect strag-
glers.

B. Proxy Response at Network Switch
ApproxSW does not notify the master node about the

detected stragglers but creates proxy responses instead of
the stragglers. That is, ApproxSW is in charge of the proxy
computations and completion notifications instead of delayed
tasks. Completion notification is to inform a completion of a
task to master node for starting the next phase. Generating it
by proxy omits the waiting time due to stragglers. However, it
introduces some uncompleted tasks and degrades the accuracy
of the final results. Here, we propose proxy computation
for the delayed tasks to compensate the negative impact on
accuracy.

Algorithm 1 Similarity function for proxy computation
a ⇐ task sending new data
key ⇐ key included in new data
for all the other tasks i do

if i has sent key and a sent key for the first time then
S[a][i] ⇐ S[a][i] + 1
S[i][a] ⇐ S[i][a] + 1

end if
end for

1) Proxy Computation: The proxy computation for strag-
glers by a network switch is not a trivial job. It is difficult
for network switches to access input files and process them
accordingly to complete the computation. Therefore, we adopt
an approximate computing for the proxy computation to strike
a balance between a burden for handling stragglers and the
accuracy of the final results. A unique characteristic of network
switch based solutions is that the outputs from the other tasks
are available at a network switch since the outputs go through
the switch. We thus propose to use the outputs from the other
tasks for proxy computation. A simple implementation of this
approach is to duplicate the outputs of the other tasks. In this
paper we introduce the following the three proxy computation
methods.

• Drop: No proxy computation.
• Random: Copy the normal task outputs randomly.
• Similarity: Copy the normal task outputs based on the

similarity calculated by Algorithm 1.

In the following, the similarity method, the most sophisticated
one among them, is introduced.

ApproxSW utilizes Map outputs sent by the other workers
connected to the switch in order to generate similar outputs
of delayed tasks. Since it is not feasible to store all the Map
outputs in the limited memory capacity of the network switch,
we propose to use only the recently-arrived Map outputs
(called “new data”) and statistical information based on all
the past Map outputs. Every time ApproxSW receives new
data, it updates the statistical information and then generates
outputs of delayed tasks by proxy. A similarity between tasks
is used as the statistical information. We employ a modified
version of cosine similarity [7] as shown in Algorithm 1.
Similarity counters of two tasks are incremented when the
two tasks output the same key during a certain time window.
If some specific keys are sent many times by almost all the
tasks (e.g., “the” and “and” for word counting), the similarities
between these tasks become uniformly high and the accuracy
of the proxy computation becomes worse. To avoid this, the
increment of similarity is done only once for the same key.
After updating the similarity, ApproxSW performs a proxy
computation for each delayed task based on the output of
the normal task which has a high similarity to the delayed
task. The similar data are selected from the outputs of normal
tasks based on a probability determined by the degree of their
similarity. That is, ApproxSW copies outputs of a similar task
with the probability P in order to perform a proxy computation
for the delayed task. Equation (1) shows how to calculate P



Fig. 1. Packet processing flow in ApproxSW

based on the similarity S.

P =
Sab

4∑n−1
i=0 Sai

4
, (1)

where n is the number of tasks, a is the delayed task, b is the
other task, and Sab is their similarity. P is a value obtained
by normalizing the similarity. We empirically use the fourth
power of similarity as the evaluation function.

2) Completion Notification: If ApproxSW has not received
completion notifications from all the tasks yet, it sends the
completion notifications instead of delayed tasks when a pre-
determined time has passed since it received the first com-
pletion notification. After sending completion notifications by
proxy, ApproxSW communicates with delayed worker nodes
to terminate their delayed Map tasks.

IV. IMPLEMENTATION

We employ NetFPGA-SUME board as an FPGA-based
switch that has four 10GbE interfaces. NetFPGA-SUME Ref-
erence Switch Lite design [8] is used as a baseline 10GbE
switch, and we implement our ApproxSW to handle stragglers
by modifying the baseline switch.

A packet stream goes through the switch in 256-bit per cycle
based on the implementation of AXI (Advanced eXtensible
Interface) on the Reference Switch Lite. When the network
switch receives a packet, the packet is classified into a Map
output, a completion notification, or the other application
packet. In ApproxSW, UDP packets destined to specific port
numbers are identified as Map outputs or completion notifi-
cations 1. A hash table manages whether each key has been
sent by each Map task. That is, a hashed value of a key is
used as an index of the table where the flag (sent or not) of
the key is stored. Please note that when ApproxSW receives
the other packets, such as ARP (Address Resolution Protocol)
requests and replies, they are simply passed to the original L2
processing module in the network switch as regular packets.

Figure 1 illustrates a packet processing flow of ApproxSW.
A received packet is first buffered in the FIFO queue. If it is
an output from a Map task, corresponding task similarities are
updated based on its key field. Also, delayed tasks are detected
based on their Map output amounts as illustrated in Section
III-A. The division for the average calculation is implemented
with a right shift operation based on an assumption that the
number of Map tasks is a power of two. The received packet
is duplicated for a delayed task with a probability P .

1Although we assumed UDP as a transport layer protocol for simplicity, our
concept can be extended to TCP by combining with commercially or freely
available FPGA-based 10Gbps TCP cores, such as [9].

Fig. 2. Pipeline for similarity updating and duplication judgement

TABLE I
THREE DATASETS

File configuration Total number of words Words per task
Dataset1 1 file × 16 25,803 1,612
Dataset2 8 files × 2 24,859 1,554
Dataset3 16 files × 1 24,850 1,553

Figure 2 illustrates a pipelined processing for updating the
similarities and detecting the delayed tasks for which the
proxy computation is required. The pipeline processing takes
19 cycles for each packet. After the duplication judgement in
the pipeline, the packet is removed from the FIFO queue and
passed to the original L2 switch module. If the packet is a Map
output which will be duplicated for one or more delayed tasks,
it is duplicated and stored in a duplication buffer. A proxy Map
output is generated by coping from the duplication buffer and
then it is modified so that its id field is changed to one of the
delayed tasks and passed to the L2 switch module. These steps
are performed for each of the delayed tasks to which the Map
output is duplicated. If the packet is a completion notification,
it is also duplicated and stored in a completion buffer. When
a predetermined time has passed since the first completion
notification was received, proxy completion notifications are
generated in the same way as the proxy Map outputs.

V. EVALUATIONS

A. Accuracy of Proxy Computation
We evaluate ApproxSW in terms of the accuracy of proxy

computation on the final result. Word count is employed as
a target application in the experiments. In the word count
workload, a Map output is a key-value pair where the key is
a word and the value is always 1 (e.g., “apple, 1”). We used
three input datasets listed in Table I and evaluate the three
proxy computation methods: drop, random, and similarity.
Each dataset consists of 16 files. Dataset1 has 16 identical
files. Dataset2 has eight pairs of two identical files. Dataset3
has 16 different files. These files included in the datasets are
obtained by randomly-selected Wikipedia articles so that their
file sizes are approximately 10,000 Bytes. Each Map task is
in charge of a single file. The number of Map tasks is set to
16 and the number of stragglers is set to two. The processing
times of delayed tasks are set to 20 times those of the normal
tasks.

Figure 3 shows the results of proxy computations in Ap-
proxSW with two proxy methods: random and similarity.
In these figures, “error” and “correct” represent the wrong
and correct results generated by the proxy computations,
respectively. Both the random and similarity methods work



 0

 500

 1000

 1500

 2000

 2500

 3000

random simirality random simirality random simirality

T
h

e
 n

u
m

b
e

r 
o

f 
k
e

y
s

Dataset1 Dataset2 Dataset3

correct error

Fig. 3. Accuracy of proxy computation results only

 0

 5000

 10000

 15000

 20000

 25000

 30000

drop randomsimirality drop randomsimirality drop randomsimirality

T
h

e
 n

u
m

b
e

r 
o

f 
k
e

y
s

Dataset1 Dataset2 Dataset3

correct error

Fig. 4. Accuracy of total results including proxy computation results

well for Dataset1, in which all the tasks have the largest
similarity. Furthermore, the similarity method achieves a high
accuracy for Dataset2, in which at least a single pair of tasks
has a high similarity. Such situations would be more likely
in real workloads where at least a single pair of tasks has
a high similarity. For example, tasks that process one of the
chunks sourced from the same file may have a high similarity
to each other. On the other hand, when all the tasks have
uniform similarity at all, the random method is better because
of simplicity. Such situations occur when the input data have
no locality.

Figure 4 shows the results with the three proxy response
methods compared to the ideal results with no stragglers.
Please note that these figures include entire results of Map
tasks while Figure 3 accounts only for the results generated
by proxy computation. In these figures, “correct” represents
the results which are matched to the correct results. “error”
represents the results which are not matched to the correct
results. As shown, negative impacts on the proxy computation
in terms of accuracy is small because the proportion of
stragglers is originally small.

B. FPGA Utilization
The resource utilization of ApproxSW that implements the

similarity method is 18% of LUTs, 32% of BRAMs, and
37% of DSPs on the target FPGA device (Xilinx Virtex-
7 XC7VX690T). The bit width of a hashed value is 16-
bit and thus the number of hash table entries is 32,768. A
similarity between two tasks is represented as a 16-bit value.
The number of managed tasks is 16. The operating frequency
is 200MHz. As shown, the resource utilization of ApproxSW
is still low and can be extended to manage more tasks with
more sophisticated methods.

C. Throughput
We evaluate the throughput of ApproxSW by using Open

Source Network Tester (OSNT) on NetFPGA-10G board [8].

The number of incoming packets is counted in ApproxSW
and the counter value is read by a host application in every
500msec to measure the real throughput. We measured the
throughputs of the original Reference Switch Lite and Ap-
proxSW for ten times and calculate the average values. When
the packet size is set to 512-bit, the original Reference Switch
Lite processes packets at 17.86Gbps and ApproxSW achieves
17.87Gbps. When the packet size is 1,024-bit, the original
Reference Switch Lite achieves 21.44Gbps and ApproxSW
achieves 21.40Gbps. As shown, there are no significant differ-
ences between them and performance overhead of ApproxSW
is negligible.

VI. CONCLUSIONS

To eliminate the burden to handle stragglers by the master
node in MapReduce applications, in this paper we proposed
ApproxSW which is a network switch based straggler de-
tection and proxy computation mechanism, because all the
information goes through the switch. Thus, by introducing
ApproxSW, the master node no longer has to monitor the
progress of each task and detect stragglers. Also, fast workers
no longer have to rerun delayed tasks speculatively as in
Backup Task. However, the proxy computation for delayed
tasks by a network switch is not a trivial job due to its limited
resource; thus, we adopted an approximate proxy computation
that replicates Map outputs of normal tasks which have a high
similarity to the delayed tasks. The proxy computations of
delayed tasks are performed in parallel with Map tasks so
that it does not increase the total execution time. ApproxSW
was implemented on NetFPGA-SUME board that has Xilinx
Virtex-7 FPGA and four 10GbE interfaces. It achieved the
same performance as the original Reference Switch Lite. As
a future work, we are planning to adopt our ApproxSW in
large-scale MapReduce applications that handle hundreds of
worker nodes.

Acknowledgements This work was supported by JSPS KAK-
ENHI Grant Number JP16H02816 and SECOM Science and Tech-
nology Foundation.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplied Data Processing on
Large Clusters,” in Proceedings of the USENIX Symposium on Operating
System Design and Implementation (OSDI’04), Dec. 2004, pp. 137–149.

[2] K. Ousterhout et al., “The Case for Tiny Tasks in Compute Clusters,”
in Proceedings of the USENIX Workshop on Hot Topics in Operating
Systems (HotOS’14), May 2013.

[3] M. Zaharia et al., “Improving MapReduce Performance in Heterogeneous
Environment,” in Proceedings of the USENIX Symposium on Operating
System Design and Implementation (OSDI’08), Dec. 2008, pp. 29–42.

[4] G. Ananthanarayanan et al., “Reining in the outliers in mapreduce clusters
using Mantri,” in Proceedings of the USENIX Symposium on Operating
System Design and Implementation (OSDI’10), Oct. 2010, pp. 1–16.

[5] K. Ousterhout et al., “Sparrow: Distributed, Low Latency Scheduling,”
in Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP’13), Nov. 2013, pp. 69–84.

[6] I. Goiri et al., “ApproxHadoop: Bringing Approximations to MapReduce
Frameworks,” in Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS’15), Mar. 2015, pp. 383–397.

[7] Gerard Salton, Automatic Text Processing: The Transformation, Analysis,
and Retrieval of Information by Computer. Addison-Wesley, 1989.

[8] “The NetFPGA Project,” http://netfpga.org/.
[9] D. Sidler et al., “Scalable 10Gbps TCP/IP Stack Architecture for Re-

configurable Hardware,” in Proceedings of the International Symposium
on Field-Programmable Custom Computing Machines (FCCM’15), May
2015, pp. 36–43.


