
A Lightweight Transformer Model
using Neural ODE for FPGAs

Ikumi Okubo∗, Keisuke Sugiura∗, Hiroki Kawakami∗, Hiroki Matsutani∗
∗Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan 223-8522

Email: {okubo,sugiura,kawakami,matutani}@arc.ics.keio.ac.jp

Abstract—A transformer is an emerging neural network model
that employs an attention mechanism. It has been adopted to var-
ious tasks and achieved a favorable accuracy compared to CNNs
(Convolutional Neural Networks) and RNNs (Recurrent Neural
Networks). Although the attention mechanism is recognized as
a general-purpose component, many of the transformer models
require a significant number of parameters and thus they are
not suited to low-cost edge devices. Recently, a resource-efficient
hybrid model that uses ResNet as a backbone architecture and
replaces a part of its convolutional layers with an MHSA (Multi-
Head Self-Attention) mechanism was proposed. In this paper, we
significantly reduce the parameter size of this approach by using
Neural ODE as a backbone architecture for the MHSA mech-
anism. The proposed hybrid model reduces the parameter size
by 97.3% compared to the original model without degrading the
accuracy. Since the model size is quite small, it is implemented on
Xilinx ZCU104 FPGA (Field Programmable Gate Array) board
so that it can fully exploit on-chip BRAM/URAM resources.
The FPGA implementation is evaluated in terms of resource
utilization, accuracy, performance, and power consumption. The
results demonstrate that it speeds up the model by up to
2.63 times compared to a software execution without accuracy
degradation.

I. INTRODUCTION

Transformer-based [1] model architecture with a sophis-
ticated attention mechanism, e.g., Multi-Head Self-Attention
(MHSA), is currently being intensively investigated. ViT
(Vision Transformer) [2] is the first pure Transformer-based
architecture for visual tasks and achieves promising results
compared to existing CNN-based models. However, such re-
sults are obtained only when using large datasets such as JFT-
300M [3], which limits the application on limited computing
resources. Generally speaking, that is because the attention
mechanism lacks some of the inductive biases, e.g. locality
and translational invariance. Thus, one of the solutions for
alleviating the dependence on large datasets is to combine both
convolution and attention mechanism [4], [5], [6], [7], [8], [9].
Such hybrid models can achieve state-of-the-art accuracy for
small or middle datasets in the variety of tasks.

Among these models, we focus on BoTNet (Bottleneck
Transformer) [7], which replaces the spatial convolutions
with global self-attention in the last three bottleneck blocks
of ResNet50 and improves upon the baselines significantly
on instance segmentation and object detection tasks. Simple
adoption of BoTNet design for image classification achieves
84.7% top-1 accuracy on the ImageNet benchmark.

In this paper, we propose one of the smallest Transformer-
based model for resource-constrained edge devices by approx-
imating the ResNet backbone based on a concept of Neu-
ral ODE [10]. Neural ODE (Ordinary Differential Equation)
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Fig. 1. Transformer-based model on FPGA

considers the discrete update law of ResNet as a continuous
ordinary differential equation and calculates the numerical
solution by the ODE solvers. The number of parameters is
greatly reduced because the multiple building blocks in ResNet
are replaced with multiple iterations of a single building block
in Neural ODE.

Our contribution is threefold:
(1) MHSA mechanism tends to be a computational bot-

tleneck on the model because of its high computational
complexity. Thus, we implement MHSA on FPGA (Field-
Programmable Gate Array) taking the trade-off between re-
source utilization and performance gain into account. We can
accelerate it by up to 2.63 times compared to pure software
execution.

(2) BoTNet is so large that implementing on resource-
limited edge devices such as Xilinx ZCU104 is not feasible.
We therefore focus on Neural ODE to reduce the number of
parameters in BoTNet50. The proposed model succeeds in re-
ducing the number of parameters by 97.3% while maintaining
an accuracy comparable to the original BoTNet in the STL10
dataset.

(3) We evaluate the FPGA resource utilization, execution
time, and power consumption of MHSA on the Xilinx ZCU104
board.



The rest of this paper is organized as follows. Sec. II
presents related works and compares with our work. Sec. III
provides the background on MHSA mechanism and Neural
ODE. Sec. IV presents the design of the proposed model.
Sec. V implements the proposed model on the FPGA board
to accelerate the MHSA which is a computational bottleneck
on the model. Sec. VI shows the evaluation results in terms of
parameter size, accuracy, and resource utilization of MHSA on
the FPGA board. Sec. VII concludes this paper and discusses
our future work.

II. RELATED WORKS

A. Convolution and MHSA

CNNs have inductive biases such as locality and transla-
tional invariance, while MHSA captures the interrelationships
among global features. ViT [2] is a model which applies
pure Transformer to image recognition and achieves greater
accuracy than CNN-based models under a large dataset (e.g.
JFT-300M). However, one major drawback of ViT is that it
has worse performance than CNN-based models when trained
on small to middle datasets such as CIFAR10/100 [11] and
ImageNet [12] because of some lack of inductive biases.
Therefore, hybrid models that combine MHSA (global self-
attention but data hungry) and convolution (having inductive
biases) have been proposed [4], [5], [6], [7], [8], [9]. BoTNet
[7] is introduced as a simple modification to ResNet, which
replaces convolutions with MHSAs, and has shown to improve
accuracy in object detection, instance segmentation, and image
classification. Benefits of including MHSA in the model are
also demonstrated in [7] by improving the accuracy under the
condition of larger image size and scale jitter, since MHSA
is capable of capturing global relationships on the contrary to
lack of some inductive biases. By analyzing the relationship
between convolution and MHSA, it is shown that CNN tends
to increase the variance of the feature map while MHSA tends
to decrease it [8]. As benefits from both mechanisms, AlterNet
is proposed in [8] to suppress the dispersion of feature maps
by adding MHSA to the final layer of each stage in ResNet,
where dispersion peaks. It is shown that AlterNet outperforms
existing models on small datasets. Furthermore, MHSA not
only contributes to improved accuracy, but also to the flat and
smooth loss surface, thereby increasing the model’s robustness.

B. Reduction of model computational complexity

In the context of widespread application of AI on IoT
devices, running the inference of large-scale networks on
such devices is intractable due to device resource limitations.
Therefore, various types of model have been proposed to
reduce the number of parameters while minimizing accuracy
loss.

ODENet [10] is a model that generalizes ResNet using
neural ordinary differential equations (Neural ODEs), and the
number of parameters is reduced by turning a set of building
blocks into multiple iterations of a single block, i.e., reusing
the same parameters. This method is also used in this paper,
and a detailed explanation is given in Sec. III-B.

For a specific problem with MHSA, the computational
complexity is proportional to the square of the feature map

size. Many methods have been proposed to solve this. For
example, Linear Transformer [13] is a kernel-based method,
Transformer-XL [14] is a recursion-based method, Linformer
[15] is a low-rank factorization-based method, Reformer [16]
is a learnable-pattern-based method, and Swim Transformer
[17] employs a fixed-pattern and global memory-based meth-
ods.

C. Transformer implemented on FPGA
There is some research on the FPGA implementation of

the Transformer to improve the inference speed. The weight
pruning method for Transformer is implemented in [18].
FTRANS [19] uses a cyclic matrix-based weight representa-
tion for Transformer model for natural language processing.
VAQF [20] proposes an automated method that implements
a quantized ViT on a Xilinx ZCU102 FPGA to meet the
required accuracy. Compared to our proposal, these models
are not based on CNNs and thus suffer from the drawbacks
of attention mechanisms described earlier. In addition, both of
these models use FPGA boards with more resources than the
one used in this paper (Xilinx ZCU104), and our proposed
model is the smallest Transformer-based model to the best of
our knowledge.

III. PRELIMINARIES

A. MHSA
1) Attention mechanism: The attention mechanism aims

to capture the relationship between a set of query Q =
[q1, . . . ,qM ]

T and a feature map in order to identify the region
of interest in a feature map for each query qi.

Let X = [x1, . . . ,xN ]T ∈ RN×D be a feature map xi ∈
RD where N and D denote a size of the feature map and a
channel, respectively. Given a vector q ∈ RD, called query,
its attention a ∈ RN is calculated as follows:

[a1, . . . , aN ] = Softmax

(
qTXT

√
D

)
. (1)

The attention ai represents how well the query q and the
element of feature map xi are related. By stacking Eq. (1),
attentions for a set of queries can be calculated in the form of
matrix operation as follows:

A = Softmax

(
QXT

√
D

)
,A ∈ RM×N . (2)

Note that the softmax operator in Eq. (2) is applied rowwise
to QXT .

2) Self-attention: Self-attention is a special case of the
attention mechanism, where the input query Q is the feature
map itself. Self-attention mechanism can learn how to genarate
better feature maps, calculating correlation between every pair
of feature maps by attention mechanism (Eq. (2)). First, query,
key, and value matrices Q, K, V are computed from X ∈
RN×D using three learnable weights Wq,Wk,Wv ∈ RD×D

as follows.
XWq = Q ∈ RN×D (3)

XWk = K ∈ RN×D (4)

XWv = V ∈ RN×D (5)



An attention map A ∈ RN×N is computed by multiplying Q
with KT similar to Eq. (2), namely:

A = Softmax

(
QKT

√
D

)
,A ∈ RN×N . (6)

For each query qi ∈ RD, its output is obtained by cal-
culating the sum of values {v1, . . . ,vN} weighted by their
attention scores (i.e., coefficients of the i-th row vector of A)
ai = [ai,1, . . . , ai,N ] ∈ RN . Then, by taking an inner product
between A and V, an output of the self-attention is calculated
as follows:

SA(X) = AV = Softmax

(
QKT

√
D

)
V ∈ RN×D. (7)

Unlike convolution operations, which only use a subset of
input features (a local region of input features) to compute
each output element, in the self-attention mechanism, all input
elements will contribute to the output for each query qi.
The self-attention mechanism thus aggregates the input feature
globally and is not affected by inductive biases.

3) Positional encoding: Since the self-attention (Eq. (7)) is
a function on the input set [x1, . . . ,xN ]

⊤, it causes a loss of
the positional information. For example, in Eq. (2), if xi and
xj are swapped, then their corresponding output elements, i.e.,
ai and aj , are also swapped. The model with this property,
called equivariance, is not appropriate for structural data such
as images, since their outputs are invariant to the random
permutation of image pixels. To deal with this information
loss, a positional encoding is often employed with the attention
mechanism. A position-specific vector pi ∈ RD is added to
the input at position i (xi ∈ RD) via the vector addition
xi + pi or the concatenation [xi,pi]. Encoding methods fall
into two main categories; parameters are learnable relative
position or absolute hyperparameters. As the typical example,
Transformer [1] adopts the sinusoidal positional encoding
which falls into a category of the absolute positional encoding
and is a set of hyperparameters written as follows;

pi =

{
sin ( i

100002j/D
) (i = 2j)

cos ( i
100002j/D

) (i = 2j + 1)
(8)

where j = 1, . . . , D/2. On the other hand, it is proposed to
learn the relative positional encoding via MLP [2], [17]. It is
investigated whether absolute or relative position should be
used as positional encoding and shown that relative position
leads to better accuracy [7] . Our method thus uses a learnable
relative positional encoding.

4) MHSA: MHSA is an extension of the self-attention
mechanism [1], which employs multiple self-attention heads
(concatenates outputs from multiple self-attention heads) to
jointly learn different relationships between features. First,
weights Wq,Wk,Wv are partitioned along the second di-
mension into k sets (i.e., W = concat[W1;W2; . . . ;Wk]),
each of which is fed to a separate self-attention head. Let
SAi(X) be the i-th self-attention head, and the output of
MHSA is represented by Eq. 9. In general, the output dimen-
sion of each head is arbitrary, but it is usually set to Dh = D

k .

MHSA(X) = [SA1(X);SA2(X); ...;SAk(X)],

MHSA(X) ∈ RN×kDh
(9)

B. Neural Ordinary Differential Equation (Neural ODE)

ResNet is a widely used backbone architecture especially
for image classification tasks; it introduces the residual con-
nections between CNN-based building blocks (ResBlocks) to
address the vanishing gradient problem and allow training
deeper networks with tens of layers. Neural ODE [10] is
considered as a continuous generalization of ResNet, which
interprets the skip connection as a discrete approximation of
the ODE (ordinary differential equation). Let f(zi, θi) denote
the i-th ResBlock with an input zi and parameters θi. The
computation of ResNet is formally written as recurrent updates
of the hidden state z as follows:

zi+1 = zi + f(zi, θi), i = 0, . . . , N − 1 (10)

where N is the number of building blocks, and the first
additive term corresponds to the skip connection.

By treating the layer index i as a time point and zi as a time-
dependent parameter evaluated at ti, in the limit of infinitely
many blocks (i.e., N → ∞ and ∆t → 0), Eq. (10) turns into
an ODE with respect to t as follows:

dz

dt
= f(z(t), t, θ). (11)

The solution z(t1) at some time point t1 ≥ t0 is obtained by
integrating Eq. (11):

z(t1) = z(t0) +

∫ t1

t0

f(z(t), t, θ)dt (12)

= ODESolve(z(t0), t0, t1, f), (13)

where z(t0) is an initial state (i.e., input to the ResNet)
and ODESolve is an arbitrary ODE solver such as Euler
and Runge-Kutta methods. In the Euler method, the time
t ∈ [t0, t1] is again discretized by tj = t0 + jh with a small
step h = (t1−t0)/N , and z(t) is iteratively solved as follows:

z(tj+1) = z(tj) + hf(z(tj), tj , θ). (14)

The observation of Eqs. (10) and (14) reveals that the
forward propagation of a single ResBlock amounts to one iter-
ation of the Euler method, i.e., by exploiting the Neural ODE
formulation, C different ResBlocks can be merged into one
block (ODEBlock) that computes Eq. (14) C times as shown
in Fig. 2 (left).. As apparent in Eq. (10), C ResBlocks require
C individual sets of parameters {θ1, . . . , θC}; compared to
that, an ODEBlock reuses the same parameter θ during the
C iterations; this reduces the number of parameters to 1/C.
Neural ODE approach allows to effectively build a compressed
and lightweight alternative of the ResNet-based deep models,
by replacing N ResBlocks with N/C ODEBlocks. Similarly
to ResNets, models composed by a stack of ODEBlocks are
referred to as ODENets in this paper.

IV. DESIGN OF THE PROPOSED NETWORK

This section describes the design of the proposed model in
this paper. ResNet consists of ResBlocks which have residual
connection and bottleneck architecture. The key idea of the
BoTNet is to replace the convolutional layer with a 3 × 3
kernel with MHSA in the final three ResBlocks, referred to



MHSABlock. By applying such simple modifications, this
model has achieved a better accuracy than ResNet in ImageNet
benchmark in spite of reduction of parameter size [7]. As
described in Sec. III-B, Neural ODE is viewed as a variant of
ResNet with a significantly reduced number of parameters; this
paper aims to further reduce the parameter size and improve
accuracy by applying the idea of BoTNet to Neural ODE.

According to [21], the architecture of a baseline ODENet is
shown in Fig. 2 (left), which consists of three building blocks
(ODEBlocks) and two downsampling layers. In [21], to reduce
the parameter size, the ODEBlock replaces a conventional
convolution with DSC (Depthwise Separable Convolution)
[22], [23] which performs convolution in the spatial and
channel direction separately. The size of DSC parameter is
NK2+NM while that of conventional convolution parameter
is NMK2, where N , M , and K are the number of input
channel, output channel, and kernel size, respectively. The size
of parameters is thus reduced by approximately K2 times,
assuming that N,M ≫ K.

Other modules in the ODEBlock are a batch normalization
layer for stable learning and a ReLU layer. The downsampling
layer halves the width and height of the feature map while it
doubles the number of channels, i.e., taking in the feature
map of size (C, H , W ) and computing an output of size (2C,
H/2, W/2). Refer to [21] for details and architecture of the
downsampling layer. The computation of each ODEBlock is
repeated C times, while each of the downsampling layer is
executed only once; ODENet can be viewed as a deep network
with 3C + 2 blocks in total except that every C ODEBlocks
share the same parameters.

Since Neural ODE is regarded as an approximation of
ResNet, the idea of BoTNet can also be applied to Neural
ODE. The final ODEBlock is replaced as MHSA block which
has a structure same as the BoTNet. The proposed structure
is shown in Fig. 2 (right). As shown in Table IV, it allows
a 97.3% reduction of the number of parameters, making it
one of the smallest models based on Transformer architecture
and well-suited to deployment on resource-limited computing
platforms.
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V. IMPLEMENTATION

In this section, we describe our proposed FPGA-based
implementation of the MHSA component.

A. Modifications to MHSA

In the MHSA mechanism used in this paper, a slight
modification is made to the original MHSA [1] with refer-
ence to the Bottleneck Transformer [7]. The MHSA used in
this proposal is shown in Fig. 4. It uses relative positional
encoding instead of absolute one as discussed in Sec. III-A.
In [24], applying two-dimensional relative self-attention in
column and row directions separately is better suited for vision
tasks than absolute one. In Fig. 4, Rh ∈ RH×1×Dh and
Rw ∈ R1×W×Dh denote relative position vectors for vertical
and horizontal directions, respectively, which are learned for
each head and channel. Initial values of these vectors are
drawn from a normal distribution. Let 1N ∈ RN is a vector of
all ones and R = Rh1

T
N + 1T

NRw, then the relative position
is fused into the query in the form of QRT . Instead of Eq.
(6), the attention A is computed as follows:

A = Softmax

(
QKT +QRT

√
Dh

)
,A ∈ RN×N . (15)

Another modification is to use ReLU instead of softmax as
an activation function. As described in Sec. III-A, relationships
between query and key (i.e., logits) are obtained by taking
an inner-product of Q with K, and then they are passed on
to the softmax function so that the sum of attention weights
[ai1, . . . , aiN ]

T equals to one. An immediate advantage is that
ReLU is hardware-friendly as it only consumes one compara-
tor and one multiplexer. According to [25], the accuracy of
ReLU-based attention is comparable to that of the original
softmax-based one, and the attention weights are sparsified,
which assists the analysis of the information flow in the model.
Besides, since the value of the inner product (QKT +QRT )
is expected to be in a saturated area of the sigmoid function
with vanishing gradients, LayerNorm [26] is added before the
outuput of MHSA to stabilize gradients and facilitate model
convergence.
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By combining two modifications described above, the
MHSA is computed as follows:

A = ReLU

(
QKT +QRT

√
Dh

)
, (16)

MHSA(X)

= LayerNorm ([SA1(X);SA2(X); ...;SAk(X)]) .
(17)

B. Implementation of MHSA on FPGA

Here, three details of the MHSA implementation on the
FPGA are shown.

1) Implementation using fixed-point: Our implementation
employs fixed-point arithmetic instead of floating-point to
reduce the resource consumption. The feature maps and layer
inputs/outputs are in a 32-bit fixed-point format with a 16-bit
integer and a 16-bit fractional part. The layer parameters are
represented by a narrower 24-bit format with 8 bits and 16 bits
for integer and fractional parts, respectively, considering that
trained parameters are usually within a narrower value range
than layer inputs/outputs and are usually concentrated around
zero. The resource utilization for Xilinx ZCU104 board under
these settings is shown in Table I. Compared to the floating-
point version, the BRAM and DSP usages are reduced by 53%
and 32%, respectively. As confirmed in Sec. VI, the fixed-point
approximation does not degrade inference accuracy.

TABLE I
FPGA RESOURCES USING FLOATING POINT AND FIXED POINT

Model BRAM DSP FF LUT
Available 624 1728 460,800 230,400
512ch, 3× 3 (floating point) 1,716(286%) 680(39%) 89,912(19%) 112,698(48%)
512ch, 3× 3 (fixed point) 1,396(233%) 137(7%) 30,041(6%) 83,116(36%)

2) Buffer management: As shown in Eqs. (3)-(5), the
input X is first projected into query, key, and value matrices
{Q,K,V} using three learnable weights

{
Wq,Wk,Wv

}
.

The most naive approach to compute them is to first store
Wq , Wk, Wv , and X on four separate (individual) buffers,
compute Q, K, and V matrices, and store them on three
new buffers. This requires seven individual buffers in total
and leads to a lower resource efficiency. Since the three

matrices Wq , Wk, and Wv ∈ RD×D account for the largest
part of the BRAM usage and are of the same size, our
implementation reuses a single buffer three times to compute
{Q,K,V} as follows. It first reads Wq from DDR memory
into the shared parameter buffer to compute Q = XWq , and
then successively overwrites the buffer with Wk and Wv to
compute K = XWk and V = XWv . This approach only
requires five buffers in total, resulting in the reduction of total
BRAM consumption by 144% as shown in Table II and thus
allowing the implementation on the Xilinx ZCU104 board.

TABLE II
FPGA RESOURCES BEFORE/AFTER BUFFER MANAGEMENT

Model BRAM DSP FF LUT
Available 624 1,728 460,800 230,400
512ch, 3× 3 before 1,396(233%) 137(7%) 30,041(6%) 83,116(36%)
512ch, 3× 3 after 559(89%) 137(7%) 37,333(8%) 55,842(24%)

3) Parallelizing bottleneck of calculation in MHSA: The
three matrix products XWq , XWk, and XWv are paral-
lelized in our method as they form the major performance
bottleneck in the MHSA computation; as shown in Table III,
99% of the execution time is consumed by these large matrix
products of size (Dh,H × W ). In our implementation, the
buffers for X and W are partitioned into 64 sub-buffers, and
the innermost loop is unrolled with a factor of 128, leading
to the 127x performance improvement of the matrix products
and 52x overall speedup as shown in Table III.

TABLE III
PARALLELIZING COMPUTATIONAL BOTTLENECK IN MHSA

Original Parallelized
Processing Cycles Latency (ns) Cycles Latency (ns)
XWq,XWk,XWv 40,158,722 2.01× 108 316,009 1.58× 106

QRT 74,132 3.71× 105 74,132 3.71× 105

QKT 78,740 3.94× 105 78,740 3.94× 105

ReLU(QRT +QKT) 1,701 8.51× 103 1,701 8.51× 103

ReLU(.)VT 370,696 1.85× 106 370,696 1.85× 106

Total 121,866,093 6.09× 108 2,337,954 1.17× 107

C. Board-level implementation

The proposed HW/SW co-design of FPGA-based MHSA
accelerator is shown in Fig. 5. In the Xilinx Zynq SoC family,
HW corresponds to the PL (Programmable Logic) part, on
which an MHSA IP core and a DMA (Direct Memory Access)
controller are implemented. A DMA controller allows data
to be directly transmitted to the MHSA IP core from DDR
memory without involving the CPU. The PS (Processing Sys-
tem) part is for instructing the MHSA IP core, triggering the
DMA controller, and computing the other part of the models
(e.g., pre- and post-processing blocks in Fig. 3) for inference.
Data such as parameters (e.g., weight and bias), inputs, and
outputs of MHSA are transferred by using the 32-bit wide
high-performance slave port (HP0 port) and utilizing AXI4-
Stream protocol (red lines in Fig. 5). The control registers are
connected to the high-performance master (HPM0) port via
an AXI interconnect and are accessed by PS using AXI-Lite
protocol and memory-mapped I/O.
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VI. EVALUATIONS

In this section, three models including the proposed one,
BoTNet, and ViT [2] are evaluated in terms of accuracy and
the number of parameters. The proposed FPGA implementa-
tions of MHSA are then evaluated in terms of performance
and resource utilization.

A. Evaluation environment
1) STL10 dataset: We use labeled images of STL10 [27]

dataset to evaluate the proposed model in terms of accuracy.
The image size is 96 × 96, and the number of classes is ten.
We use 5000 images for training and 8000 images for testing.

Although CIFAR-10/100 [11] datasets are widely used for
the image classification tasks, their image size is relatively
small (e.g., 32 × 32). It is expected that the attention mech-
anism that can aggregate global information is beneficial for
larger images, and thus we use STL10 dataset in this paper.
Please note that the proposed model is a combination of CNN
and attention mechanism. As discussed in Sec. II-A, it is
known that such a hybrid model can achieve a high accuracy
even with small datasets. This is because an attention-based
model (e.g., ViT) requires more samples to achieve a higher
accuracy compared to CNNs where inductive biases are im-
posed [2]. To demonstrate the benefit of the proposed hybrid
model, it is compared to ViT-Base [2] with STL10 dataset
containing relatively small number of training samples.

2) Model training: The proposed model and counterpart
models are implemented with Python 3.8.10 and Pytorch
1.12.1. The backbone architecture is based on [21]. As a
counterpart, we use an implementation of BoTNet 1. As an
attention-based counterpart, ViT-Base is also compared to the
proposed model. In this paper, the conditions of training are
aligned as much as possible to maintain fairness among these
models (only batch size is different). The batch size is 128 for
counterpart models and 5 for the proposed model. The number
of epochs is 310 and SGD is used as an optimizer. The regular-
ization parameter of weight decay is 10−4, and the momentum
parameter is 0.9. CosineAnnealingWarmRestarts is used as a
learning rate scheduling. The initial learning rate is 0.1, the
number of initial iterations is 10, the increase factor at every
restart is 2, and the minimum learning rate is 10−4. As data

1https://github.com/leaderj1001/BottleneckTransformers

augmentation techniques, RandomHorizontalFlip, ColorJitter,
and RandomErasing implemented in the transforms library of
Pytorch are used for the proposed model.

B. Evaluation results
1) Parameter size: Table IV shows parameter sizes of the

proposed and counterpart models with and without MHSA
mechanism. In BoTNet, a convolutional layer of the last
stage of ResNet50 is replaced with MHSA. Similarly, in
the proposed model, the last convolutional layer of Neural
ODE is replaced with MHSA. As another counterpart, we
implemented a ViT-Base refering to the original ViT [2]. It
uses only attention mechanism without convolutional layers.

TABLE IV
PARAMETER SIZE OF PROPOSED AND COUNTERPART MODELS

Model Number of parameters
ResNet50 23,522,362
BoTNet50 18,885,962
Neural ODE 599,309
Proposed model 513,275
ViT-Base 78,218,506

As shown in the table, BoTNet and the proposed model re-
duce the parameter size compared to their original models (i.e.,
ResNet50 and Neural ODE) by replacing the last convolutional
layer with MHSA. Specifically, BoTNet reduces the parameter
size by 19.7% compared to ResNet50. The proposed model
reduces the parameter size by 97.3% compared to BoTNet by
using Neural ODE as a backbone architecture. In comparison
with the above, the ViT-Base is quite large compared to the
others.

2) Accuracy: Table V shows test accuracies of the proposed
and counterpart models with and without MHSA mechanism.
STL10 dataset is used for the evaluation.

TABLE V
ACCURACY OF PROPOSED AND COUNTERPART MODELS

Model Accuracy (%)
ResNet50 79.20
BoTNet 81.60 (+2.40)
Neural ODE 79.81
Proposed model 80.01 (+0.20)
ViT-Base 62.59

As shown in Table V and combined with the results in
Table IV, accuracies of BoTNet and the proposed model are
comparable or higher than those of their original models,
despite the reduced number of parameters by introducing
MHSA. The accuracy of the ViT-Base is not high for STL10
dataset that has relatively small number of training samples.
This is because attention-based models without convolutional
layers require more samples to achieve a higher accuracy
compared to CNNs where inductive biases are imposed, as
discussed earlier. Conversely, it is a benefit of the hybrid
models (i.e., BoTNet and the proposed model) when they are
used in edge environments without plenty of training data.

Figs. 6-8 show test accuracies (i.e., accuracy vs. epochs)
of BoTNet, the proposed model, and ViT-Base, respectively.
In any cases, similar learning curves obtained, resulting that
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Fig. 6. Test accuracy of BoTNet

epoch

Fig. 7. Test accuracy of proposed model

epoch

Fig. 8. Test accuracy of ViT-Base

learning has converged for all the models. Please note that the
reason why the curves do not appear monotonically increasing
is due to the learning rate scheduler (details are mentioned in
Sec. VI-A2).

3) Execution time ratio of MHSA: Since it is assumed that
computational complexity of MHSA mechanism is higher than
those of the other modules, we evaluate the execution time
ratio of the MHSA mechanism. Table VI shows the execution
time ratios of the MHSA mechanism in MHSABlock of
BoTNet and the proposed model when they are executed as
software.

As shown in the table, the execution time ratios of the
MHSA mechanism account for a large portion in the proposed
model. Thus, accelerating the MHSA mechanism can speed
up the overall models. Since the MHSA mechanism can be
used as one of general components, it is also beneficial for
the other emerging MHSA-based models. In this paper, the
computational bottleneck of the MHSA mechanism is accel-
erated by using FPGA. The next section shows the evaluation
results.

TABLE VI
EXECUTION TIME RATIO OF MHSA IN MHSABLOCK (%)

Model Execution time ratio of MHSA
BoTNet 20.5
Proposed model 50.7

4) FPGA resource utilization of MHSA: The proposed
model is an optimized version that reduces the parameter size
of the MHSA mechanism. We implemented the MHSABlocks
of different number representations (fixed and floating-point)
and different sizes ((512,3,3) and (64,6,6)). The FPGA imple-
mentation is evaluated in terms of the execution time, resource
utilization, and power consumption.

Table VII shows the FPGA resource utilization. In this
evaluation, URAMs (Ultra RAMs) are not used in the FPGA
implantation so that the BRAM utilization sharply reflects
the model size differences. Please note that the floating-point
arithmetic version of BoTNet can be implemented on the target
FPGA if URAMs are used.

As shown in the table, resource utilizations of DSP, FFT,
and LUT are significantly reduced by using the fixed-point
number representations compared to the floating-point arith-
metic versions.

TABLE VII
FPGA RESOURCE UTILIZATION OF MHSA OF PROPOSED MODEL

Model BRAM DSP FF LUT
Available 624 1,728 460,800 230,400
512ch, 3× 3 (floating-point) 693 (111%) 680 (39%) 101,851 (22%) 90,072 (39%)
512ch, 3× 3 (fixed-point) 559 (89%) 137 (7%) 37,333 (8%) 55,842 (24%)
256ch, 6× 6 (floating-point) 441 (70%) 868 (50%) 144,263 (31%) 124,091 (53%)
256ch, 6× 6 (fixed-point) 433 (69%) 212 (12%) 68,809 (14%) 79,476 (34%)

5) Accuracy of FPGA implementation: In the FPGA im-
plementation, fixed-point number representations are used in
feature maps and weight parameters to reduce the FPGA
resource utilization. Here, we evaluate the tradeoffs between
accuracy and bit widths of the fixed-point representations.

The fixed-point number implementations are denoted as
Ftotal(Fint)−Ptotal(Pint), where Ftotal and Fint are the num-
bers of total bits and integer bits for feature maps and input
images, and Ptotal and Pint are those for weight parameters.
We evaluate the inference accuracy of the following imple-
mentations: 32(16)-24(8), 24(12)-20(6), 20(10)-16(4), 18(9)-
14(4), and 16(8)-12(4). In this evaluation, the MHSABlock is
computed by PL part and the other parts are computed by PS
part of the ZCU104 board.

Table VIII shows their test accuracy. Please note that the
numerical error due to the quantization directly appears at the
input values to the final FC layer rather than the classification
results. The input values to the final FC layer of the FPGA
implementation are compared to those of the software im-
plementation. Figs. 9 and 10 show the mean and maximum
differences between these values of the FPGA and software
implementations. As shown in these tables, no accuracy degra-
dation is observed in the FPGA implementations of 32(16)-
24(8) and 24(12)-20(6).

TABLE VIII
ACCURACY VS. FIXED-POINT REPRESENTATIONS

Model Accuracy (%)
Original 78.7
Floating-point number 78.7 (No degradation)
32(16)-24(8) 78.7 (No degradation)
24(12)-20(6) 78.7 (No degradation)
20(10)-16(4) 76.9 (-0.18)
18(9)-14(4) 59.8 (-18.9)
16(8)-12(4) 16.9 (-61.8)

6) Execution time: Table IX shows execution times of the
software and FPGA implementations. As shown in the table,



Fig. 9. Mean value difference
between software and FPGA
implementations

Fig. 10. Maximum value difference
between software and FPGA imple-
mentations

the FPGA implementation using floating-point numbers and
that using fixed-point numbers are 1.45 times and 2.63 times
faster than the software implementation, respectively.

TABLE IX
EXECUTION TIME OF CPU AND FPGA IMPLEMENTATIONS (MSEC)

Model Mean Max Standard deviation
CPU 35.18 36.24 0.20
FPGA (floating-point) 24.21 24.78 0.07
FPGA (fixed-point) 13.37 14.49 0.13

7) Power consumption: Power consumption of the MHSA
IP core is 0.866W when the fixed-point number representa-
tion is used. It is 3.977W when the floating-point number
representation is used. Power consumption of CPU (PS part
of Zynq) is 2.647W. The FPGA implementation using fixed-
point numbers consumes 1.33 times more power consumption
while it accelerates the execution time by 2.63 times; thus, the
energy efficiency is improved by 1.98 times compared to the
software implementation.

VII. SUMMARY

Transformer based model, which is a trend in AI, is typically
too large to implement on edge devices despite of its high ac-
curacy. This paper focused on a recently-proposed lightweight
ResNet variant, Neural ODE, and applied an idea in BoTNet
by replacing the last ResNet block with an MHSA block,
resulting in a model with 97.3% less parameters compared
to ResNet. Furthermore, MHSA has been incorporated into
various models in recent years, so this paper implemented
MHSA onto FPGA fabric and evaluated its resource con-
sumption, execution time, and power consumption. It also
discusses the trade-off between the number representation and
accuracy. As a future work, we are currently implementing the
proposed model on the FPGA entirely to further improve the
performance.
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