
An In-Kernel NOSQL Cache for Range Queries

Using FPGA NIC

Korechika Tamura

Dept. of ICS, Keio University,

3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan

Email: tamura@arc.ics.keio.ac.jp

Hiroki Matsutani

Dept. of ICS, Keio University,

3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan

Email: matutani@arc.ics.keio.ac.jp

Abstract—To make use of big data, various NOSQL data stores
have been deployed, such as key-value stores and column-oriented
stores. NOSQL data stores typically achieve a high degree of
scalability, while specialized for some specific purposes; thus,
Polyglot persistence that employs multiple NOSQL data stores
complementally is a practical choice toward a high diversity of
application demands. We assume various NOSQL data stores
running on database servers are accessed by clients via a network.
This paper aims to improve performance of the Polyglot persis-
tence by introducing an FPGA-based 10GbE network interface
(NIC) and In-Kernel NOSQL Cache (IKNC) implemented in the
NIC device driver. IKNC stores query results as a key-value form
in a host memory, and the requested data can be returned to clients
immediately if the query result has been cached. In the IKNC key-
value pair, the key is a hashed value of a given search query and
the value is a query result of the search query. Existing works have
focused only on key-value stores, while that for column-oriented
stores that support range queries (e.g., scan operation) has not
been addressed. In this paper, we also propose two cache strategies
of IKNC for column-oriented stores. In our experiments, Apache
HBase is running on an application layer, while our IKNC with the
proposed cache strategies is implemented on an FPGA-based NIC
and its device driver. A significant performance improvement is
achieved by the proposed IKNC and pros and cons of the proposed
two cache strategies are demonstrated.

I. INTRODUCTION

To manage large data sets generated in various network

services, structured storages (NOSQLs) [1] have been deployed

as scalable data stores for big data. Various types of structured

storages are available and they can be classified into four

types based on their data structures: key-value store, column-

oriented store, document-oriented store, and graph databases.

Key-value type stores the data as pairs of key and value [2].

Column-oriented storage stores the data as sorted rows each

of which consists of multiple columns (i.e., key-value pairs)

[3][4]. Document-oriented type is a scheme-less data store

where data are stored as documents. Graph database represents

the data as a graph that consists of nodes, their properties,

and relationships. Structured storages are suitable for managing

big data, because they employ simpler data structures and

are specialized to store and retrieve data so that they can

achieve high scalability as compared to the RDBMS. Thus,

Polyglot persistence that employs multiple structured storages

complementally is a practical choice toward a high diversity of

application demands while managing large data sets.

Structured storages are running on database servers and

often accessed by clients via network, such as Memcached. As

their queries are simple, network processing time (e.g., TCP/IP

network protocol stack and Socket APIs) is long compared to

the computation time at the server; so the network processing

is a bottleneck as reported in [5]. To address this issue, various

studies have been reported and they can be classified into three

approaches: 1) Key-value store appliance using FPGA-based

network interface [5], 2) Bypassing network protocol stack [6],

and 3) In-kernel key-value store. This paper focuses on the third

approach, where a large software cache is implemented in the

Linux kernel space as a loadable kernel module for the network

interface. We call this approach In-Kernel NOSQL Cache

(IKNC). When a received query hits in IKNC, the response

is immediately returned to the client without accessing kernel

network protocol stack and structured storage server software.

We implemented IKNC as a loadable driver of NetFPGA-

10G network interface and use the FPGA to offload a hash

computation and CRC checksum computation to reduce the

query response time. Only a small modification is needed on

each structured storage. Since our target is Polyglot persistence,

in this paper, we propose an IKNC design and apply it to key-

value store and column-oriented store.

IKNC stores query results as a key-value form in a host

memory, and the requested data can be returned to clients

immediately if the query result has been cached. In the IKNC

key-value pair, the key is a hashed value of a given search

query and the value is a query result of the search query. In

this paper, we employ an FPGA-based network interface to

offload a hash computation function and checksum computation

and implement IKNC on top of the network interface. Existing

works have focused only on key-value stores, while that for

column-oriented stores that support range queries (e.g., scan

operation) has not been addressed. In this paper, we also

propose two cache strategies of IKNC for column-oriented

stores. In our experiments, Apache HBase is running on an

application layer of a server machine, and our IKNC with the

proposed cache strategies is implemented on an FPGA-based

NIC and its device driver. A client machine connected to the

server via 10GbE transmits HBase queries using maximum

network bandwidth, and we measure the number of operations

processed by the server per a certain time (i.e., throughput).

As a result, a significant performance improvement is achieved

by the proposed IKNC. We also discuss pros and cons of the

proposed two cache strategies.

The rest of this paper is organized as follows. Section II

!"#$"%

!" !" !"

#$%

&'()*)+(&'()*)+(&'()*)+(

Fig. 1. Network protocol bypassing
approach

!" !" !"

#$%

!"#$"% &'()*)+(

Fig. 2. In-kernel data store approach

overviews related work and Section III introduces structured

storages. Section IV proposes IKNC and Section V shows

the design and implementation. Section VI shows experimental

results and Section VII concludes this paper.

II. RELATED WORK

This section briefly introduces accelerations of relational

databases and structured storages.

To improve query performance of relational databases,

FPGA-based hardware accelerators have been reported since

2009. A query compiler for FPGA-based database accelerator,

called Glacier, is proposed in [7]. In response to an input

relational database query, the compiler generates a dedicated

query accelerator for FPGAs. In [8], different queries can be

accelerated without reconfiguring the FPGA for each query. In

[9] and [10], graph database and document-oriented data store

are accelerated by GPUs, respectively.

Memcached is a distributed caching system that employs a

key-value data structure and it has been widely used in data

centers. Memcached appliances implemented on FPGA boards

with fast network interfaces have been reported since 2013 [5].

As reported in [5], 64usec and 30usec are consumed at the

network interface and Linux kernel (network protocol stack)

respectively, while only 30usec is consumed for the Memcached

processing at the server. Since network processing consumes

a significant time compared to the Memcached computation,

an FPGA-based Memcached appliance with 1GbE interface is

proposed in [5].

FPGA-based Memcached appliances with 10GbE interface

are proposed in [11], [12], and [13]. In these designs, Mem-

cached operation is divided into packet decomposition, hash

computation, memory access, and response formatter, and these

steps are performed in a pipeline manner. They are designed

as standalone FPGA-based Memcached appliances. In [14], a

dedicated SoC (System-on-Chip) for Memcached queries is

proposed. A software and hardware co-design for the Mem-

cached appliance is also discussed in [14].

The above-mentioned FPGA-based approach is very efficient

in terms of performance per Watt, but the storage capacity is

limited by the on-board DRAMs implemented on FPGA board.

As a software-based approach, in [6], a key-value store server

software running on an application layer directly accesses

the network interface to process key-value store queries by

using Intel DPDK [15], as shown in Figure 1. As the kernel

network protocol stack is bypassed, this approach can eliminate

the overheads of network protocol stack. However, we need

to modify the structured storage server software to directly

access the network interface. In Polyglot persistence, different

structured storages complementally coexist and thus we need

to modify all the structured storages required for application

demands.

Another software-based approach is to process key-value

store queries inside an operating system kernel. In [16], a

key-value store is implemented in Linux kernel using Netfilter

framework. Memcached queries received in the kernel are

hooked so that a customized handler is called to process the

key-value store queries in the kernel context. As the key-

value store is implemented inside the kernel, it can eliminate

overheads for network protocol processing and socket APIs.

In this paper, we extend the idea of in-kernel key-value

store [16] to In-Kernel NOSQL Cache (IKNC) for Polyglot

persistence. As shown in Figure 2, various structured storage

servers are running on an application layer and IKNC is

implemented as a loadable network interface driver. When

a received query hits in IKNC, the response is immediately

returned to the client without accessing kernel network protocol

stack and structured storage server software. Otherwise, the

query is transferred to the application layer and processed by

the structured storage server software as usual. In our design,

only a small modification is needed on each structured storage,

as shown in Figure 2. Since our target is Polyglot persistence,

in this paper, we propose an IKNC design and apply it to

key-value store and column-oriented store. Actually, most prior

works have focused only on a Memcached-style key-value store

and that for column-oriented stores have not been addressed,

though column-oriented store is an important class of structured

storage [3][4] as introduced in the next section.

III. COLUMN-ORIENTED STORES

In this paper, the proposed IKNC is applied to column-

oriented stores in addition to key-value stores. It is a distributed

three-dimensional sorted map in which data are indexed by row

key, column name, and timestamp. This concept first appears in

Google BigTable which has been used as data storage systems.

A similar data structure can be seen in Apache HBase and

Apache Cassandra. We assume application to Apache HBase

while it can be applied to the other implementations.

In this section, the original data structure called “Flat-

Wide” is introduced and then the transformed version called

“Tall-Narrow” suitable for caching is introduced. Their typical

queries are also shown.

A. Flat-Wide Data Structure

Figure 3 illustrates the data structure of a column-oriented

store. The data can be represented as rows sorted by their

row keys. In this example, the leftmost field in each row

is row key (e.g., Row#101) and the data set consists of six

rows (i.e., Row#101 to Row#119) sorted by their row keys.

Each row consists of multiple columns, each of which is

a pair of name and value. Arbitrary columns can be added

dynamically for each row. For example, Row#101 consists of

!"#$%&%

!"#$%&'

!"#$%&(

!"#$%&)

!"#$%&*

+",-./01.2,3$% +",-./01.2,3$'

4"5617 1 .1/7281/7

.",9

+",$:+",$:#;1,9
<9=82"/8

+",$: +",$> +",$+ +",$?

6=26@97

8A249=

."7;

7259=

86"=A2"/

B
"
=7
9
4
CD
3
C!
"
#

Fig. 3. Flat-wide structure in Column-oriented store

!"#$%&%'(")$* +,-

.
"
/-
0
1
23
4
2!
"
#

!"#$%&%'(")$5 1"6

!"#$%&%'(")$(,7-

!"#$%&%'(")$8 9,7-:;

!"#$%&<'(")$* 9")0

!"#$%&<'(")$(;=:10/

Fig. 4. Tall-narrow structure in Column-oriented store

four columns whose names are Col#A, Col#B, Col#C, and

Col#D, while Row#104 consists of only two columns. Please

note that corresponding values are not shown in this figure for

simplicity. These columns can be grouped by column family.

In this example, columns are grouped as ColumnFamily#1 and

ColumnFamily#2. Column families are defined beforehand and

cannot be added dynamically. In addition, multiple revisions

with timestamps can be stored for each value; thus the past

revisions can be retrieved by specifying a time.

The above-mentioned data structure is called “Flat-Wide”

since each row has multiple columns and looks flat and wide.

B. Tall-Narrow Data Structure

The Flat-Wide data structure can be transformed into key-

value pairs which are simpler and sutaible for caching. Figure

4 illustrates the Tall-Narrow data structure. A row that consists

of multiple column names are transformed into multiple rows

whose row key is a longer string that concatenate the original

row key and each column name. In this case, each row has

only a single column and thus it has only a single value. In

this example, a single row Row#101 that consists of Col#A,

Col#B, Col#C, and Col#D in Figure 3 is transformed into four

key-value pairs Row#101+Col#A to Row#101+Col#D in Figure

4.

The above-mentioned data structure is called “Tall-Narrow”

since each row has only a single column (i.e., narrow) and the

number of rows is longer than that of Flat-Wide.

C. Queries

The following query reads a value field specified by

Row#101 and Col#A in Figure 3 (Get operation).

Get "Row#101", "ColumnFamily#1:Col#A"

The following query writes a new value to a value field

specified by Row#101 and Col#B (Set operation).

Put "Row#101", "ColumnFamily#2:Col#C",

"newValue"

The following query reads all the rows between Row#102

and Row#104 (Scan operation).

Scan startRow="Row#102", stopRow="Row#104"

!""#$%&'$()*#&+,-
.&'&/'(-,*/,-0,-

.,0$%,*.-$0,-*
12,-),#34)52,-),#*67/89

:&%;,*1<==>?3

64:
6,'@A>!*B=>

!"#

$%&'%(# $%()*+(%

Fig. 5. Overview of IKNC and flow of query packet

IV. IN-KERNEL NOSQL CACHE

In this paper, we implemented IKNC as a cache in Linux

kernel in order to accelerate Get/Scan queries (i.e., read queries)

on Polyglot persistence. Figure 5 illustrates how read query

packets are processed with IKNC. We assume that a column-

oriented store server is running on a user space and IKNC

allocates a large memory space (e.g., 500GB) in the kernel

space. Query results of the column-oriented store are cached as

key-value pairs in IKNC. Then, the query result can be returned

to clients immediately from IKNC if the requested rows have

been cached in IKNC. In the IKNC key-value pair, the key is

a hashed value of a given search query, such as Get, Set, and

Scan operations of the column-oriented store. We offload the

hash computation to FPGA. The value is a query result of the

search query given by the column-oriented store server when

the query does not hit in the IKNC and thus processed by the

column-oriented store server. After IKNC makes the packet,

which includes the response, IKNC sends it back to client via

a network. To reduce query response time, IKNC offloads the

CRC computation to FPGA.

The above-mentioned IKNC approach works well for key-

value stores or Get/Set operations of the column-oriented stores.

To support Scan operations (i.e., range queries) used in the

column-oriented stores for the IKNC, the following subsections

propose two cache strategies: All-row caching and Each-row

caching for column-oriented stores.

!"#$$%

!"#%$$

!"#%$%

!"#$$%&'()*
+,(-,!"#.!"#$$%*

+,"/!"#.!"#%$$

012%**
&'()*
+,(-,!"#.!"#$$%*

+,"/!"#.!"#%$%

0123

4(5% 4(53

Fig. 6. All-row caching policy

!"#$$%

!"#%$$

!"#%$%

&'()*+

$
%
$
%
$
%
$
$
%
$
$

,*-.

/01%22

/01%$$22

/01%$%22

3*4%22

3*4%$$

3*4%$%22

Fig. 7. Each-row caching policy

A. All-Row Caching

A straightforward caching strategy for Scan operations is All-

row caching, in which a pair of startRow and stopRow in a

given query is hashed and used as a key of a key-value pair

in IKNC. Selected rows between StartRow and StopRow are

cached as the value of the corresponding key-value pair.

Figure 6 illustrates two query results cached in IKNC with

All-row caching strategy. Key1 is a hashed value of the first

query (i.e., scan startRow=row001 stopRow=row100) and the

result is cached as Val1. Key2 is a hashed value of the second

query (i.e., scan startRow=row001 stopRow=row101) and the

result is cached as Val2. If IKNC receives the first or second

query again, the result is returned to the client without accessing

the network protocol stack and column-oriented storage running

on an application layer.

One issue of All-row caching strategy is inefficiency of

memory usage. As shown in the figure, Val1 is completely

overlapped with Val2 since row001 to row100 are also cached

in Val2. Another problem is that All-row caching strategy may

introduce more cache invalidations as the number of rows (i.e.,

range) associated with a key increases. For example, if row050

is updated later, then both Val1 and Val2 will be invalidated

and removed from IKNC.

IKNC with All-row caching strategy is simple and fast,

because complete query results for the column-oriented store

can be cached and immediately returned to clients only with

a single IKNC memory access. However, due to the above-

mentioned issues, it is useful only when the identical query is

repeated without data modifications.

B. Each-Row Caching

In the case of IKNC with Each-row caching strategy, each

row retrieved by a Scan query is cached as a single key-value

pair.

It employs a bitmap table in which rows currently cached

are marked as “cached.” Figure 7 illustrates two query results

cached in IKNC with Each-row caching strategy. The first query

is “scan startRow=row001 stopRow=row100” while the second

query is “get row101.” Each row retrieved by these queries are

individually cached in IKNC. The bitmap (0 or 1) indicates

which rows are currently cached in IKNC. A hashed value of

a row key is used as an index of that key in the bitmap. When

a row currently cached is updated, it is invalidated in IKNC by

simply storing 0 in the corresponding bit in the bitmap.

When IKNC with Each-row caching strategy receives a Scan

query, it parses every row and checks the bitmap respectively

if all the rows requested in the query are cached in IKNC. A

hash computation is needed for each row to find its key. Because

this operation is complicated, the hash computation is left to

CPU in the case of Each-Row caching strategy. If all the rows

are cached, IKNC retrieves all the rows from the cache and

return the result to the client. Otherwise, the query is simply

transferred to the column-oriented store via network protocol

stack.

Memory efficiency of Each-row caching strategy is better

than that of All-row caching, because each row is cached by

at most a single key and never cached by multiple keys. One

issue with Each-row caching is that it requires to compute a

hashed value (key) and read the row data (value) from IKNC

for each row; thus computation cost increases as the number

of rows requested in the range query increases.

V. IMPLEMENTATION

A. Target Platform

Client and server machines directly connected via a 10GbE

direct attached cable are used in our experiment. HBase is

running on the server machine as a column-oriented store

software and all data are stored on HDD. A client application

generates HBase queries (e.g., Get, Set, and Scan) and sends

them to the server. A prototype of IKNC shown in Figure 5

is implemented in the server side in order to accelerate the

column-oriented store queries.

NetFPGA-10G board [17] is mounted in the server machine

via a PCI-Express Gen2 x8 interface as a 10GbE network

interface. CRC checksum computations and hash computations

needed for INKC with All-row caching are offloaded to the

FPGA-based network interface (FPGA NIC for short) 1. Our

IKNC with both All-row and Each-row caching strategies is

implemented as a loadable device driver of the FPGA NIC.

In the following subsections, we will explain the server-side

software implementation in Section V-B and a hash table design

of IKNC in Section V-C.

B. NOSQL Daemon Server (NDS)

We assume that multiple structured storages are running on

the server, and a column-oriented store such as HBase is one

1Hash computations needed for Each-row caching are not offloaded to the
FPGA NIC. It is our future work.

Fig. 8. Structured storage software and IKNC at server side

!"#$%

&%'

(")&%*+,)"-./*"0*123.4.123556

/*2(123.4.1235578

9"/:*";#%

9"/:+&%'8.4.<5

=<5>

9"/:.?2@($*"*A2-

B%'.C%-%0"*%

Fig. 9. Hashtable in IKNC

of the structured storages running on the Polyglot persistence

environment. To support multiple structured storages, here we

introduce an NOSQL daemon server (NDS) that receives all

the queries from clients and passes them to proper structured

storage servers.

a) From Client to NDS: Figure 8 illustrates NDS and

IKNC in the server machine. A client generates HBase com-

patible queries (e.g., Get, Set, and Scan) to NDS running as

an application at the server machine. When a read query from

a client does not hit in INKC, it is transferred to NDS via a

kernel network protocol stack and then passed to HBase at the

server. In our prototype implementation, we employ UDP as a

transport layer protocol for the communications between clients

and NDS in order to demonstrate raw performance of IKNC.

b) From NDS to HBase: We implemented communica-

tions between NDS and HBase by using Apache Thrift APIs

[18]. When NDS receives a Get/Scan query from a client, it

forwards the query to HBase using the Thrift remote procedure

calls.

c) From HBase to NDS: When NDS receives the response

from HBase, it forwards the response to the client. The response

sent from NDS to the client are peeked and cached in IKNC, as

shown in a red line in Figure 8. Thus, if IKNC receives the same

query again (or queries that request the rows already cached),

it can return the query result to a requestor immediately.

d) Invalidation of IKNC: When NDS receives a Set

operation from a client to add or modify data in HBase, it

checks whether the rows to be updated are cached in IKNC. If

the cached rows will be updated by the query, NDS invalidates

them in IKNC.

TABLE I
SERVER MACHINE AND CLIENT MACHINE

Server Client

Processor
Intel Xeon E5-2637 v3

@ 3.50GHz
Intel Core i5-3470S

@ 2.90GHz

Memory 512 GByte 4 GByte

OS CentOS Linux 6.6 Ubuntu Linux 13.04

NIC NetFPGA-10G (PCIe Gen2 x8) Mellanox 10GbE NIC

C. In-Kernel NOSQL Cache (IKNC)

We implemented IKNC as a loadable driver of NetFPGA-

10G network interface. More specifically, we added necessary

functions of IKNC to the Linux device driver of Reference NIC

provided by NetFPGA project [17]. A large memory block up

to 500GB is statically allocated by the device driver. It is called

Hashtable and used for the caching at IKNC.

Pairs of HBase query and the result are cached in Hashtable

implemented in IKNC. A hashed value of the query is used as

an index in Hashtable, as shown in Figure 9. That is, the index

is used as memory address where the query and the result are

stored in Hashtable. Figure 9 illustrates how the cached value

is retrieved from Hashtable in IKNC. When IKNC receives a

packet that contains a Get/Scan query from a client, it first

extracts the query and then computes a hashed value of the

query as an index. The index is used as a memory address

where the corresponding value is cached in Hashtable. After

reading the cached value from Hashtable, IKNC returns the

result to the client immediately.

VI. EVALUATIONS

A. Evaluation Environment

Tables I show the server and client machines used in exper-

iment. IKNC is implemented in the server machine. We mea-

sured the throughput of Scan operations using these machines.

We used UDP as a transport layer protocol. For the Scan query,

the payload consists of an operation type (i.e., Scan), startRow,

and stopRow. Size of rows is limited by up to 32Byte.

B. Evaluation Results

In this experiment, the throughput indicates the number of

Scan operations processed by the server per a second (Ops/sec).

A real processing throughput of Scan queries depends on cache

hit rate of IKNC. We thus measured the throughput when all

the Scan queries are hit in INKC with All-row caching and

Each-row caching strategies, respectively. We also measured

the throughput of the original HBase, which is corresponding

to throughput when all the Scan queries are missed in IKNC

and processed by HBase.

Figure 10 shows throughput of HBase only, All-row caching,

and Each-row caching. Scan queries that request a hundred

rows are generated by the client. The client machine sends

over one million request packets and receives the response from

the server. As shown, the throughput of HBase only is 1.35k

Ops/sec. Although it is smaller than 2.5k Ops/sec which is a

reported value in [19], performance improvement by IKNC is

significant.

When we compare All-row caching and Each-row caching

strategies, All-row caching outperforms Each-row caching by

1.86

280

242.2

0

50

100

150

200

250

300

T
h
ro
u
g
h
p
u
t
[k
O
p
s
/s
e
c
]

Fig. 10. Throughput of HBase only, All-row caching, and Each-row caching

280281.1280.2280.5279.5280.2

242.2
245.8

250.3

257

265.6
269.4

200

210

220

230

240

250

260

270

280

290

0 20 40 60 80 100 120

T
h
r
o
u
g
h
p
u
t
[k
O
p
s
 /
 s
e
c
]

Scan range

All-row Each-row

Fig. 11. Throughput vs. Scan range

15.6%. As every Scan query requests a hundred rows, INKC

with Each-row caching computes a hash and reads the memory

a hundred times, while that with All-row caching does the same

only once. Figure 11 shows the throughputs of All-row caching

and Each-row caching when the number of rows requested by

a Scan query is changed from 1 to 100. As the Scan range

is reduced, the throughput difference between All-row caching

and Each-row caching is decreased. All-row caching slightly

outperforms Each-row caching because the hash computation

and cache search using bitmap are offloaded to FPGA NIC.

Please note that although All-row caching outperforms Each-

row caching in terms of performance, memory efficiency of

Each-row will be better than that of All-row caching as dis-

cussed in Section IV. As All-row caching and Each-row caching

strategies can coexist in the same IKNC, we can select a proper

caching strategy for each query, depending on the query access

pattern as a future work.

VII. SUMMARY AND FUTURE WORK

In this paper, we implemented IKNC as a loadable device

driver of an FPGA NIC for Polyglot persistence including

column-oriented stores. IKNC is suitable for Polyglot persis-

tence compared to the kernel bypassing approach since all

the structured storage servers are required to be modified

in the case of the kernel bypassing approach. As column-

oriented store supports range queries, we proposed two caching

strategies: All-row caching and Each-row caching strategies.

CRC checksum computation and a part of hash computation

are offloaded to the FPGA NIC, while we focused on IKNC

design as a software approach in this paper. On top of INKC,

we implemented NDS which is a daemon server for Polyglot

persistence that receives structured storages’ queries and passes

them to proper structured storages using Thrift APIs.

Experimental results showed that HBase with IKNC sig-

nificantly improves the Scan query performance compared

to the original HBase. IKNC with All-row caching strategy

outperforms that with Each-row caching strategy by up to

15.6%. Their performance gap increases as the number of

rows requested in Scan queries increases, because Each-row

approach repeats hash computation and memory read for each

row. However, memory efficiency of Each-row strategy is better

than that of All-row strategy since the same rows may be cached

more than twice in All-row caching. As a future work, we are

planning to combine both the caching strategies by considering

the size and access pattern of each query. We are also planning

to propose caching strategies for document-oriented stores and

graph databases toward future Polyglot persistence.

Acknowledgements This work was supported by SECOM Science

and Technology Foundation and JST PRESTO.

REFERENCES

[1] Pramod J. Sadalage and Martin Fowler, NoSQL Distilled: A Brief Guide
to the Emerging World of Polyglot Persistence. Addison-Wesley, 2012.

[2] “Memcached - A Distributed Memory Object Caching System,” http://
memcached.org.

[3] “The Apache HBase Project,” http://hbase.apache.org.
[4] “The Apache Cassandra Project,” http://cassandra.apache.org.
[5] S. R. Chalamalasetti et al., “An FPGA Memcached Appliance,” in

Proceedings of the International Symposium on Field Programmable Gate
Arrays (FPGA’13), Feb. 2013, pp. 245–254.

[6] H. Lim et al., “MICA: A Holistic Approach to Fast In-Memory Key-
Value Storage,” in Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI’14), Apr. 2014, pp. 429–444.

[7] R. Mueller, J. Teubner, and G. Alonso, “Streams on Wires: A Query
Compiler for FPGAs,” in Proceedings of the International Conference on
Very Large Data Bases (VLDB’09), Aug. 2009, pp. 229–240.

[8] B. Sukhwani et al., “Database Analytics Acceleration Using FPGAs,”
in Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT’12), Sep. 2012, pp. 411–420.

[9] S. Morishima et al., “Performance Evaluations of Graph Database using
CUDA and OpenMP-Compatible Libraries,” ACM SIGARCH Computer
Architecture News, vol. 42, no. 4, pp. 75–80, Sep. 2014.

[10] ——, “Performance Evaluations of Document-Oriented Databases using
GPU and Cache Structure,” in Proceedings of the International Sympo-
sium on Parallel and Distributed Processing with Applications (ISPA’15),
Aug. 2015, pp. 108–115.

[11] M. Blott et al., “Achieving 10Gbps Line-rate Key-value Stores with
FPGAs,” in Proceedings of the USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud’13), Jun. 2013.

[12] M. Blott and K. Vissers, “Dataflow Architectures for 10Gbps Line-
rate Key-value-Stores,” in Proceedings of the IEEE Symposium on High
Performance Chips (HotChips’13), Aug. 2013.

[13] M. Blott, L. Liu, K. Karras, and K. Vissers, “Scaling out to a Single-Node
80Gbps Memcached Server with 40Terabytes of Memory,” in Proceedings
of the USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage’15), Jul. 2015.

[14] K. Lim et al., “Thin Servers with Smart Pipes: Designing SoC Accelera-
tors for Memcached,” in Proceedings of the International Symposium on
Computer Architecture (ISCA’13), Jun. 2013, pp. 36–47.

[15] “Intel Data Plane Development Kit (Intel DPDK) Overview,” Dec. 2012.
[16] Y. Xua, E. Frachtenbergb, and S. Jiang, “Building a High-Performance

Key-Vluec Cache as an Energy-Efficient Appliance,” Performance Eval-
uation, vol. 79, pp. 24–37, Sep. 2014.

[17] “NetFPGA,” http://netfpga.org.
[18] “Apache Thrift,” http://thrift.apache.org.
[19] T. Rabl et al., “Solving Big Data Challenges for Enterprise Application

Performance Management,” in Proceedings of the International Confer-
ence on Very Large Databases (VLDB’12), Aug. 2012, pp. 1724–1735.

