
OS-ELM-FPGA: An FPGA-Based Online
Sequential Unsupervised Anomaly Detector

Mineto Tsukada�1, Masaaki Kondo2, Hiroki Matsutani1

1 Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan
{tsukada, matutani}@arc.ics.keio.ac.jp

2 The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
kondo@hal.ipc.i.u-tokyo.ac.jp

Abstract. Autoencoder, a neural-network based dimensionality reduc-
tion algorithm has demonstrated its effectiveness in anomaly detection.
It can detect whether an input sample is normal or abnormal by just
training only with normal data. In general, Autoencoder is built on
backpropagation-based neural networks (BP-NNs). When BP-NNs are
implemented in edge devices, they are typically specialized only for pre-
diction with weight matrices precomputed offline due to the high com-
putational cost. However, such devices cannot be immediately adapted
to time-series trend changes of input data. In this paper, we propose
an FPGA-based unsupervised anomaly detector, called OS-ELM-FPGA,
that combines Autoencoder and an online sequential learning algorithm
OS-ELM. Based on our theoretical analysis of the algorithm, the pro-
posed OS-ELM-FPGA completely eliminates matrix pseudoinversions
while improving the learning throughput. Simulation results using open-
source datasets show that OS-ELM-FPGA achieves favorable anomaly
detection accuracy compared to CPU and GPU implementations of BP-
NNs. Learning throughput of OS-ELM-FPGA is 3.47x to 27.99x and
5.22x to 78.06x higher than those of CPU and GPU implementations of
OS-ELM. It is also 3.62x to 36.15x and 1.53x to 43.44x higher than those
of CPU and GPU implementations of BP-NNs.

1 Introduction

Autoencoder, a neural-network-based dimensionality reduction algorithm has
demonstrated its effectiveness in anomaly detection [17, 3, 15, 4]. Autoencoder
constrains the number of hidden nodes to be less than those of input and output
nodes, and is trained so that it reconstructs input data in its output. When the
reconstruction error between the input and output data is converged well, the
dimensionality reduction is completed in the hidden nodes. Since the model uses
input data as target data, we can train it in a unsupervised manner.

In a context of anomaly detection, the model is trained using only normal
data. When input data that have different patterns from the normal data are
fed to the model, the reconstruction error will increase. If the error exceeds a
threshold, the input data can be considered as abnormal data.

2

Fig. 1: Single Hidden Layer Feedforward Network (SLFN)

In general, Autoencoder is usually built on backpropagation-based neural
networks (BP-NNs), and their training is accelerated with GPU-based massively
parallel batch processing. For this reason, when BP-NNs are implemented in edge
devices, they are typically specialized only for prediction with weight matrices
precomputed offline. However, such prediction-only systems cannot immediately
follow trend changes of input data. Thus, an anomaly detector that can train
online is a primary solution for practical problems where input data trend or
noise pattern shift dynamically as time goes by.

In this paper, by making use of Autoencoder and an online sequential learning
algorithm OS-ELM, we propose an FPGA-based unsupervised anomaly detec-
tor, called OS-ELM-FPGA. OS-ELM [13] is one of neural-network-based convex
optimization models. It can train faster than BP-NNs and always find the global
optimal solution for its weight matrices at each training. Our theoretical analysis
of the algorithm demonstrates the proposed OS-ELM-FPGA completely elimi-
nates costly matrix inversions while improving the learning throughput by fixing
the batch size to one.

The rest of this paper is organized as follows. Section 2 briefly introduces
OS-ELM and anomaly detection using Autoencoder as background for OS-ELM-
FPGA. Section 3 introduces related work. Section 4 proposes our OS-ELM-
FPGA and Section 5 illustrates the implementation. Section 6 evaluates it in
terms of learning throughput, prediction throughput, anomaly detection accu-
racy, and resource utilization. Section 7 summarizes this paper.

2 Preliminaries

2.1 ELM and OS-ELM

Before introducing OS-ELM, we briefly introduce ELM (Extreme Learning Ma-
chine) [9] as background.

ELM is one of single hidden layer feedforward neural networks (SLFNs)
illustrated in Figure 1. In an SLFN, m-dimensional k outputs y ∈ Rk×m

corresponding to n-dimensional k input samples x ∈ Rk×n are computed by

y = G(x ·α+b)β, where α ∈ Rn×Ñ and b ∈ RÑ are parameters of the hidden

3

layer. The former is the weight matrix connecting the input layer and the hidden

layer, while the latter is the bias vector of the hidden nodes. β ∈ RÑ×m is a
weight matrix connecting the hidden layer and the output layer, and G is an
activation function applied to the hidden nodes.

If the SLFN with Ñ hidden nodes can approximate m-dimensional k targets
t ∈ Rk×m with zero error, it implies that there exists β that satisfies the
following equation.

G(x ·α+ b)β = t (1)

Then, if we define H ≡ G(x · α + b) ∈ Rk×Ñ , the optimized weight matrix β̂
is calculated as follows.

β̂ = H†t, (2)

where H† is a pseudoinverse of H. It can be computed with SVD (Singular

Value Decomposition). By just updating the initial β with β̂, the training phase
completes. The weight matrix α does not have to be updated once initialized
with random values. Furthermore, β̂ is always the global optimal solution, while
BP-NNs is required to address the local minima problem [8]. Please note that
ELM assumes all the training samples are available at the training phase in
advance.

OS-ELM (Online Sequential Extreme Learning Machine) [13] is an ELM-
based algorithm extended to learn input samples one-by-one or chunk-by-chunk.

Given the ith chunk of ki training samples {xi ∈ Rki×n, ti ∈ Rki×m}, we
have to find the optimized βi that minimizes the following prediction error.∥∥∥∥∥∥∥

H0

...
Hi

βi −

t0...
ti


∥∥∥∥∥∥∥ , (3)

where Hi ≡ G(xi · α + b). According to the original paper [13], βi can be
sequentially computed with the following equation.

Pi = Pi−1 − Pi−1H
T
i (I +HiPi−1H

T
i)−1HiPi−1

βi = βi−1 + PiH
T
i (ti −Hiβi−1)

(4)

Specially, P0 and β0 can be computed as P0 = (H0H
T
0)

−1, β0 = P0H
T
0 t0. As

shown in Equation 4, βi can be computed without any memories and retraining
for the past training samples.

2.2 Anomaly Detection Using Autoencoder

Autoencoder [7] is one of unsupervised learning models that reduces dimensions
of input data in its hidden nodes. The model uses input data as target data, and
is trained to reconstruct the input data in its output. Since the number of hidden
nodes is constrained to be less than those of input and output nodes, when the
reconstruction error (e.g., mean squared error and mean absolute error) between

4

the input and the output data is converged well, the dimensionality reduction
of the input data is completed in the hidden nodes.

In a context of anomaly detection using Autoencoder, the model is trained
only with normal data. When input data that have different patterns from nor-
mal data (i.e., abnormal data) are fed, the reconstruction error will increase. If
the error exceeds a threshold, the corresponding input data can be considered as
abnormal data. Please note that this method does not require any abnormal data
or labeling during training. Although PCA (Principal Component Analysis) is
often mentioned as a similar model, Sakurada et al. showed that Autoencoder
can detect subtle anomalies that PCA fails to detect [17] and is easy to apply
nonlinear transformation without complex computations that kernel PCA [14]
typically requires.

3 Related Work

3.1 Anomaly Detection Using OS-ELM

Since online sequential learning algorithms can follow time-series variability of
input data, such algorithms are suitable for anomaly detection where we often
have to deal with the nonstationarity. In the past few years, several studies on
anomaly detection using OS-ELM have been reported. Singh et al. proposed an
OS-ELM-based network traffic IDS (Intrusion Detection System) to train fast
and accurately on huge amount of network traffic data with a limited memory.
Bosman et al. presented a decentralized anomaly detection system that can
detect abnormality in wireless sensor networks using OS-ELM in an unsupervised
manner [11]. Although the above studies apply OS-ELM to anomaly detection,
we use OS-ELM in conjunction with Autoencoder. As far as we know, this paper
is the first work that uses OS-ELM-based Autoencoder for anomaly detection.

3.2 Hardware Implementation of OS-ELM

Although several hardware implementations of ELM have been reported [16, 18,
19], there are very few reports on that of OS-ELM. Bosman et al. proposed a
fixed-point implementation of OS-ELM and its stability correction mechanism
for resource-limited embedded devices [10], but they focused on software imple-
mentation. In this paper, we implement OS-ELM on an FPGA for the first time
and propose an efficient design based on our theoretical analysis discussed in
Section 4.

4 Analysis on OS-ELM Algorithm

OS-ELM update formula (i.e., Equation 4) mainly consists of two types of matrix
operations: (1) matrix product and (2) matrix inversion. When we assume the
number of computational iterations for a matrix product A ∈ Rp×q ·B ∈ Rq×r

is pqr, and that for a matrix inversion C−1 ∈ Rr×r is r3, the total numbers of

5

iterations for these matrix operations in the update formula are calculated as
follows.

Iprod = 4kÑ2 + k(2k + 2m+ n)Ñ

Iinv = k3, (5)

where Iprod and Iinv denote the total numbers of iterations for the matrix

products and the matrix inversions, respectively. n, Ñ , and m are the num-
bers of input, hidden, and output nodes of OS-ELM. k is the batch size. For
example, we calculated the number of iterations for HiPi−1H

T
i by dividing

it into the following two steps: (1) Hi ∈ Rk×Ñ · Pi−1 ∈ RÑ×Ñ and (2)

HiPi−1 ∈ Rk×Ñ · HT
i ∈ RÑ×k, then computing the total number of these

iterations I = kÑ2 + k2Ñ .

Assuming that Ik denotes the total number of the iterations of matrix prod-
ucts and matrix inversions in OS-ELM update formula when the batch size is k,
we can derive the following equation.

Ik = Iprod + Iinv

= 4kÑ2 + k(2k + 2m+ n)Ñ + k3

= k(4Ñ2 + (2k + 2m+ n)Ñ + k2)

≥ k(4Ñ2 + (2 + 2m+ n)Ñ + 1) = kI1 (6)

This equation implies that OS-ELM can train at the same or higher learning
throughput (i.e., Ik ≥ kI1) by fixing the batch size to one. In software frame-
works, as actually shown in Section 6.3, they suffer from a low throughput at
small batch sizes because of software specific overheads, such as dynamic mem-
ory allocation and library calls. On the other hand, the proposed FPGA-based
implementation of OS-ELM can fully enjoy the insight from Equation 6, since it
is free from any software specific overheads.

Moreover, we can completely eliminate the costly matrix inversions in OS-
ELM update formula. Because the size of the target matrix (I +HiPi−1H

T
i)

is k × k, its inverse matrix can be easily calculated by computing its reciprocal
when k = 1. In this case, OS-ELM update formula can be transformed as follows.

Pi = Pi−1 − Pi−1h
T
i hiPi−1

1 + hiPi−1hT
i

βi = βi−1 + Pih
T
i (ti − hiβi−1),

(7)

where h ∈ RÑ is a special case of H ∈ Rk×Ñ when k = 1.

Thanks to the above trick, the proposed OS-ELM-FPGA can train without
any costly matrix inversions. It reduces the hardware resources and significantly
accelerates the learning throughput. It is possible to further improve the training
/ prediction throughput by computing matrix products in parallel.

6

5 Design and Implementation

We implemented the proposed OS-ELM-FPGA using Xilinx Vivado HLS 2016.4
as a toolchain for synthesizing hardware modules written in high-level languages
such as C/C++. We chose Xilinx Virtex-7 XC7VX690T as the target FPGA
and 100MHz as the target frequency.

Fig. 2: Block Diagram of OS-ELM-FPGA

5.1 Top Module

Figure 2 shows an overview of OS-ELM-FPGA. Since OS-ELM-FPGA uses Au-
toencoder, the number of input nodes of the network is same as that of output
nodes.

top module consists of the following two modules: (1) seq train and (2) predict
modules. seq train module is to train sequentially on a given input sample x,
and update shared weight matrices β and P . predict module is to predict a
loss (i.e., a reconstruction error) by computing loss = L(x,y) where L is a loss
function and y denotes an output of the network. Here, we used MAE (Mean
Absolute Error) L(x,y) = 1

n

∑n
i=1 |xi − yi| as a loss function. Since OS-ELM

produces exactly the same learning result regardless of which loss function is
used unlike BP-NNs, we recommend to use a loss function that consumes less
hardware resources such as MAE.

A 1-bit input signal, named mode, determines whether to predict or train on
given input samples. When the value is 0 or 1, prediction or training is performed,
respectively. In our implementation, all the decimal numbers are represented by
32-bit fixed-point numbers (i.e., 10-bit integer and 22-bit decimal parts).

5.2 Seq train Module and Predict Module

seq train module executes OS-ELM-FPGA update formula (i.e., Equation 7).
Figure 3 shows the processing flow of the module. If 1 + hiPi−1h

T
i is close to

0,
Pi−1h

T
i hiPi−1

1+hiPi−1h
T
i

will diverge, which makes the training significantly unstable.

7

Fig. 3: Flowchart of Seq train Module
Fig. 4: Flowchart of Predict
Module

In our implementation, we set a threshold EPSILON to 1e-4 to detect singular
matrices. If EPSILON > 1 + hiPi−1h

T
i is satisfied, OS-ELM-FPGA stops the

training and discards the input data for learning stability.
predict module computes output data on given input data by computing ma-

trix / vector products and then the corresponding loss value (i.e., reconstruction
error) is computed. Figure 4 shows the processing flow. All the matrix / vector
products in seq train module and predict module can be accelerated by parallel
execution of N product-sums in the innermost loop. This parameter should be
tuned by considering the area and performance trade-offs.

6 Evaluations

In this section, OS-ELM-FPGA is evaluated in terms of anomaly detection ac-
curacy, learning throughput, and FPGA resource utilization.

OS-ELM-FPGA is compared with the following four software counterparts:
1⃝ OS-ELM(CPU), 2⃝ OS-ELM(GPU), 3⃝ BP-NN(CPU), 4⃝ and BP-NN(GPU).
1⃝ / 2⃝ is CPU / GPU implementation of OS-ELM, while 3⃝ / 4⃝ is CPU / GPU
implementation of BP-NN. These counterparts are evaluated on a common server
machine (Intel Core i7-6700 (3.4GHz), NVIDIA GTX 1070 (VRAM 8GB), DDR4
RAM (32GB)).

To implement all the four software counterparts, we use Tensorflow [12] (ver
1.6.0). The model size (the numbers of input, hidden, and output nodes) of each
implementation is set to 784, 32, and 784 respectively. For OS-ELM-FPGA and
OS-ELM(CPU / GPU), we use the linear function f(x) = x as an activation
function in their hidden nodes, because it produced better anomaly detection
accuracy than other nonlinear functions. In this paper, all the matrix / vec-
tor products in OS-ELM-FPGA are fully parallelized in the way mentioned in
Section 5.2.

For BP-NN(CPU) and BP-NN(GPU), we use relu [20] function in their hid-
den nodes, and sigmoid [6] function in their output nodes. We use Adam [5]

8

(learning rate = 0.001, β1 = 0.9, β2 = 0.999) as the optimization algorithm for
them. For all the implementations, we use MAE L(x,y) = 1

n

∑n
i=1 |xi − yi| as

the loss function as mentioned in Section 5.1. AVX (Advanced Vector eXten-
sions) instructions are used for all the CPU implementations to optimize their
performance.

6.1 Anomaly Detection Accuracy

Evaluation Procedure First, we train each model with a normal training
dataset and then perform prediction to compute loss values for a normal vali-
dation dataset. Second, we calculate the mean µ and the standard deviation σ
of these loss values. Finally, we perform prediction again to calculate another
loss values (i.e., loss) on a mixed dataset that consists of the normal validation
dataset and an abnormal dataset. If loss−µ

σ > θ is satisfied, the corresponding
input sample is detected as abnormal.

Datasets For the normal dataset, we use MNIST dataset (Figure 5, 10-class
28 × 28 gray-scale images) [2]. This dataset consists of 60,000 training samples
and 10,000 validation samples. For the abnormal dataset, we use Fashion-MNIST
dataset (Figure 6, 10-class 28×28 gray-scale images) [1]. The dataset also consists
of 60,000 training samples and 10,000 validation samples. We use the 10,000
validation samples as abnormal samples. All the samples are fed to OS-ELM-
FPGA as 28× 28 = 784-dimensional vector data.

Settings All the images’ pixel values are normalized into [0,1]. The weight ma-
trix α of OS-ELM(CPU / GPU) is initialized with uniform distribution along [0,
1] and then P0 and β0 are computed. α, P0, and β0 of OS-ELM-FPGA are ini-
tialized with the same values. Regarding the training procedure, OS-ELM(CPU
/ GPU) and OS-ELM-FPGA are trained with all the training samples only
once (i.e., one epoch), because it makes no sense to train iteratively on the
same dataset in OS-ELM algorithm. On the other hand, BP-NN(CPU) and BP-
NN(GPU) are trained for ten epochs, because they could not obtain comparable
anomaly detection accuracy with one epoch. For all the implementations except
for OS-ELM-FPGA, the batch size is set to 64.

Results Table 1 shows the evaluation results of OS-ELM-FPGA and the four
counterparts in terms of precision, recall, and f-measure. In this paper, precision
(denoted by P) means a percentage of actual abnormal samples to all the samples
detected as abnormal, while recall (denoted by R) is a percentage of samples

Fig. 5: MNIST Fig. 6: Fashion-MNIST

9

Table 1: Anomaly Detection Accuracy

implementation θ P R F

OS-ELM-FPGA 1.0 0.852 0.922 0.886
OS-ELM(CPU) 1.0 0.858 0.926 0.891
OS-ELM(GPU) 1.0 0.856 0.924 0.889
BP-NN(CPU) 1.0 0.852 0.908 0.879
BP-NN(GPU) 1.0 0.851 0.901 0.875

OS-ELM-FPGA 3.0 0.996 0.770 0.868
OS-ELM(CPU) 3.0 0.996 0.765 0.865
OS-ELM(GPU) 3.0 0.996 0.747 0.854
BP-NN(CPU) 3.0 0.991 0.662 0.794
BP-NN(GPU) 3.0 0.992 0.669 0.799

Table 2: FPGA Resource Utilization of
OS-ELM-FPGA

BRAM DSP FF LUT

Used 816 3,347 182,825 330,881
Available 2,940 3,600 866,400 433,200
Utilization 27% 92% 21% 76%

detected as abnormal to all the actual abnormal samples. F-measure (denoted
by F) means a harmonic mean of precision and recall. Here, we call f-measure
as “anomaly detection accuracy”.

Anomaly detection accuracy of OS-ELM-FPGA is higher than those of BP-
NN(CPU) and BP-NN(GPU) by up to 9.74%. Considering that they are trained
for ten epochs while OS-ELM-FPGA is once, we can say OS-ELM-FPGA achieved
better anomaly detection accuracy in a short training time. The result of OS-
ELM-FPGA is slightly different from the other OS-ELM counterparts, because
we use 32-bit fixed-point to handle the numerical values instead of 32-bit floating-
point.

Please note that fixing batch size to one does not affect the accuracy, because
OS-ELM always produce the same training result regardless of the batch size.

6.2 FPGA Resource Utilization

OS-ELM-FPGA is evaluated in terms of FPGA resource utilization. Table 2
shows the result. As described in Section 5, the target FPGA is Xilinx Virtex-7
XC7VX690T. As shown in the table, all the resource utilizations are less than
their limit, though we fully parallelized all the matrix / vector products in OS-
ELM-FPGA. The target FPGA device is not the state-of-the-art FPGA already
and we can expect faster training / prediction throughput by using the latest
FPGAs.

6.3 Sequential Learning Throughput

OS-ELM-FPGA is compared with the counterparts in terms of learning through-
put by varying the batch size. Figure 7 shows the result. Since the batch size of
OS-ELM-FPGA is one, its learning throughput is constant regardless of x-axis
(batch size) in the graph. As shown in Figure 7, although OS-ELM(CPU) can
train faster than BP-NN(CPU) at small batch sizes, the tendency is inverted at
big batch sizes since the computational cost for a matrix inversion in OS-ELM

10

Fig. 7: Comparison of Learning
Throughput

Fig. 8: Comparison of Prediction
Throughput

update formula is proportional to the cube of the batch size. In the context of re-
altime anomaly detection, it is required to detect abnormal samples immediately
after the samples are fed to the detector, thus small batch sizes are preferred
in this case. This is a benefit of OS-ELM compared to BP-NNs. In addition,
since OS-ELM-FPGA eliminates the computational bottleneck of OS-ELM by
fixing the batch size to one, and computes matrix products in parallel, its learn-
ing throughput is 3.47x to 27.99x higher than OS-ELM(CPU), and 5.22x to
78.06x higher than OS-ELM(GPU), respectively. It is 3.62x to 36.15x and 1.53x
to 43.44x higher than BP-NN(CPU) and BP-NN(GPU), respectively.

Regarding the GPU implementations, while BP-NN(GPU) significantly ac-
celerates its learning throughput, OS-ELM(GPU) suffers from a lower through-
put than OS-ELM(CPU). Since a matrix inversion in OS-ELM algorithm is
difficult to execute in parallel because of a number of conditional operations,
OS-ELM(GPU) could not accelerate the learning throughput efficiently. This
result indicates that OS-ELM is less suitable for GPU acceleration than BP-
NNs.

On the other hand, since the proposed OS-ELM-FPGA completely eliminates
the matrix inversion, it achieves the best learning throughput among all the
counterparts for all the batch sizes.

6.4 Prediction Throughput

OS-ELM-FPGA is compared with the counterparts in terms of prediction through-
put by varying the batch size. Figure 8 shows the result. Regarding the CPU
implementations, OS-ELM(CPU) achieved a slightly higher prediction through-
put than that of BP-NN(CPU), because BP-NN(CPU) uses nonlinear activation
functions while OS-ELM(CPU) does not use them.

11

Regarding the GPU implementations, although they execute prediction com-
putations (e.g., matrix products, and matrix sums) in parallel, their throughput
decreases on the contrary. When a model size is small like SLFNs, data trans-
fer overheads between a host and GPU devices become major bottlenecks. For
this reason, OS-ELM(GPU) and BP-NN(GPU) failed to accelerate the predic-
tion speed. On the other hand, OS-ELM-FPGA is completely free from the data
transfer overheads and achieves 4.23x to 83.98x and 6.04x to 183.79x higher
throughput than OS-ELM(CPU) and OS-ELM(GPU), respectively. It is also
4.90x to 198.85x and 6.25x to 213.06x higher than NN-GPU(CPU) and NN-
BP(GPU), respectively.

7 Summary

In this paper, we proposed an FPGA-based unsupervised anomaly detector,
called OS-ELM-FPGA, that combines Autoencoder and an online sequential
learning algorithm OS-ELM. Our theoretical analysis demonstrated that the
design of OS-ELM-FPGA completely eliminates matrix pseudoinversions while
improving the learning throughput. As a result, OS-ELM-FPGA can train and
predict using only basic matrix operations, such as matrix product, addition, and
subtraction. Simulation results using a hand-written digits dataset and a fashion
items dataset showed that OS-ELM-FPGA achieved favorable anomaly detection
accuracy compared to CPU and GPU implementations of BP-NN in a short
training time. Learning throughput of OS-ELM-FPGA is 3.47x to 27.99x and
5.22x to 78.06x higher than CPU and GPU implementations of OS-ELM, while
3.62x to 36.15x and 1.53x to 43.44x higher than CPU and GPU implementations
of BP-NN.

Please note that this paper is the first work that combines OS-ELM and
Autoencoder and eliminates the matrix inversions for the efficient FPGA-based
online sequential learning unsupervised anomaly detector. In anomaly detection
for industries, because environmental noise differs by place and time, our online
sequential unsupervised approach is preferable since it can adapt to a given
environment online. As future work, we will extend this work to use multiple
OS-ELM-FPGA instances in an ensemble manner to improve the expression
capability. We will also conduct comprehensive comparisons between OS-ELM-
FPGA and some other methods (e.g., PCA and kernel PCA) on more practical
scenario using real industrial data.

Acknowlegements This work was supported by JST CREST Grant Number
JPMJCR1785, Japan.

References

1. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Al-
gorithms. https://github.com/zalandoresearch/fashion-mnist

12

2. MNIST: Handwritten digit database. http://yann.lecun.com/exdb/mnist/
3. C. Zhou and C. Paffenroth: Anomaly Detection with Robust Deep Autoencoders.

In: Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp. 665–674 (Aug 2017)

4. D. Chicco and P. Sadowski and P. Baldi: Deep Autoencoder Neural Networks for
Gene Ontology Annotation Predictions. In: Proceedings of the ACM Conference
on Bioinformatics, Computational Biology, and Health Informatics. pp. 533–540
(Sep 2014)

5. D.P. Kingma and J. Ba: Adam: A Method for Stochastic Optimization. CoRR
abs/1412.6980 (Jan 2014)

6. G. Cybenko: Approximation by Superpositions of a Sigmoidal Function. Mathe-
matics of Control, Signals and Systems 2(4), 303–314 (Dec 1989)

7. G. Hinton and R. Salakhutdinov: Reducing the Dimensionality of Data with Neural
Networks. Science 313(5786), 504–507 (2006)

8. G. Marco and T. Alberto: On the Problem of Local Minima in Backpropagation.
IEEE Transactions on Pattern Analysis and Machine Intelligence 14(1), 76–86
(Jan 1992)

9. G.B. Huang and Q.Y. Zhu and C.K. Siew: Extreme Learning Machine: A New
Learning Scheme of Feedforward Neural Networks. In: Proceedings of the Interna-
tional Joint Conference on Neural Networks. pp. 985–990 (Jul 2004)

10. H.H.W.J. Bosman and A. Liotta and G. Iacca and H.J. Wrtche: Online Extreme
Learning on Fixed-Point Sensor Networks. In: Proceedings of the IEEE Interna-
tional Conference on Data Mining Workshops. pp. 319–326 (Dec 2013)

11. H.H.W.J. Bosman and G. Iacca and A. Tejada and H. J. Wrtche and A. Liotta:
Spatial Anomaly Detection in Sensor Networks using Neighborhood Information.
Information Fusion 33, 41–56 (Apr 2017)

12. M. Abadi et al.: TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems (March 2016), https://www.tensorflow.org/

13. N.Y. Liang and G.B. Huang and P. Saratchandran and N. Sundararajan: A Fast
and Accurate Online Sequential Learning Algorithm for Feedforward Networks.
IEEE Transactions on Neural Networks 17(6), 1411–1423 (Nov 2006)

14. Q. Wang et al.: Kernel Principal Component Analysis. Artificial Neural Networks
pp. 583–588 (Jul 1997)

15. R. Fakoor and F. Ladhak and A. Nazi and M. Huber: Using Deep Learning to
Enhance Cancer Diagnosis and Classification. In: Proceedings of the International
Conference on Machine Learning. vol. 28 (Aug 2013)

16. S. Decherchi and P. Gastaldo and A. Leoncini and R. Zunino: Efficient Digital Im-
plementation of Extreme Learning Machines for Classification. IEEE Transactions
on Circuits and Systems II: Express Briefs 59(8), 496–500 (Aug 2012)

17. S. Mayu and Y. Takehisa: Anomaly Detection Using Autoencoders with Nonlinear
Dimensionality Reduction. In: Proceedings of the Workshop on Machine Learning
for Sensory Data Analysis. pp. 4–11 (Jul 2014)

18. T.C. Yeam and N. Ismail and K. Mashiko and T. Matsuzaki: FPGA Implemen-
tation of Extreme Learning Machine System for Classification. In: Proceedings of
the IEEE Region 10 Conference. pp. 1868–1873 (Nov 2017)

19. V. Frances et al.: Hardware Implementation of Real-time Extreme Learning Ma-
chine in FPGA: Analysis of Precision, Resource Occupation and Performance.
Computers & Electrical Engineering 51, 139–156 (Feb 2016)

20. V. Nair and G. Hinton: Rectified Linear Units Improve Restricted Boltzmann Ma-
chines. In: Proceedings of the International Conference on Machine Learning. pp.
807–814 (Jun 2010)

