Near-Field Coupling Integration Technology

128-Die Stacking

Tadahiro Kuroda Keio University, Japan IEEE Fellow

ISSCC2010, pp.440-441

August 31, 2016

Tadahiro Kuroda

10th IEEE/ACM International Symposium on Networks-on-Chip (NOCS 2016)

Challenge to "Tyranny of Numbers"

- Invention of IC driven by "Tyranny of Numbers": Challenges implied by large number of components & interconnects.
- We face the same challenge again with end of Moore's Law and rise of IoT/big data.

Proposal: Near-Field Coupling

- Replace mechanical connections (wires, solders, connectors) by electrical ones (wireless by near-field coupling).
- Near-field coupling provides with invisible wires.

Near-Field Coupling Integration Technology

Proposed solution to "connections in very large system"

ThruChip Interface (TCI) 3D integration of chips for high performance Transmission Line Coupler (TLC) LEGO-type packaging of modules for high function

JST ACCEL Project (2015-2019):

Data Centric Computer (Ultra low power mobile computer in the era of IoT) Proof of Concept: 100GFLOPS/W (in 2019) Milestone: 512GB/s 8GB DRAM (in 2017)

Outline

- Near-Field Coupling Integration Technology
- □ Transmission Line Coupler (TLC)
- ThruChip Interface (TCI)
- □ Challenges
 - Highly Doped Silicon Vias (HDSV)
 - TCI_2.9D/2.5D/2.0D
- □ ACCEL
 - 100GFLOPS/W Computer and 512GB/s DRAM

Transmission Line Coupler (TLC)

Transmission Line Coupler (TLC)

Applications of TLC

Memory Card High-speed:50x(12Gb/s) Low-power:1/500 Water proof (pad-less, sealed) ISSCC2013, pp.214-215

Display High-speed: 10x(6Gb/s) Low-energy: 1/10(16pJ/b) Thin (no mechanical structure) ISSCC2013, pp.200-201

Smartphone High-speed :5x(6Gb/s) Low-energy :1/24(6pJ/b) Modular design (electrical connection) ISSCC2015, pp.176-177

DIMM High speed:5x(12.5Gb/s) Multi-drop bus (impedance controlled) ISSCC2012, pp.52-53

In-vehicle LAN Light: 30% Strong EMC immunity (wide band) ISSCC2014, pp.496-497

Satellite Light: 60% Vibration immunity (contactless connection) ISSCC2015, pp.434-435

Display/Camera Module

□ High speed, Low power, Low profile

ISSCC2013, pp.200-201

 Tadahiro Kuroda
 10th IEEE/ACM International Symposium on Networks-on-Chip (NOCS 2016)
 9 of 40

Modular Design

Tadahiro Kuroda 10th IEEE/ACM International Symposium on Networks-on-Chip (NOCS 2016) 10 of 40

Radiation Tolerance (EMC)

Tadahiro Kuroda 10th IEEE/ACM International Symposium on Networks-on-Chip (NOCS 2016) 11 of 40

Vibration Tolerance

Other Possibilities

Outline

- Near-Field Coupling Integration Technology
- □ Transmission Line Coupler (TLC)
- ThruChip Interface (TCI)
- □ Challenges
 - Highly Doped Silicon Vias (HDSV)
 - TCI_2.9D/2.5D/2.0D
- □ ACCEL
 - 100GFLOPS/W Computer and 512GB/s DRAM

ThruChip Interface (TCI)

ISSCC2004, pp.142-143

Inductive coupling
 data communication through chips
 Transceiver: digital CMOS circuits

- Coil: multi-layer standard wires
 - Logic interconnections go across coil
 - Coil can be placed anywhere (above SRAM)

Digital CMOS circuit solution

Eventually zero cost

Tadahiro Kuroda10th IEEE/ACM International Symposium on Networks-on-Chip (NOCS 2016)15 of 40

Performance of TCI

High Speed

11Gb/s/ch30Gb/s/ch8Tb/s(0.18μm)(65nm)(1000ch in 2.5mm²)ISSCC2008A-SSCC2010ISSCC2010

Aggregated data rate is raised by increasing number of channels.

Low Power

0.14pJ/b (90nm) ISSCC2007

0.01pJ/b (65nm) JSSC2011

ESD protection device (>0.5pJ/b) can be eliminated.

High Integration

Tadahiro Kuroda 10th IEEE/ACM International Symposium on Networks-on-Chip (NOCS 2016) 16 of 40

TCI Coil Design

Data rate goes up dramatically with smaller Z

Tadahiro Kuroda 10th IEEE/ACM International Symposium on Networks-on-Chip (NOCS 2016) 17 of 40

TCI Layout

- Similar to typical CMOS layout
- Coils of 100um size are formed by M9 and M10 for TX, M7 and M8 for RX, with power/signal lines crossing
- Accommodate circuits under the coil
- Coils are overlapped and accessed by PDMA to avoid crosstalk
 - at phase 1
 - at phase 2
 - at phase 3
 - at phase 4

TSV vs. TCI

	Koz**transistor micro bump	TCI Magnetic Field
Solution	Mechanical in package	Electrical on wafer
Wafer Technology Package Technology Miniaturization Yield Eco-system	Additional steps needed OSAT [*] involved Difficult Low, difficult to improve New model needed	Standard CMOS Conventional Easy High (~100%) Conventional model
Additional Cost	> 40%	A few %
Placement	Dedicated area w/KOZ**	Unconstrained
Speed	< 512 GB/s	> 512 GB/s
ESD Protection	Needed	No need
Power Dissipation	High	Low

OSAT*: Outsource Assembly and Test, KOZ**: Keep Out Zone

Tadahiro Kuroda10th IEEE/ACM International Symposium on Networks-on-Chip (NOCS 2016)19 of 40

3D Scaling Scenario

Cost/Performance will be improved by 3D scaling scenario.

Suppose 8mm-square 4 chips are stacked. When each die is thinned from 50um to 10um, number of on-chip coils are increased from 700 to 17,500, yielding 25x speed improvement.

Tadahiro Kuroda10th IEEE/ACM International Symposium on Networks-on-Chip (NOCS 2016)20 of 40

Performance of TCI in 7nm CMOS

Chip thickness	50 μm	25 μ m
Coil size	150 μm	75 μm
Data rate per coil	50 Gb/s/coil	64 Gb/s/coil
Area efficiency	2 Tb/s/mm ²	11 Tb/s/mm ²
Power efficiency	30 fJ/bit	25 fJ/bit
Aggregate data rate when using 8mm x 1mm Si area	18 Tb/s	91 Tb/s
Power dissipation when using 8mm x 1mm Si area	0.5 W	2.2 W

SPICE simulation performed with Predictive Technology Model (http://ptm.asu.edu/)

3-D NoC by TCI

□ JSPS project led by Prof. Amano, Prof. Matsutani

- A Study on Building-Block Computing Systems using TCI
- Inter-chip wireless inductive coupling techniques, selforganized network-on-chips, fault tolerant architectures, optimized power control, and a flexible operating system with virtualization facilities are investigated
- http://www.am.ics.keio.ac.jp/kaken_s/
- □ 3-D NoC with TCI will be presented at IEEE A-SSCC2016
 - Collision detection scheme by sensing magnetic field
 - 44-bit packet transceiver of PER < 10⁻⁹

Outline

- Near-Field Coupling Integration Technology
- □ Transmission Line Coupler (TLC)
- □ ThruChip Interface (TCI)
- □ Challenges
 - Highly Doped Silicon Vias (HDSV)
 - TCI_2.9D/2.5D/2.0D
- □ ACCEL
 - 100GFLOPS/W Computer and 512GB/s DRAM

Remaining Challenges

Proof with DRAM

- Influence of magnetic field to DRAM
- Influence of DRAM (plate, cylinder, power mesh) to magnetic field
- Power Supply
 - New way of power delivery to create synergy with TCI is expected.
 - Highly Doped Silicon Vias (HDSV) is proposed.
 Idea is received highly in IEDM but needs proof.

Heat Removal

- Heat keeps from die stacking.
- Inductive coupling for horizontal link (TCI_2.5D/2D) is developed.

Highly Doped Silicon Vias (HDSV)

IEDM2014, 18.6.

- A deeper and more highly doped well is used to make a low resistance HDSV.
- The HDSV on one die and electrodes on the next die are connected by pressure from a Room-Temperature Wafer Level Bonding machine to create larger stacks.
- TCAD indicates resistance < 3mΩ when substrate <5um, dose: 1x10¹⁶ cm⁻², implant: 200 keV, annealing: 50h, 1050°C.
- 0.7 mm² net area is required (can be divided), good only for power delivery.
- Low cost process by implants

Memory Stacking with TCI and HDSV

Hot Chips 2014

128GB/s HBM Case Study

□ TCI reduced chip size by 13% than TSV.

TCI Can Use Whole Chip Area

Tadahiro Kuroda 10th IEEE/ACM International Symposium on Networks-on-Chip (NOCS 2016) 28 of 40

TCI_2.9D, 2.5D, 2.0D for Heat Removal

(a) TCI_2.9D packaging.

μ**bumps** Chip TSVs Si interposer C4bumps Package substrate Conventional 2.5D packaging

by Si interposer with ubumps and TSVs.

Chip

(b) TCI_2.5D packaging with small Si interposer.

TCI can release mechanical constraints such as stress

(c) TCI_2.0D packaging.

Outline

- Near-Field Coupling Integration Technology
- □ Transmission Line Coupler (TLC)
- □ ThruChip Interface (TCI)
- □ Challenges
 - Highly Doped Silicon Vias (HDSV)
 - TCI_2.9D/2.5D/2.0D
- □ ACCEL
 - 100GFLOPS/W Computer and 512GB/s DRAM

JST ACCEL Project (2015-2019)

Goal

- Mobile supercomputer with world's best power efficiency of 100GFLOPS/W (2019)
- □ Milestone
 - 512GB/s 8GB 8-Stacked DRAM (2017)
- Technology
 - **3D** Integration using Near-Field Coupling Integration Technology
- Further Challenges
 - AI computer equipped with both a left brain and a right brain to explore a new paradigm of information processing
 - Left brain employing stored program system by 3D Integration
 - Right brain employing virtual hard-wired logic system by 4D
 Integration (3D + DRP with DNN and DL; not mentioned today)

512GB/s 8GB TCI DRAM

□ Target of TCI DRAM is 3x faster than HBM and HMC.

100GFLOPS/W Computer

Summary

- Near-Field Coupling Integration Technology challenges to "Tyranny of Numbers" in post-Moore.
- Transmission Line Coupler (TLC) using electromagnetic coupling enables contactless connector for modular design.
- ThruChip Interface (TCI) using inductive coupling enables die stacking for 3D integration.
- □ Challenges
 - Proof with DRAM
 - Highly Doped Silicon Vias (HDSV) for power supply
 - TCI_2.9D/2.5D/2.0D for heat removal
- ACCEL aims for 512GB/s DRAM (in 2017) and 100GFLOPS/W computer (in 2019).

Questions

Tadahiro Kuroda10th IEEE/ACM International Symposium on Networks-on-Chip (NOCS 2016)39 of 40

Key References

TCI

- [01] ISSCC 2004, pp.142-143.
- [02] Symp. VLSI Circuits 2004, pp. 246-249.
- [03] CICC 2004, pp.99-102.
- [04] *ISSCC 2005*, pp.264-265.
- [05] *ISSCC 2006*, pp.424-425.
- [06] ESSCIRC 2006, pp.3-6.
- [07] ISSCC 2007, pp.264-265.
- [08] *A-SSCC 2007*, pp.131-134.
- [09] *ISSCC 2008*, pp.298-299.
- [10] ISSCC 2009, pp.244-245.
- [11] ISSCC 2009, pp.480-481.
- [12] Symp. on VLSI Circuits 2009, pp. 256-257.
- [13] Symp. on VLSI Circuits 2009, pp. 94-95.
- [14] Symp. on VLSI Circuits 2009, pp. 92-93.
- [15] CICC 2009, pp. 449-452.
- [16] A-SSCC 2009, pp.305-308.
- [17] A-SSCC 2009, pp.301-304.
- [18] *ISSCC 2010*, pp.436-437.
- [19] *ISSCC 2010*, pp.440-441.
- [20] ISSCC 2010, ES3.
- [21] Symp. on VLSI Circuits 2010, pp. 201-202.
- [22] A-SSCC 2010, pp.81-84.
- [23] IEDM 2010, p.17.1.1.
- [24] ISSCC 2011, pp.490-491.
- [25] ISSCC 2013, pp. 258-259.
- [26] Hot Chips 2014.

TLC

- [01] ISSCC 2007, pp.266-267.
- [02] CICC 2007, pp.13-2007.
- [03] A-SSCC 2008, pp.113-116.
- [04] ISSCC 2009, pp.470-472.
- [05] Symp. on VLSI Circuits 2009, pp. 26-27.
- [06] *ISSCC 2010*, pp.264-265.
- [07] ISSCC 2011, pp. 492-493.
- [08] *A-SSCC 2011*, pp. 145-148.
- [09] ISSCC 2012, pp. 52-53.
- [10] *CICC 2012*, pp. 7.9.1-7.9.4.
- [11] ISSCC 2013, pp. 214-215.
- [12] ISSCC 2013, pp. 200-201.
- [13] ISSCC 2014, pp. 496-497.
- [14] ISSCC 2015, pp. 176-177.
- [15] ISSCC 2015, pp. 434-435.
- [16] Symp. on VLSI Circuits 2015, pp. C128-129.

Tadahiro Kuroda 10th IEEE/ACM International Symposium on Networks-on-Chip (NOCS 2016) 40 of 40