Augmenting Low-latency HPC Network with Free-space Optical Links

<u>Ikki Fujiwara</u>

Michihiro Koibuchi

Tomoya Ozaki

Hiroki Matsutani

Henri Casanova

National Institute of Informatics

Keio University

University of Hawai'i at Manoa

Story at a Glance

• What if **steerable wireless links** appear on top of cabinets?

Reduced cable length & latency Topology optimization for diverse apps

Efficient Poweraware On/Off Link Regulation

Motivation

- How to make Free Space Optics (FSO)
 - FSO Terminal Devices
 - Layout of FSO Terminals
- How to use FSOs in an HPC system
 - For Reduced Cable Length and Latency
 - For Improved Topology Embedding
 - For Power-aware On/off Link Regulation
- Conclusion

Motivation 1/3: Cable Reduction

Earth Simulator, 1st gen. (crossbar) 83,200 cables 2,400 km 140 tons

K Computer (6-D mesh/torus)

200,000 cables **1,000** km

FSO provides shorter cable length and lower link delay

Motivation 2/3: Topology Optimization ⁵

• Diverse parallel applications have each different preferable topology

FSO provides a **reconfigurable** network

Motivation 3/3: Leveraging Poweraware On/Off Link Regulation

• Link consumes power regardless of workload

e.g. Energy Efficient Ethernet

• Turned-off links saves link power, but causes a negative impact on performance in HPC use ^[1]

Performance loss is not acceptable for HPCs

- Let's turn off more links!
 - As long as the performance loss is compensated by replacing wired links with FSO-based shortcuts

^[1] Saravanan et al., "Power/performance evaluation of energy efficient Ethernet (EEE) for High Performance Computing", ISPASS 2013

Motivation

- How to make Free Space Optics (FSO)
 FSO Terminal Devices
 - Layout of FSO Terminals
- How to use FSOs in an HPC system
 - For Reduced Cable Length and Latency
 - For Improved Topology Embedding
 - For Power-aware On/off Link Regulation
- Conclusion

- 10–100 Gbps, 200m distance using commodity laser (e.g. 1310 nm)
- Negligible interference enables high-density layout on top of cabinets
- Terminal devices applicable to HPC use:

Our prototype

Hamedazimi's [2]

Arimoto's [3]

[2] Hamedazimi et al, "FireFly: a reconfigurable wireless data center fabric using free-space optics", SIGCOMM 2014
 [3] Arimoto et al., "Wide field-of-view singlemode-fiber coupled laser communication terminal", SPIE 2013

Motivation

- How to make Free Space Optics (FSO)
 FSO Terminal Devices
 - Layout of FSO Terminals
- How to use FSOs in an HPC system
 - For Reduced Cable Length and Latency
 - For Improved Topology Embedding
 - For Power-aware On/off Link Regulation
- Conclusion

Line-of-sight Layout of FSO Terminals¹⁰

- No laser beam should be interrupted by the other terminals
- Want to layout FSO terminals so as to minimize the interruption

Maximize the line-of-sight ratio (LSR) = $\frac{2L}{N(N-1)}$

- *N* = number of terminals
- *L* = number of terminal pairs with direct line of sight
- Calculated using a ray tracer

Straight Layout (Naive)

Random Layout

Theater Layout

13

Alternative Layout using a Mirror

- FSO beams can be reflected by a mirror
- Similar idea is used for 60GHz wireless [4]
- Hereafter we assume 100% LSR

[4] Zhou et al, "Mirror mirror on the ceiling: flexible wireless links for data centers", SIGCOMM 2012

- Motivation
- How to make Free Space Optics (FSO)
 FSO Terminal Devices
 Layout of FSO Terminals
- How to use FSOs in an HPC system
 - For Reduced Cable Length and Latency
 - For Improved Topology Embedding
 - For Power-aware On/off Link Regulation
- Conclusion

Physical Merits of FSO links

- Reduced cable length
- Lower end-to-end communication latency
 - At most 53% lower latency (in theory)

- Calculated using graph analysis
 - When replacing long cables with FSO links
 - 1,024 switches; 512 cabinets; 1, 2, 4 FSO terminals/cabinet

Reduced Cable Length

Lower End-to-end Latency

18

- Motivation
- How to make Free Space Optics (FSO)
 FSO Terminal Devices
 Layout of FSO Terminals

How to use FSOs in an HPC system

For Reduced Cable Length and Latency

– For Improved Topology Embedding

- For Power-aware On/off Link Regulation
- Conclusion

Topology Embedding

- Many small jobs run simultaneously in an HPC
- Want to efficiently allocate their preferable topology
 Graph embedding problem (NP-hard)
- FSO largely alleviates the embedding problem

- Optimized using a genetic algorithm
 - So as to maximize the number of embedded topology

2×4 Tori Found

FSO opens a possibility for a better job allocation

- Motivation
- How to make Free Space Optics (FSO)
 FSO Terminal Devices
 Layout of FSO Terminals

• How to use FSOs in an HPC system

- For Reduced Cable Length and Latency
- For Improved Topology Embedding
- For Power-aware On/off Link Regulation
- Conclusion

Power-aware On/Off Link Regulation²³

- Our idea: let's turn off more links!
 - As long as the performance loss is compensated by replacing wired links with FSO-based shortcuts depending on a given workload

1. Deactivate wired links less contributing to avg path length

2. Insert an FSO shortcut to remedy the avg path length

Power-aware On/Off Link Regulation²⁴

- Evaluation results using flit-level simulator
 - p percent of the wired links are replaced with FSO
 - q percent of the links are deactivated

FSO works well with a power-aware link regulation

Comparable Technologies

60 GHz radio wireless links
 – Larger interference than FSO

- Embedding using Optical Circuit Switches (OCS)
 - Wired links via an optical circuit switch can support partial reconfiguration
 - Its embedding capability is lower than FSO

Only FSO realizes our three objectives

- Motivation
- How to make Free Space Optics (FSO)
 - FSO Terminal Devices
 - Layout of FSO Terminals
- How to use FSOs in an HPC system
 - For Reduced Cable Length and Latency
 - For Improved Topology Embedding
 - For Power-aware On/off Link Regulation
- Conclusion

Conclusion

 Augmenting Low-latency HPC Network with Freespace Optical Links, we get...

Reduced cable length (-36%) & latency (-9%) Topology optimization for diverse apps Torus FatTree Random

Efficient Poweraware On/Off Link Regulation

