
An In-Network Parameter Aggregation using DPDK for Multi-GPU Deep Learning

Masaki Furukawa, Tomoya Itsubo, and Hiroki Matsutani
Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan 223-8522

Email: {furukawa,itsubo,matutani}@arc.ics.keio.ac.jp

Abstract—In distributed deep neural network using remote
GPU nodes, communication occurs iteratively between remote
nodes for gradient aggregation. This communication latency
limits the benefit of distributed training with faster GPUs. In
distributed deep learning using the remote GPUs, workload
of gradient aggregation is imposed on a host machine. In this
paper, we therefore propose to offload the gradient aggregation
to a DPDK (Data Plane Development Kit) based network
switch between the host machine and remote GPUs. In this
approach, the aggregation process is completed in the network
using extra computation resources in the network switch. We
evaluate the proposed switch when GPUs and the host commu-
nicate with a standard IP communication and a PCI Express
(PCIe) over 40Gbit Ethernet (40GbE) product, respectively.
The evaluation results using a standard IP communication
show that the aggregation is accelerated by 2.2-2.5x compared
to the aggregation executed by a host machine. The results
using the PCIe over 40GbE product show that the proposed
switch outperforms the aggregation done by the host machine
by 1.16x. This approach is thus useful for distributed training
with multiple GPUs.

1. Introduction

Distributed deep learning using multiple GPUs is widely
used to reduce the training time. In data parallel training,
training process has 1) GPU computation phase for back-
propagation and 2) communication phase for parameter ag-
gregation. The computation phase is efficiently accelerated
by using GPUs. However, the communication phase is not
accelerated, and its overheads increase with GPU worker
count. The performance of modern GPUs has improved
significantly, the aggregation overheads limit the benefit
of distributed training with remote GPUs [1]. This paper
focuses on gradient aggregation in the communication phase
of distributed training.

In this paper, we assume remote GPU environments
using network-attached GPU technology, where a host ma-
chine and GPUs are connected via 40GbE. In these re-
mote GPU environments, since the aggregation process is
performed on the host machine, the workload is imposed
on the host machine. Moreover, the aggregation through-
put depends on the performance of the host machine. We
therefore propose a DPDK (Data Plane Development Kit)
[2] based network switch which performs the aggregation
in the network. The parameter aggregation is offloaded

to the software network switch and executed by using its
extra computing resources. We evaluate the switch when
GPUs and the host machine communicate with a standard
IP communication and ExpEther 40G (a PCIe over 40GbE
product) [3], respectively. The evaluation results show that
the proposed switch provides a higher throughput compared
to aggregation performed on the host machine. This ap-
proach can be applied to the performance improvement of
distributed training with multiple GPUs.

This paper is organized as follows. Section 2 introduces
distributed training approaches and remote GPU extension
technologies. Section 3 proposes the DPDK-based network
switch that performs the gradient aggregation. Section 4
describes the remote GPU configuration and the imple-
mentation. Section 5 evaluates the aggregation performance
using the proposed switch. Section 6 concludes this paper.

2. Related Work

2.1. Distributed Training

The training process is divided into three phases: for-
ward pass, backward pass, and optimization. In the forward
pass, a prediction is performed for an input data. In the
backward pass, the gradient for each parameter is calculated
based on the prediction error. In the optimization, parameters
are updated using these gradients so that the error becomes
smaller. Generally, these calculations are performed on a
GPU and can be parallelized by using multiple GPUs.

There are two approaches to parallelize the training
using multiple GPUs: data parallel and model parallel [4].
In the data parallel, the same network is prepared for each
GPU, and the training dataset is divided and applied to the
neural network model of each GPU. On the other hand,
in the model parallel, training is performed by dividing
parameters on the network into each GPU. This paper em-
ploys the data parallel training approach, which is currently
common in industry. The distributed training using multiple
GPUs requires an aggregation process called All-Reduce.
Figure 1 shows the flow of a single training iteration in a
distributed training. In the distributed training, the gradients
calculated by each GPU need to be aggregated between
the backward pass and the optimization. By performing
this All-Reduce process, a large-scale distributed training
using a huge minibatch becomes possible. Then, the model
parameters are updated based on these aggregated gradients
in the optimization phase.



Forward Backward Optimize

AllReduceForward Backward Optimize

Forward Backward Optimize

GPU 1

GPU 2

GPU 3

Figure 1. Single iteration in distributed training

Several variants of the gradient descent optimization
algorithm have been proposed. The commonly used basic
optimization algorithm is SGD (Stochastic Gradient De-
scent). Here, it is assumed that minibatch βi is assigned
to corresponding GPUi and it calculates a local gradient
gi =

∂lβi

∂w , where lβ denotes the loss function for minibatch
β. Thus, in SGD, the weights are updated as follows:

w(t+1) = w(t) − η ·
∑
i

∂l
β
(t)
i

∂w(t)
= w(t) − η ·

∑
i

g
(t)
i ,

where w(t+1), w(t), g(t), and η denote the next updated
weights, the current weights, the current gradients, and
the learning rate, respectively. Then, the next minibatch
is trained. This paper focuses on the gradient aggregation
process. We employ synchronous training, which is superior
in terms of learning accuracy and convergence speed [5], but
our proposal below is also useful for asynchronous training.

2.2. Network-Attached GPU Technology

Due to limitations such as the number of PCIe slots and
power supply, the number of GPUs that can be equipped on a
single machine is limited. To mitigate these limitations, there
is an approach to connect GPUs remotely via networks.
This approach is also effective in terms of GPU utiliza-
tion and power efficiency. In this approach, such network-
attached GPUs can be used transparently as well as directly-
connected GPUs. The following describes two representative
remote extension technologies.

ExpEther. ExpEther [3] [6] is a PCIe over Ethernet technol-
ogy that makes GPUs available via Ethernet. Each GPU and
a host machine are connected to Ethernet using a hardware
ExpEther bridge. PCIe packets for GPUs are encapsulated
into Ethernet frames by this bridge and transmitted to remote
nodes. We employ ExpEther 40G product as one case of
remote GPU environment in this paper.

rCUDA (remote CUDA). rCUDA [7] is widely used as
a software service to use GPUs via a network. rCUDA is
based on client-server model. In this approach, GPUs are
connected to server machines via PCIe slots, and the server
machines are connected to the network. Clients request the
server machines for a GPU processing via TCP/IP communi-
cation. Then, the server machines instead of clients perform
the requested tasks using GPUs.

2.3. Communication Bottlenecks

In distributed training using remote GPUs, communi-
cation between multiple remote GPUs is required to ag-
gregate gradients. The gradient aggregation is a sequential
process. Furthermore, as the number of GPUs increases,
parallel computation parts become faster, but overheads of
the aggregation process increase. Communication latency of
the aggregation process therefore is one of the bottlenecks
in distributed training. In [8], state-of-the-art DNN (Deep
Neural Network) models are trained using a five-node GPU
cluster with 10GbE connections. In this case, it is reported
that the communication time is a significant part of the total
training time. In [9], four parameter optimization algorithms,
such as SGD and Adam, are accelerated in 10GbE FPGA-
based network switch.

In addition, some methods to accelerate large-scale dis-
tributed DNN using GPU clusters are proposed [10] [11].
In [10], a GPU cluster consisting of 128 nodes with 1,024
Tesla P100 GPUs completed a training of ImageNet in 15
minutes. The nodes are connected with Infiniband FDR as a
high-speed interconnect. As the underlying communication
libraries, they use NCCL (NVIDIA Collective Communi-
cation Library) and MPI. Although these collective com-
munication algorithms perform the aggregation efficiently,
the communication overhead increases as the number of
GPUs increases. In [10], it is reported that approximately
20% of the training time with 1,024 GPUs is spent for the
communication.

Mellanox SHArP (Scalable Hierarchical Aggregation
Protocol) technology [12] is known as a reduce commu-
nication offload technology. Reduction operations based on
SHArP can be offloaded into Infiniband switches ASIC over
the Infiniband network, which provides for low communi-
cation latency between machines equipped with GPUs. This
paper targets communication of the network-attached GPUs
cluster over Ethernet represented by ExpEther.

Computing node products each consisting of several
GPUs (e.g., NVIDIA DGX series) have been used for high-
performance computing purposes. This paper rather focuses
on building low-cost clusters, where several GPUs and
host CPU with limited PCIe slots are loosely-coupled with
commodity technologies such as Ethernet.

3. DPDK-Based Switch Design

3.1. Remote GPU Environment

This section proposes a DPDK-based acceleration of
gradient aggregation in distributed deep learning. First, an
assumed remote GPU configuration and bottlenecks in this
configuration are described here. The remote GPU environ-
ment consists of a host machine, an Ethernet switch, and
multiple remote GPU workers, and each component is con-
nected via 40GbE network cables. As mentioned in Section
2.2, general-purpose machines cannot mount many GPUs
directly at the same time due to the limited number of PCIe



slots. In the remote GPU environments, the number of avail-
able GPUs is increased by introducing Ethernet switches
between the host machine and GPU workers (please see
Figure 3).

In this case, gradient data is aggregated by the CPU on
a host machine for several reasons. First, the approach of
using a GPU for aggregation causes unbalanced workload
among GPUs. Second, the GPU does not have enough mem-
ory to hold all gradients data. Third, since the aggregation
calculation is done by simple vector additions, the overhead
of copying gradients to the GPU for the aggregation cannot
be ignored. Communication latency between remote nodes
during the aggregation limits the benefit of faster GPUs.
Figure 2 shows a breakdown of the execution time using two
ExpEther I/O boxes each equipped with a GPU (GeForce
GTX 1080Ti). In this measurement, Pytorch is used as a
deep learning framework, ResNet 152 is used as a DNN
model, and SGD is used as an optimization algorithm.
Gradient computation and optimization are executed by two
GPUs, while gradient aggregation is executed by a CPU on
the host machine.

0.0 0.2 0.4 0.6 0.8 1.0

Data Preparation
Gradient Computation

Gradient aggregation
Optimization

Figure 2. Breakdown of execution times in training phase

As shown in Figure 2, the gradient communication ac-
counts for approximately 9% in this case. Although GPU
computation is dominant with a few GPUs, the proportion
of this communication increases with the number of GPU
nodes, which lowers the training throughput.

3.2. Gradient Aggregation using Network Switch

In recent years, the parameter size of DNN models has
been increasing with the benefit of faster GPUs. As the
model size and the number of connected GPUs increase,
aggregation throughput is limited by the network band-
width, especially between an Ethernet switch and a host
machine. We simply estimate the minimum transmission
time in the network for each iteration as follows. Given
a model size of M , with N GPU workers participating,
and with B bandwidth interconnection, assuming gradients
data from all GPU workers arrives at once. In this case, the
minimum transmission time between the switch and each
GPU is 2M/B, while that time between the switch and
the host machine is 2MN/B. This means that the available
bandwidth between the switch and each GPU is limited to
B/N .

In this paper, we therefore propose to offload the gra-
dient aggregation to the network switch in the network.
Figure 3 illustrates the proposed system, where gradients
are aggregated by the network switch that connects the host
machine and each GPU. This approach prevents the trans-
mission time from increasing proportionally to the number

of GPUs. The aggregation using the network switch enables
the wide bandwidth to be used efficiently. In addition, since
the aggregation is done by the network switch, the saved
compute resources at the host machine can be used for other
computation tasks.

GPU GPU GPU

Ethernet
Switch DPDK

GPU GPU GPU

Switch

Host

Gradient
Aggregation

Host

Conventional System Proposed System

Figure 3. System view. Gradients are computed by GPUs, then transmitted
to a host machine. In our proposed system, gradient aggregation is done
by DPDK-based switch.

3.3. DPDK-Based In-Network Aggregation

We offload gradient aggregation to a software network
switch. Software switches are typically programmable and
can add memory modules; so they are useful for the aggre-
gation task that needs to synchronize gradient data. There
are many ways to implement the software network switch. In
this paper, we employ DPDK [2], which enables high-speed
packet processing. Figure 4 shows an in-network aggrega-
tion using DPDK. In DPDK, the dedicated thread occupying
a CPU core constantly polls NIC (Network Interface Card),
and an application controls the NIC directly. In distributed
training with remote GPU environments, all gradient data
transmitted from each GPU node passes through the pro-
posed switch. Then, the gradient data is routed and aggre-
gated at the same time by the switch. The proposed switch
reduces the gradient data in the network by 1/N , where
N is the number of participating GPUs. By performing the
aggregation in the network, the workload on a host machine
is significantly mitigated.

4. Implementation

4.1. Remote GPUs Environment Setup

In this paper, we consider the following two cases as
remote GPU environments:

• Case 1) remote invocation of GPU tasks over a
network, inspired by rCUDA, where the proposed
system is verified using a standard TCP/IP commu-
nication.



Network

User Space

Hardware

Kernel Space

Aggregation

M
N

MN

M

M

DPDK

NICNICNIC

Proposed Network Switch

Figure 4. In-network aggregation using DPDK. N : GPU count, M : gradient
size, → : Gradient, → : Aggregated gradient

• Case 2) ExpEther 40G, where the proposed system
is applied to the actual remote GPU technology.

We employ 40GbE network as an interconnect between a
host machine and GPU nodes. We implement the environ-
ments using Pytorch as the deep learning framework in both
cases.

4.2. Implementation Overview

4.2.1. Case 1. Figure 5 shows the configuration of Case
1 and its data flow. This environment consists of a host
machine, worker machines equipped with a GPU, and the
proposed DPDK-based network switch. In Case 1, each
learning iteration proceeds as follows:

1) The host machine extracts minibatches from a train-
ing dataset and distributes them to each GPU.

2) The GPU of each worker machine calculates the
gradient by applying the minibatch assigned by the
host machine to its own DNN model.

3) The calculated gradient data is sent to the host
machine.

4) These gradients are aggregated on the network
switch instead of the host machine.

5) The aggregated gradient is multicasted by the
switch to each GPU, not to the host machine.

6) Instead of receiving gradients from each GPU, the
host machine receives a signal indicating comple-
tion of the aggregation from the switch.

These steps can be overlapped to mitigate communication
latency. In this implementation, we use UDP/IP commu-
nication for the gradient data communication, and TCP/IP
communication for other communication. Considering the
transmission efficiency and the packet buffer size in DPDK
switch, the packet length containing gradient data is 1516
bytes, which include additional headers indicating the type
of data and the sequence number of gradients.

DPDK
Switch NIC

OS

Application

Host

CPUGPU NIC

 Machine

CPUGPU NIC

 Machine

(1) Mini-Batch(2) Gradient computation

(3) Send

(4) AllReduce

(5) Aggregated gradient

(6) Signal

Figure 5. Case 1 using remote invocation of GPU tasks

4.2.2. Case 2. Figure 6 shows the configuration of Case
2 and its data flow. This environment consists of a host
machine, I/O boxes equipped with GPUs, and the pro-
posed switch. Figure 7(a) shows the I/O box with one
GPU mounted. The host machine and GPUs are connected
via 40GbE network using ExpEther bridge. Figure 7(b)
shows the 40G host adapter. The PCIe packet containing
the calculated gradient data is encapsulated into an Ethernet
frame and transmitted to the host machine using proprietary
protocols (e.g., transmission rate control, retransmission for
lost packets). This reliable communication does not permit
any changes to packets. Therefore, we forward all packets
to the host machine when gradients are aggregated on the
switch. This processing is done for enabling the trace of
packets. The flow from (1) to (4) is the same as that in
Case 1.

(3) Send
(4) AllReduce

I / O box

GPU ExpEther

I / O box

GPU ExpEther

DPDK
Switch ExpEther

OS

Application

Host

(1) Mini-Batch(2) Gradient computation

Forward all packet

Figure 6. Case 2 using ExpEther

4.3. DPDK-Based Aggregation Switch

Figure 8 illustrates an overview of the implemented
DPDK-based aggregation switch. The DPDK application
receives packets directly in user space via a polling-based
receiving mechanism called PMD (Poll Mode Driver). The
received packet is placed in the packet buffer pre-allocated
on Hugepage, and the application obtains the packet pointer
using DPDK libraries. The aggregation switch mainly con-
sists of a sending / receiving thread group and a gradient
aggregation thread group. These threads are implemented
as DPDK threads, not regular Linux threads. Receiving
threads guarantee the order of the received packets, and



(a) I/O box with one GPU (b) Host adapter

Figure 7. ExpEther 40G environment. ExpEther I/O boxes with GPUs (a)
and host adapter (b) are connected to DPDK switch via 40GbE.

perform packet classification processing using the header.
The packet including the gradient data to be aggregated is
passed from receiving threads to aggregation threads. The
aggregation thread extracts the gradient data from the re-
ceived packet and temporarily stores the data in the gradient
buffer allocated on Hugepage in advance. Assuming that the
DNN model size is M and N GPU workers participate, an
additional memory MN is required in the network switch.
Packets not to be aggregated are forwarded based on the
header information and the MAC address table held by the
thread of each port.

Hugepages

Aggregation Threads

Network Switch
Gradient Pool

PMD
DPDK Library

Port 0 Thread

RX

Sequenceing

NIC

Routing

TXTXTX

Figure 8. An overview of DPDK-based aggregation switch. A sending /
receiving thread is implemented independently for each NIC port.

There are several ways to organize threads to perform
aggregation. Figure 9 illustrates the way of gradient ag-
gregation used in this switch for three gradient arrays. In
this way, each gradient array obtained by each NIC port is
divided into chunks of a predefined size. Each aggregation
thread works on the same chunk in all gradient arrays.
When chunks with a specific index are received from all
GPU nodes, the aggregation thread assigned to that chunk
starts aggregating. Then, when the aggregation operation is
completed for the chunk, the aggregation thread packetizes

the aggregated gradient data based on MAC address table
and requests the corresponding sending / receiving threads
to send the packet. In actual environments, there is a delay
in the time until gradient arrays are received from all GPU
nodes. In particular, for larger gradient data, a longer waiting
time occurs until the data is fully received. In this thread
organization, data receiving tasks and aggregation opera-
tions can be efficiently overlapped with less inter-thread
synchronization. Thus, this is a preferable way to organize
aggregation threads.

Thread 1 Thread 2 Thread 4Thread 3

Gradient array 1

Gradient array 2

Gradient array 3

Send

Figure 9. A way of gradient aggregation. Each gradient array is divided into
chunks. Each aggregation thread works on the same chunk in all gradient
arrays.

5. Evaluations

5.1. Packet Processing Throughput

First, the proposed DPDK-based network switch is eval-
uated in terms of the packet processing throughput. In this
evaluation, the proposed switch is directly connected to NIC
port of another machine with 40GbE cables. Each NIC is
installed to PCIe 3.0 x16 slot of machines. Test packets
including gradients data are generated at a line rate of
40Gbps by using DPDK-Pktgen [13] and sent continuously
from the packet generator machine to the proposed switch.
The aggregation throughput is measured from the number of
packets processed per second by the proposed switch. Table
1 shows the execution environment used for the proposed
DPDK switch. In our prototype implementation (Case 1),
each packet contains 366 gradients and thus the packet
length including a packet header and the payload is 1516
bytes. When ExpEther is used (Case 2), each packet contains
32 gradients and thus the total packet length is 192 bytes.

As a result of measuring the throughput in both cases,
the average throughput of the proposed switch is 39.41Gbps
and 26.01Gbps, respectively. Although test packets are con-
tinuously transmitted at 40Gbps, the 40GbE line rate is
lower than 40Gbps when considering the Ethernet preamble
and interframe gap inserted for each packet. Considering
these overheads, the theoretical maximum throughput in our
environment is 39.48Gbps for Case 1 and 36.23Gbps for
Case 2. In Case 1, the measured throughput of gradient
aggregation is 99.8% of the maximum throughput, and
thus almost the line rate is achieved. However, in Case
2, the measured throughput is decreased to 71.8% of the
maximum. From these results, it is considered that the



network bandwidth is limited by the proposed switch when
ExpEther is used in our current implementation. Regarding
the throughput, there is still enough room for improved
implementations, such as using RSS (Receive Side Scaling)
and multi-threading the receiving thread, which will be
addressed in our future work.

TABLE 1. DPDK-SWITCH EXECUTION ENVIRONMENT

OS Ubuntu 18.04
CPU Intel Xeon E5-2637 v3 @3.5GHz

Memory 512GB
Hugepages 1GB x4

NIC Intel Ethernet CNA XL710-QDA2
DPDK ver 18.11.2
Pktgen ver 19.10.0

5.2. Aggregation Performance

5.2.1. Case 1. In this section, the proposed DPDK-based
switch is evaluated in terms of the execution time of gra-
dient aggregation using remote invocation of GPU tasks.
The evaluation environment consists of three remote GPU
worker nodes, one host machine, and the switch connecting
them. In this measurement, the execution time from when
the packet including gradient data is received from any
GPU node to when the aggregated gradients are completely
transmitted to each remote GPU is measured. CIFAR 100
is used as a training dataset, and several state-of-the-art
DNN models with different sizes are used for the evaluation.
Table 2 shows DNN models and their gradient sizes used in
our evaluation. To verify the effectiveness of the proposed
switch, we compare the aggregation executed by the switch
with the conventional aggregation done in an application
layer of the host machine. Table 3 shows the execution
environments for the worker and host machines.

TABLE 2. DNN MODELS

Model Parameter size
GoogleNet 24.7 MB
VGG 19 80.2 MB

ResNet 50 94.0 MB
ResNet 101 170.0 MB
ResNet 152 232.6 MB

Figure 10 shows the execution times of the gradient
aggregation for each model, which are average times of
100 iterations. In this graph, X-axis represents DNN models
and Y-axis represents their execution times. As a result, the
aggregation in the network using the proposed switch (red
bar) outperforms the aggregation on the host machine (blue
bar) by 2.2-2.5x. These improvements are achieved by re-
ducing unnecessary communication overheads using DPDK.
By performing the aggregation using the network switch, the
transmission time of gradients can be kept constant relative
to the number of nodes. Therefore, it is considered that
further benefits can be gained especially when using more
GPUs.

GoogleNet VGG19 ResNet50 ResNet101 ResNet152
0.0

0.2

0.4

0.6

0.8

1.0

1.2

se
c

Switch aggregation
Host aggregation

Figure 10. Execution time of the aggregation in Case 1

TABLE 3. WORKER AND HOST EXECUTION ENVIRONMENTS

Worker machine Host machine
OS Ubuntu 18.04 LTS

CPU Intel Xeon E5-2637 v3 Intel Core i7-4790
@3.5GHz @3.6GHz

Memory 128GB 8GB
GPU GeForce GTX 1080Ti -

(11GB RAM)
CUDA ver 10.0
Pytorch ver 1.3.0

NIC Intel Ethernet CNA XL710-QDA2

5.2.2. Case 2. We evaluate the aggregation execution time
when using ExpEther as the actual remote GPU envi-
ronment. In ExpEther, sophisticated communications based
on proprietary protocols are performed between ExpEther
bridges. These communications contain many shorter pack-
ets, which lowers the processing throughput of the proposed
switch. In this simple evaluation, the execution time of the
aggregation is measured using 32,000 parameters consisting
of 1,000 packets. This execution time is defined as the time
until the addition operation for all gradient arrays from each
GPU is completed. The evaluation environment consists of
two I/O boxes each equipped with a GPU, one host machine,
and the proposed switch. Figure 11 shows the comparison
of the aggregation execution time. Note that this time does
not include processing for the aggregated gradient array. In
this case, the aggregation performed on the switch is 1.16x
faster than that on the host machine. In this evaluation, the
parameter size used is small. In addition, packet forwarding
for controlling ExpEther protocols increases unnecessary
overheads. Thus, there is room for improvement in our
measurement and implementation, but the evaluation results
show that the proposed switch is useful for the actual remote
GPU environment.

In this evaluation, the aggregation throughput is im-
proved by approximately 1.16x. Based on the breakdown of
training time shown in Section 3.1, the entire training time
is shortened by approximately 1.25%. In this paper, only



Switch
Aggregation

Host
Aggregation

0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
se

c

Figure 11. Execution time of the aggregation in Case 2

a few GPUs are used for the evaluation, but more GPUs
are generally used. Overheads of the aggregation process
increase with GPU node count. Therefore, the proposed
switch would further reduce the entire training time in
distributed training with more GPUs. Please note that since
the aggregation is done by the network switch, the saved
compute resources at the host machine can be used for other
computation tasks.

6. Summary

In distributed training using remote GPUs, communi-
cation occurred between remote nodes when gradients are
aggregated. This communication imposes a certain overhead
for distributed training with multiple GPUs. In this paper,
we focused on remote GPU environments using network-
attached GPUs. In these environments, aggregation work-
load is imposed on a host machine, which lowers aggrega-
tion throughput. We therefore proposed to offload gradient
aggregation to a DPDK-based network switch between the
host machine and remote GPUs. Our evaluation using UDP
communication showed that the proposed switch outper-
formed the aggregation executed by the host machine by
2.2-2.5x. In the evaluation using ExpEther, although there
was room for optimization, aggregation throughput was
accelerated by 1.16x with our current implementation.

As a future work, we are evaluating scalability of the
proposed switch using more GPUs in remote GPU environ-
ment. We are also planning to demonstrate the performance
improvement of entire training using low-cost GPU clus-
ters composed of power-efficient embedded GPUs such as
NVIDIA Jetson series.

References

[1] L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and A. Krishnamurthy,
“Parameter Hub: a Rack-Scale Parameter Server for Distributed Deep
Neural Network Training,” in Proceedings of the ACM Symposium on
Cloud Computing (SoCC’18), May 2018, pp. 41–54.

[2] “Data Plane Development Kit,” https://www.dpdk.org/.

[3] J. Suzuki, Y. Hidaka, J. Higuchi, Y. Hayashi, M. Kan, and
T. Yoshikawa, “Disaggregation and Sharing of I/O Devices in Cloud
Data Centers,” IEEE Transactions on Computers, vol. 65, no. 10, pp.
3013–3026, Oct 2016.

[4] M. Abadi et al., “TensorFlow: A System for Large-Scale Machine
Learning,” in Proceedings of the USENIX Conference on Operating
Systems Design and Implementation (OSDI’16), Nov 2016, pp. 265–
283.

[5] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting Dis-
tributed Synchronous SGD,” arXiv:1604.00981, Mar 2017.

[6] J. Suzuki, Y. Hidaka, J. Higuchi, T. Yoshikawa, and A. Iwata, “Ex-
pressEther - Ethernet-Based Virtualization Technology for Reconfig-
urable Hardware Platform,” in Proceedings of the IEEE Symposium
on High-Performance Interconnects (HOTI’06), Aug 2006, pp. 45–51.

[7] J. Duato, A. J. Peña, F. Silla, R. Mayo, and E. S. Quintana-Ortı́,
“rCUDA: Reducing the number of GPU-based accelerators in high
performance clusters,” in Proceedings of the International Conference
on High Performance Computing & Simulation (HPCS’10), Jun 2010,
pp. 224–231.

[8] Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang, A. G.
Schwing, H. Esmaeilzadeh, and N. S. Kim, “A Network-Centric
Hardware/Algorithm Co-Design to Accelerate Distributed Training
of Deep Neural Networks,” in Proceedings of the International Sym-
posium on Microarchitecture (MICRO’18), Oct 2018, pp. 175–188.

[9] T. Itsubo, M. Koibuchi, H. Amano, and H. Matsutani, “Accelerat-
ing Deep Learning using Multiple GPUs and FPGA-Based 10GbE
Switch,” in Proceedings of the International Conference on Parallel,
Distributed and Network-Based Processing (PDP’20), Mar 2020, pp.
102–109.

[10] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely Large Mini-
batch SGD: Training ResNet-50 on ImageNet in 15 Minutes,”
arXiv:1711.04325, Nov 2017.

[11] H. Mikami, H. Suganuma, P. U-chupala, Y. Tanaka, and Y. Kageyama,
“Massively Distributed SGD: ImageNet/ResNet-50 Training in a
Flash,” arXiv:1811.05233, Nov 2018.

[12] R. L. Graham, D. B. P. Lui, H. Rosenstock, G. Shainer, G. Bloch,
D. Goldenerg, M. Dubman, S. Kotchubievsky, V. Koushnir, L. Levi,
A. Margolin, T. Ronen, A. Shpiner, O. Wertheim, and E. Zahavi,
“Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware
Architecture for Efficient Data Reduction,” in 2016 First International
Workshop on Communication Optimizations in HPC (COMHPC),
Nov 2016.

[13] “pktgen-dpdk,” http://git.dpdk.org/apps/pktgen-dpdk/.


