
978-1-5090-3707-0/16/$31.00 c⃝2016 IEEE

Design and Implementation of Hardware Cache
Mechanism and NIC for Column-Oriented Databases

Akihiko Hamada
Dept. of ICS, Keio University,

3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan
Email: hamada@arc.ics.keio.ac.jp

Hiroki Matsutani
Dept. of ICS, Keio University,

3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan
Email: matutani@arc.ics.keio.ac.jp

Abstract—Recently some researches to utilize big data efficiently
have been made vigorously. To store and process big data, structured
storages (NOSQLs) that have high degree of horizontal scalability
have attracted a lot of attention. Key-value stores and column-
oriented stores are known as famous examples of structured storages.
Especially, column-oriented stores can store variable numbers of
columns for each row while maintaining high scalability. Moreover,
range queries (scan operations) are supported in column-oriented
stores. This paper proposes hardware cache mechanism using FPGA
NIC to accelerate column-oriented databases. In this paper, it is
assumed that column-oriented stores running on database servers
are accessed by clients via a network. This paper aims to improve
performance and power efficiency of column-oriented stores by
introducing an FPGA-based 10GbE network interface (NIC) and
a hardware cache mechanism (HBC) implemented on the NIC.
HBC stores query results (sorted rows) as a key-value form in the
DRAM implemented on the FPGA NIC, and the requested data
can be returned to clients immediately if the query result has been
cached. Existing work that aims to accelerate structured storages
by hardware have focused only on key-value stores while column-
oriented stores that support range queries (scan operations) have not
been addressed. HBC deploys methods that address data mappings
and range queries of caches using specific data structures that can
be represented in binary-tree forms and this paper shows HBC can
accelerate range queries by hardware. In experiments of this paper,
HBase is running on an application layer, while HBC is implemented
on an FPGA-based NIC. This paper shows that improvement of
power efficiency and significant performance improvement can be
achieved by the proposed HBC and also pros and cons of the
proposed HBC are discussed.

I. INTRODUCTION

There have recently been a lot of researches into the efficient
utilization of big data. Some structured storages (NOSQLs) [1]
that have high degree of horizontal scalability attracted a lot
of attention in addition to traditional RDBMS for storing and
utilizing big data. As famous examples of structured storages,
key-value stores [2] that store the data as pairs of key and value
and column-oriented stores [3][4] that store the data as sorted
rows that have row keys and multiple columns (key-value pairs)
are widely known. Especially, column-oriented stores can store
variable numbers of columns for each row while maintaining
high scalability. Moreover, some range queries (scan operations)
between given startRow and stopRow can be performed because
stored data are sorted by row keys. Column-oriented stores can
manage data more flexibly compared to key-value stores. These
structured storages shown above are considered to have char-
acteristics that accessing memories and data transfer (I/O) cost
much time compared to database processing, thus it is considered
that higher performance can be achieved by connecting I/O and
database processing closely.

This paper proposes methods for acceleration of column-
oriented stores by a hardware cache mechanism that deploys
FPGA NIC. More specifically, a hardware cache mechanism of
column-oriented stores that works on an FPGA NIC that has
10GbE interfaces is introduced. This hardware cache mechanism
proposed in this paper is called HBC (HBase Cache). In this
paper, HBC is designed and a prototype of HBC is implemented.

HBC stores results of range queries (scan operations) performed
by software deploying the DRAM implemented on the FPGA
NIC. When a received query hits in HBC, the requested data
that HBC caches are returned to the client directly from the NIC
without software processing, thus access to the databases can
be accelerated. When a received query is missed in HBC, HBC
transfers the query to a software layer and software can generate
the result and return the requested data to the client.

To perform returning scanned results of column-oriented
stores, HBC deploys specific data structures represented in
binary-tree forms to set tag information and performs search of
cached data using the tag information. When a scan query is
received in HBC, it searches the range of requested data and the
decision of hit or miss is made. In other words, HBC performs
hardware-based scan operations on FPGA NIC. Existing work has
focused only on key-value stores and work that accelerates scan
operations of column-oriented stores by hardware has not been
reported as far as we know. This paper introduces proposed HBC
and HBCMS (HBC management system) that is software cooper-
ating with HBC and column-oriented stores. HBCMS cooperates
with HBC and column-oriented stores, however, modification to
column-oriented stores is not needed as HBCMS is independent
from column-oriented stores themselves. In the proposed meth-
ods, when a received query hits in HBC and HBC returns the
result, column-oriented stores do not detect the returned result
and when a received query is missed in HBC and software returns
the result, HBC does not detect the returned result. Thus, they
compose a system where the databases and HBC are transparent
each other.

In the experiments of this paper, HBase and HBCMS are
running on an application layer on a server machine and HBC is
implemented on the FPGA NIC mounted on the server machine.
Clients transfer HBC queries to the server to request data and
when they are missed in HBC, the queries are processed by
software. The client machine is connected to the server machine
via 10GbE and the client sends queries for HBC using maximum
network bandwidth by a hardware-based packet injector, and we
measured the number of operations processed by the server per
a certain time (i.e., throughput). As a result, orders of magnitude
higher performance is achieved by proposed HBC compared to
that of software. Pros and cons of the proposed methods are also
discussed.

The rest of this paper is organized as follows. Section
II overviews related work and Section III introduces column-
oriented stores. Section IV proposes HBC and Section V shows
the design and implementation. Section VI shows experimental
results and Section VII concludes this paper.

II. RELATED WORK

This section briefly overviews accelerations of relational
databases and structured storages.

To improve query performance of relational databases, re-
searches of FPGA-based hardware acceleration have been re-
ported since 2009. A query compiler for FPGA-based database
accelerator that is called Glacier, is proposed in [5]. This compiler
receives RDB queries as inputs and it realizes dedicated hardware

to process the queries on the FPGA. In [6], different queries can
be processed without reconfiguring the FPGA.

Researches to accelerate Memcached that is a key-value store
by dedicated hardware have been reported since 2013. [7] reports
that 64usec and 30usec are consumed at the network interface and
Linux kernel (network protocol stack) respectively, while only
30usec is consumed for the software processing of Memcached
at the server. Since network processing consumes much longer
time compared to the Memcached computation, a Memcached
appliance that is implemented on an FPGA board with 1GbE
interface is proposed in [7]. Memcached appliances implemented
on FPGA boards with 10GbE interfaces are proposed in [8] and
[9]. In these designs, Memcached operations are composed of
packet decomposition, hash computation, memory access, and re-
sponse formatter, and these steps are processed in a pipeline. They
are designed as standalone Memcached appliances implemented
on FPGA boards. [10] proposes accelerators as SoC (System-
on-Chip) for Memcached processing. Co-design of software and
hardware for the Memcached processing is also discussed in [10].

As mentioned above, Memcached that has the simplest data
structures in structured storages is considered to have character-
istics that accessing memories and data transfer (I/O) cost much
time compared to database processing. For such kind of uses,
devices that can connect I/O and database processing closely
such as FPGAs can be deployed effectively. Also, existing work
of hardware-based approach on structured storages is mainly
targeting Memcached that is one of key-value stores whose
storages are volatile (persistence of stored data using hard disks
is not supported). On the other hand, column-oriented stores have
been utilized in various fields since Google proposed BigTable
as a storage to store indexes of the web and some open source
databases such as HBase [3] and Cassandra [4] are widely known.
However, researches of hardware-based acceleration of column-
oriented stores have not been reported as far as we know. This
paper proposes methods to accelerate column-oriented stores
using FPGA NIC.

III. COLUMN-ORIENTED DATABASES

In this paper, proposed HBC is applied to column-oriented
stores. To accelerate column-oriented stores is considered to be
effective as they have more flexible functions compared to key-
value stores. This work is targeting HBase as a column-oriented
store while it can be applied to other column-oriented stores.

This section shows basic data structures and queries examples
of column-oriented stores.

a) Data Structures of Column-oriented Stores: The data
structure of column-oriented stores is an advanced version of that
of key-value stores and it is composed of row keys and columns
that belong to rows. The data structure of a column-oriented
store is shown in Figure 1. Column-oriented stores can store

Fig. 1. Data structure of Column-oriented store

data as rows that have row keys (e.g., Row#101) and columns
(key-value pairs) that are assigned to row keys. The values are
not shown in this figure for simplicity. As rows are sorted by

their row keys and stored, range queries (scan operations) that
designate the range of row keys (startRow and stopRow) can
be performed. Columns (e.g., Col#A) are also categorized by
column families (e.g., ColumnFamily#1) and stored. Columns
can be added dynamically, however, column families can not be
added dynamically and need to be configured before the system
starts. Columns can retain multiple versions of data by their
timestamps. To read old revisions of data by designating some
specific versions of data can be performed.

b) Queries of Column-Oriented Stores: As typical queries
of column-oriented stores, Get, Set and Scan operations can be
performed.

The query shown below reads a value specified by Row#101,
ColumnFamily#1, and Col#A (Get operation).

Get “Row#101”, “ColumnFamily#1:Col#A”
The query shown below writes a new value (Val1) to a value

field specified by Row#100, ColumnFamily#2, and Col#B (Set
operation).

Put “Row#100”, “ColumnFamily#2:Col#B”, “Val1”
The query shown below reads all the rows between Row#100

and Row#105 (Scan operation).
Scan startRow=“Row#100”, stopRow=“Row#105”

IV. HARDWARE CACHE MECHANISM

In this paper, HBC is implemented on FPGA NIC as a
hardware cache to accelerate Get/Scan queries (Read queries)
of column-oriented databases. Figure 2 shows how packets of
read queries are processed by HBC. In this paper, a column-

Fig. 2. Overview of HBC and data flow of query packets

oriented store and HBCMS are running on an application layer
of the server machine and HBC running on the FPGA NIC
mounted on the server machine uses the DRAM (we are currently
using NetFPGA-10G board that has only 288MB DRAM, while
NetFPGA-SUME board that will be used in the future work has
8GB DRAM [11]) on the FPGA NIC to store data in a hardware
cache. The query results of column-oriented stores are cached in
HBC as key-value pairs. If requested rows are cached in HBC,
the query results can be returned from HBC to clients rapidly. In
a key-value pair of HBC, the key is the string composed of a row
key, a column family, and a column of each row in a data mapping
manner of HBC shown in Section IV-A. The values in HBC
are the scanned results (sorted rows) of requested read queries
generated by the column-oriented database server when requested
queries do not hit in HBC. HBC returns packets that includes
requested data after it generates them via a network to clients.
In this case, HBC can return requested data from FPGA NIC to
clients without processing by software, thus it can accelerate the
data access.

The methods of HBC can be applied to Get/Set/Scan opera-
tions of column-oriented databases. In the following subsections,
the caching manner of HBC and HBCMS that cooperates with
HBC and column-oriented databases are proposed. Deploying
these methods, Get/Set/Scan operations used in column-oriented
stores are supported in HBC.

A. Caching Manner of HBC
HBC deploys the DRAM (288MB) on the FPGA NIC board

and thus it can uses 223addresses while each address can store
data up to 36Byte.

Some parameters used in the data mapping manner of HBC
are introduced below. The maximum numbers of different column
families that can be used in HBC is represented as Ncf = 2l.
The maximum numbers of different columns that can be used in
HBC is represented as Nc = 2m. Thus the maximum numbers of
different pairs of a column family and a column that can be used
in HBC is represented as Ncol = 2l+m. The maximum numbers
of rows that can be cached for each pair of a column family
and a column is represented as Nrow = 2n. The maximum size
of a value stored for each row is represented by the following
equation.

Svalue = 36× 2aByte (1)

Also the following equation is introduced.

l +m+ n+ a = 23 (2)

Thus, the parameters l, m, n, and a are used to configure the
data mapping deploying cache of 223addresses (288MB).

Figure 3 shows the structure of an address used in the
data mapping of HBC. As shown in this figure, HBC uses

Fig. 3. Structure of address data mapping of HBC

23bits addresses of the DRAM when it accesses the DRAM. In
the 23bits, lbits are used to identify the variations of column
families and mbits are used to identify the variations of columns.
Therefore (l + m)bits are used to identify the variations of the
pairs of a column family and a column. Also nbits in 23bits are
used to represent the maximum numbers of values that can be
cached for a specific pair of a column family and a column and
abits in 23bits represent the maximum size of a value stored in
an address field for a specific row of the DRAM (the size of
values of different revisions for a specific address is included in
the maximum size).

In this paper, the configuration of 23bits addresses of DRAM
is shown above and the parameters of the number of bits and
assignment to the DRAM can be adjusted according to the target
application.

Figure 4 shows data mapping and the search of binary tree of
HBC in the pattern in which the configuration is l = 1, m = 2,
n = 8, and a = 12. The following subsections show the patterns
where software stores data in HBC, HBC processes Set queries,
and HBC processes Get/Scan queries.

1) When Software Stores Data in HBC: In this case, HBC
needs configuration of column families of Ncf patterns and
columns of Nc patterns before the system starts. HBC only caches
data for the Ncol patterns of the pairs of configured column
families and columns. Software stores values of successive Nrow
patterns that is sorted by rows as a result of a scan operation for
a specific pair of a column family and a column performed by
software to the corresponding DRAM addresses of HBC whose
nbits addresses in 23bits addresses are successive. The DRAM
addresses are determined by the structure of addresses used in
the data mapping of HBC shown in Section IV-A.

Figure 4 illustrates an example of the cache where successive
256 values from Row000 to Row255 are stored in DRAM
addresses (23bits) of HBC whose nbits addresses are successive
(256 addresses) respectively. This operation is performed for each

Fig. 4. Data mapping and search of binary tree of HBC

pair of a column family and a column that HBC manages in
it respectively. Also to manage the revisions distinguished by
timestamps, the values corresponding to a specific row are cached
in addresses (2a addresses) of DRAM that corresponds to the row.

When HBC stores values to its cache, it also stores mapping
information of the cache in a data structure represented by blocks
distinguished in a binary-tree manner using FPGA memory.

As Figure 4 illustrates, for specific pairs of a column family
and a column that HBC supports for caching, 2n row addresses
(256addresses in this figure) are divided into 2 blocks in a step of
the search of a binary tree from parents to children recursively. In
these steps, only 2 rows that correspond to maximum and mini-
mum addresses respectively in each block are stored as mapping
information in FPGA memory. In this manner, the deepest blocks
of the data structure represented by a binary tree are defined as
minimum blocks which are indivisible. These minimum blocks
are called HBC blocks. The number of addresses managed in a
HBC block are represented in the following equation.

Nblockadd = 2b (3)

When updates occurred in the database, software performs up-
dating of HBC cache in the DRAM and mapping information of
the cache stored in the data structure represented by a binary tree
in FPGA memory. These updates are performed from software to
HBC via PCI Express mounted on the FPGA NIC. In the updates,
software sends addresses of DRAM that will be updated, updated
values, and addresses that are invalidated and HBC performs
updating and invalidating according to the information that is
received from software.

When HBC invalidates specific cached values, it sets an
invalidation flag for each HBC block. Also parents blocks of
the invalidated blocks are invalidated from HBC blocks recur-
sively. On the other hand, when the invalidation is released, the
invalidation flags are unset.

2) When HBC Receives Set Queries: In this case, to maintain
the consistency of the cache, HBC performs search of the map-
ping information in the data structure represented by a binary tree
and checks whether rows that are designated by Set operations
are already stored in HBC.

If the rows are stored, it sets invalidation flags to the cor-
responding HBC blocks. HBC also transfers the Set operations
to the software layer for processing regardless of whether the
designated rows are stored in HBC.

3) When HBC Receives Get/Scan Queries: In this case, HBC
receives Get/Scan operations from clients and searches its cached
values for the requested data. HBC processes a Get operation as
a Scan operation whose requested number of values is 1.

HBC first checks whether the pair of a column family and a
column that corresponds to the given rows is cached in HBC. If
it is not cached, HBC processes the query to be cache missed.
Otherwise, HBC starts search of the data structure represented
by a binary tree. In this case, for given startRow and stopRow
respectively, it performs search of the binary tree by blocks from

parents to children to find whether startRow or stopRow are
cached in the blocks recursively and finally HBC locates which
HBC block includes the given startRow or stopRow respectively.

In the case where the value of startRow is larger compared to
that of stopRow, the search reaches the invalidated blocks or it is
confirmed that startRow or stopRow is not included in the range
of cached blocks, HBC processes the query to be cache missed. If
for both startRow and stopRow the search reaches HBC blocks
without making the decision of cache miss, HBC acquires the
range of addresses represented in n bits of the 23bits addresses
of the DRAM, that are represented by the range of addresses
between 2 HBC blocks that include the startRow and the stopRow
respectively.

According to the acquired range of addresses, HBC generates
the range of addresses for cached data in DRAM in the manner
of the structure of an address used in the data mapping of HBC
shown in Section IV-A and it performs successive read operations
to DRAM for the acquired range of addresses by the unit of HBC
blocks.

Then the read results are returned to clients from HBC. If
the Get/Scan operations are missed in HBC, HBC transfers the
Get/Scan operations to the software layer to be processed.

B. Pipeline Processing of HBC
HBC searches the binary tree of mapping information when

it receives a Set query and checks whether the designated rows
are cached in HBC or when it receives a Get/Scan query and it
checks whether the query hits or misses in HBC.

In these cases, if the number of HBC blocks that are searched
is considered to be N , the delay is represented by O(log2 N) as
steps of the binary search.

Also, when the query hits in HBC, the delay to access the
DRAM is caused. To hide these delays, the input and output
to/from clients of HBC are divided into several input/output
stages and HBC forms a pipeline and can keep processing without
stopping the following request packets. This method can prevent
the declining of the throughput of responses.

C. Queries of HBC
This section shows the format of queries sent by clients and

received in HBC.
The examples of queries are shown in Figure 5. The types of

Fig. 5. Queries of HBC

operations to databases are represented by “put”, “get” and “sc1”
(these types correspond to Set/Get/Scan operations respectively)
and each of them is filled in the first 3Bytes of the UDP data
region in a request UDP packet as strings.

If the operation is Set, the designated key name (e.g., “key1”),
column family and column (e.g., “entry:foo”) and put value (e.g.,
“val1”) follow.

If the operation is Get, the designated key name (e.g., “key1”),
column family and column (e.g., “entry:foo”) follow.

If the operation is Scan, the designated startRow (e.g.,
“key1”), column family and column (e.g., “entry:foo”) and sto-
pRow (e.g., “keyA”) follow.

HBCMS interprets HBC queries into HBase queries to per-
form software operations.

D. HBCMS
In this section, software that cooperates with HBC and

column-oriented stores is introduced. This software used in this
paper is called HBCMS (HBC Management System). Figure 6
illustrates the data flow and processing of HBCMS. HBCMS

Fig. 6. Data flow and Processing of HBCMS

performs updating of cached data and its mapping information
in HBC when clients send Set queries to the column-oriented
databases and the data of databases that corresponds to stored
data in HBC is updated, sending back the requested data to clients
from the databases when the Get/Scan queries from clients are
missed in HBC, updating cached data and mapping information in
HBC when updates occurred in the databases, and storing scanned
results generated by software in HBC when Scan queries from
clients are missed in HBC.

HBCMS stores mapping information of HBC using the mem-
ory of the server machine (HBC tag shown in Figure 6). HBCMS
accesses the mapping information of HBC stored in the server to
determine the updates to HBC and then updates the stored data
in HBC.

When clients send Set queries to the server, HBCMS sends Set
requests to HBase and Set operations are performed by software.
HBCMS also checks the mapping information of HBC in the
server and if it finds that the data to be updated by Set queries
is also stored in HBC, it updates the corresponding data in HBC
and also updates the mapping information of HBC in the server.
When updating of the databases occurred, HBCMS checks and
reads updated data in the databases. HBCMS sends the updated
values and mapping information of HBC to HBC and also updates
the mapping information of HBC stored in the server.

When a Scan query is missed in HBC, HBCMS accesses
column-oriented databases so that it processes the scan query and
reads the scanned results. The results are sent back to clients via
FPGA NIC. HBCMS keeps the scanned results until updating of
HBC is finished. Then HBCMS accesses the mapping information
of HBC stored in the server and checks whether the range of the
scanned rows overlaps with the range of the rows stored in HBC.
If it is not overlapped, HBCMS adds the scanned rows and the
mapping information that corresponds to them to HBC. Until the
update is completed, it sets invalidation flags to the added rows.
It also updates the mapping information of HBC in the server. If
the update is completed, the invalidation flags are unset. In this
way, it can prevent sending invalid data back to the clients. If the
range of the scanned rows is overlapped, the overlapped part of
rows and mapping information in HBC are invalidated and the
new scanned rows and the corresponding mapping information
are added to HBC. Until the update is completed, HBCMS sets
invalidation flags to the updated range of rows in HBC. It also
updates the mapping information of HBC in the server. If updates
of HBC and the mapping information in the server are finished,
it unsets the invalidation flags. In this way, it can prevent sending
invalid data back to the clients.

V. IMPLEMENTATION

A. Target Platform
In this paper, a client machine and a server machine that are

directly connected via a 10GbE direct attached cable are used in
the experiments. HBase is running on the server machine as a
column-oriented store in a software layer. Software of the client
generates HBase queries (Get, Set and Scan) and sends them to
the server. A NetFPGA-10G NIC board [11] is mounted on the
server via a PCI-Express Gen2 x8 interface as a 10GbE NIC. A
prototype of HBC is implemented on the FPGA NIC on the server
to accelerate the responses to the queries of column-oriented
stores that are sent back to clients.

B. HBC
A prototype of HBC is implemented according to the design

of HBC shown in section IV. The target application of HBC
is HBase as a column-oriented store running on the server
machine. The prototype of HBC performs the binary search to
its cache according to Get/Scan queries from clients and can
return requested values if sorted results of scan operations and
the mapping information that corresponds to them are stored in
HBC. Then if the queries hit in HBC, it returns the requested
scanned results to the clients from the NIC rapidly. Verilog HDL
is used as a hardware description language in the implementation.
Some parts of designs released in NetFPGA Project [11] are also
used.

The parameters mentioned in Section IV-A are set to l = 1,
m = 2, n = 8, a = 12 and b = 3 and the maximum sizes of a
row key, column family and column are set to 4Byte, 5Byte and
3Byte respectively. The number or versions of values in a row
that can be cached in HBC for a specific pair of a column family
and a column is set to 1.

In this paper, UDP/IP is deployed as a transport layer pro-
tocol for the communications between clients and the server to
demonstrate raw performance of HBC.

C. HBCMS
A prototype of HBCMS is implemented according to the de-

sign of HBCMS shown in the section IV-D. The target application
of HBCMS is HBase. The prototype of HBCMS receives queries
from the client via HBC on the FPGA NIC sent to the software
layer. HBCMS accesses HBase to perform the requested queries
and can process Set/Get/Scan operations. If it receives a Set
query, it makes HBase to perform a Set operation. If it receives a
Get/Scan query, it makes HBase to perform a Get/Scan operation
and reads the results from the database and sends them back to the
client. Apache Thrift APIs [12] are used in the implementation.

VI. EVALUATIONS

A. Evaluation Environment
Table I shows the server machine and the client machine

used in experiments. HBC is implemented on the FPGA NIC
on the server machine. The throughputs of Get/Scan operations
are measured using these machines.

UDP/IP is used as a transport layer protocol. For the Get/Scan
queries, the query format shown in Section IV-C is used. The row
size is limited by up to 18Byte. For the Get query, the payload
consists of an operation type (i.e., get), a row key, and a pair of
a column family and a column. For the Scan query, the payload
consists of an operation type (i.e., sc1), startRow, a pair of a
column family and a column, and stopRow.

The result of the logic synthesis and place and route of the
prototype of HBC is shown in Table II. The target device of the
logic synthesis and place and route is Virtex-5 XC5VTX240T
FPGA and Xilinx ISE 13.4 is used.

TABLE I. EVALUATION ENVIRONMENT

HBC Software
Server Client Server Client

CPU Intel Core i5-4460 Intel Core i5-3470S Intel Core i5-4460 Intel Core i5-2400
RAM 4GB 6GB 4GB 4GB
OS CentOS 6.7 CentOS 6.7 CentOS 6.7 Ubuntu 14.04.3
NIC NetFPGA 10G NetFPGA 10G NetFPGA 10G Mellanox 10G

TABLE II. RESULT OF THE LOGIC SYNTHESIS AND PLACE AND ROUTE
OF THE PROTOTYPE OF HBC

Number of Slice LUTS of HBC 44,247
Utilization of Slice LUTS of HBC 29%

Number of Slice LUT-Flip Flop pairs of HBC 62,944
Utilization of Slice LUT-Flip Flop pairs of HBC 42%

Minimum period of HBC 9.092ns
Maximum frequency of HBC 109.987MHz

B. Evaluation Results
In this experiments, the throughput represents the number

of Get/Scan operations processed by the server per a second
(Ops/sec). A real processing throughput of Get/Scan queries
depends on cache hit rate of HBC. Thus we measured the
throughput when all the Get/Scan queries are hit in HBC. We also
measured the throughput of the software (cooperation of original
HBase and HBCMS) that corresponds to throughput when all the
Get/Scan queries are missed in HBC and processed by HBCMS
and HBase. We also measured the power consumption (W) of the
overall hardware of the server machine.

1) Get Operations: We measured throughput when all the Get
queries sent by the client to the server are missed in HBC and
when all of them are hit in HBC respectively. When the hit rate
of HBC is 0, the measured throughput in our proposed system
is low. For example, about 2.5Kops/s throughput was reported in
[13] for a read intensive workload.

Figure 7 shows the throughput of Get operations when a
18Byte value is returned per operation. Get queries that request a
row are generated by the client. The client machine sends over 10
million request packets and receives the response from the server.
The throughput (bits/s) is measured as 9.619 Gbits/s when the hit
rate of HBC is 1.

Fig. 7. Throughput of Get operations by HBC or software

2) Scan Operations: We measured throughput when all the
Scan queries that the client sends to the server are missed in
HBC and when all of them are hit in HBC respectively.

Figure 8 shows the throughput of Scan operations when 8
values (18Byte for each value) are returned per operation. Scan
queries that request 8 rows for each query are generated by the
client. The client machine sends over 10 million request packets
and receives the response from the server. The patterns where the
number of scanned rows is other than 8 are omitted since when
the search of scanned range is completed and once sequential
read of DRAM started, each value of rows is returned at the same

pace (clock cycles of HBC) regardless of the numbers of scanned
rows. The network is saturated as the number of scanned rows
increases. The throughput (bits/s) is measured as 9.815 Gbits/s
when the hit rate of HBC is 1.

Fig. 8. Throughput of Scan operations by HBC or software

3) Power Consumption: We measured the power consumption
of the overall hardware of the server machine when HBC is
processing Scan operations and HBCMS and HBase are not
working and when HBC is not running and responses to the Scan
queries from the client are processed by HBCMS and HBase.
Table III shows the power consumption of the overall hardware
of the server machine for these 2 patterns.

TABLE III. POWER CONSUMPTION OF OVERALL HARDWARE OF THE
SERVER

HBC Software
Power consumption(W) 71.6 92.1

C. Discussions
Figure 8 shows the throughput of Scan operations (8 values

are read for each query) is 1.005Mops/s when the hit ratio of
HBC is 1.

Figure 7 shows the throughput of Get operations is
2.07Mops/s when the hit ratio of HBC is 1. This value is about
2 times higher than that of Scan operations shown in Figure 8
and it is considered that the number of retrieved values in Get
operations is lower than that of Scan operations and that caused
higher throughput (Mops/s) of Get operations compared to Scan
operations. On the contrary, when the hit ratio of HBC is 0 and
all the Get/Scan queries from the client are processed by HBCMS
and HBase, throughput of Get queries is higher than that of Scan
queries. This implies the ratio of performance improvement of
Scan operations by HBC compared to software is higher than
that of Get operations and the proposed HBC can accelerate Scan
operations efficiently.

A lot of works of accelerating Get operations of Key-value
stores by software have been reported. Column-oriented stores
also support Get operations in a key-value form. A Get opera-
tion performed by software is considered to have much higher
throughput compared to a Scan operation performed by software
when it reads values of the same size and multiple rows are
read in the Scan operation. This indicates it is considered that
acceleration of Scan operations of column-oriented stores by
hardware is effective since there is room for more improvement
in performance for Scan operations compared to that for Get
operations in comparison with software.

The throughput (bits/s) of Get/Scan operations is near to
10Gbits/s, the maximum bandwidth of 10GbE although the uti-
lization ratio of payload of a packet is not took into consideration.
This indicates that HBC processing is not the bottleneck of
the network processing of 10GbE and thus the performance of
HBC can scale further if FPGA NIC boards whose network

interfaces have more broad bandwidth can be deployed. However,
the performance of HBC is limited by the size of the on-board
DRAM implemented on the FPGA NIC as the hit ratio of HBC
tends to be lowered as the cache size decreases.

Section VI-B3 shows HBC can reduce the power consumption
up to 20%. This means deploying HBC can improve energy
efficiency compared to deploying software without HBC.

VII. SUMMARY AND FUTURE WORK

In this paper, HBC is implemented on the FPGA NIC as
a hardware cache to accelerate Get/Scan operations of column-
oriented stores. HBC can perform rapid responses to Get/Scan
queries from clients by processing scan operations in a hardware-
based manner to cached values in DRAM on the FPGA NIC.
HBCMS that processes queries by software when queries are
missed in HBC and also updates the cache of HBC is proposed.

Experimental results show that HBC can achieve orders
of magnitude higher throughput compared to that of software
processing when queries are hit in it and the prototype of HBC
achieved a significant improvement of performance (Mops/s)
when it processed Scan queries and the hit ratio is 1 compared
to that of software. The power consumption of the server can
also be improved by deploying HBC. In the experiment, deploy-
ing the prototype of HBC achieved improvement of the power
consumption of the server by about 20% when it performs Scan
operations compared to that of software processing. Therefore
performance per Watt is also improved. However, the hit ratio of
HBC is limited by the cache size of HBC.

As future works, investigation of the relation between cache
size and the hit ratio of HBC, applying real workload to the eval-
uation and evaluation of the Write performance of Set operations
to HBC are planned to be addressed.

Acknowledgements This work was supported by JSPS KAKENHI
Grant Number JP16H02816.

REFERENCES

[1] Pramod J. Sadalage and Martin Fowler, NoSQL Distilled: A Brief Guide
to the Emerging World of Polyglot Persistence. Addison-Wesley, 2012.

[2] ”Memcached - A Distributed Memory Object Caching System”,
http://memcached.org/.

[3] ”The Apache HBase Project”, http://hbase.apache.org/.
[4] ”The Apache Cassandra Project”, http://cassandra.apache.org/.
[5] R. Mueller, J. Teubner, and G. Alonso, “Streams on Wires: A Query

Compiler for FPGAs,” in Proceedings of the International Conference on
Very Large Data Bases (VLDB’09), Aug 2009, pp. 229–240.

[6] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer, B. Brezzo, D. Dil-
lenberger, and S. Asaad, “Database Analytics Acceleration Using FPGAs,”
in Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques (PACT’12), Sep. 2012, pp. 411–420.

[7] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ranganathan,
and M. Margala, “An FPGA Memcached Appliance,” in Proceedings of the
International Symposium on Field Programmable Gate Arrays (FPGA’13),
Feb 2013, pp. 245–254.

[8] M. Blott, K. Karras, L. Liu, K. Vissers, J. Baer, and Z. Istvan, “Achieving
10Gbps Line-rate Key-value Stores with FPGAs,” in Proceedings of the
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud’13), Jun
2013.

[9] M. Blott and K. Vissers, “Dataflow Architectures for 10Gbps Line-rate Key-
value-Stores,” in Proceedings of the IEEE Symposium on High Performance
Chips (HotChips’13), Aug. 2013.

[10] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch, “Thin
Servers with Smart Pipes: Designing SoC Accelerators for Memcached,”
in Proceedings of the International Symposium on Computer Architecture
(ISCA’13), Jun. 2013, pp. 36–47.

[11] “NetFPGA Project,” http://netfpga.org/.
[12] ”Apache Thrift”, http://thrift.apache.org/.
[13] T. Rabl, M. Sadoghi, H.-A. Jacobsen, S. Gomez-Villamor, V. Muntes-

Mulero, and S. Mankovskii, “Solving Big Data Challenges for Enterprise
Application Performance Management,” in Proceedings of the International
Conference on Very Large Data Bases (VLDB’12), Aug. 2012.

