Communication Size Reduction of Federated Learning based on Neural ODE Model

Yuto Hoshino, Hiroki Kawakami, and Hiroki Matsutani
Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan 223-8522
Email: {hoshino,kawakami,matutani}@arc.ics.keio.ac.jp

Abstract—Federated learning is a machine learning method in
which data is not aggregated on a server, but is distributed
to the edges, in consideration of security and privacy. ResNet
is a classic but representative neural network that succeeds in
deepening the neural network by learning a residual function
that adds the inputs and outputs together. In federated learn-
ing, communication is performed between the server and edge
devices to exchange weight parameters, but ResNet has deep
layers and a large number of parameters, so communication
size becomes large. In this paper, we use Neural ODE as a
lightweight model of ResNet to reduce communication size in
federated learning. In addition, we newly introduce a flexible
federated learning using Neural ODE models with different
number of iterations, which correspond to ResNet with differ-
ent depths. The CIFAR-10 dataset is used in the evaluation,
and the use of Neural ODE reduces communication size by
approximately 90% compared to ResNet. We also show that
the proposed flexible federated learning can merge models with
different iteration counts.

1. Introduction

In the task of image recognition, one of the methods
to improve accuracy is to increase the number of convo-
lutional layers to build a deeper neural network. ResNet
[1] is one of the high-performance CNN models that stack
many layers by learning residual function, but ResNet has
a large number of parameters. Neural ODE [2] utilizes a
similarity to ODE (Ordinary Differential Equation) to reduce
the parameters of ResNet. ResNet uses different weight
parameters for each layer, but Neural ODE uses the same
weight parameters repeatedly. Thereby, Neural ODE signif-
icantly reduces model size compared to ResNet and can be
implemented in resource-limited edge devices. Because the
computation cost of the convolutional layer is expensive,
high-performance deep CNN models are sometimes too
large for resource-limited edge devices. A CNN model with
reduced computation cost is developed in [3]. It uses two
convolutional steps, depthwise and pointwise, instead of an
ordinary convolutional layer.

Recently, sending personal data to cloud servers has
become problematic from a privacy perspective. Federated
learning [4] is used as an alternative to the traditional
learning systems that aggregate data on a server. In the
federated learning, each device downloads a model from
the server, trains on the device, aggregates the resulting

weight parameters on the server, and distributes the weight
parameters again to the device. This eliminates the need
to aggregate personal data on a server. However, federated
learning needs communication between the server and each
device, and state-of-the-art CNN models have a lot of pa-
rameters, so its communication size is large. Devices that
participate in the federated learning are assumed to use the
same model, but the computation power of each device may
not be the same, and the appropriate model size may vary
depending on the device.

Neural ODEs reduce the number of parameters. It can
represent a processing equivalence to ResNet at different
depths by changing the number of iterations of the same
weights without increasing the number of parameters. In
this paper, we propose a flexible federated learning that
reduces the communication size by using Neural ODEs and
allows devices to use models with different layer iteration
counts. Federated learning technologies are surveyed in [5].
This work is related to effective and model specialized al-
gorithms. Different models are aggregated in [0]. This work
also aggregates models with different depths. In particular,
our contributions are summarized below.

o We use Neural ODE as a federated learning model,
so that clients can use the models with different iter-
ation counts and a server can make a global model
by aggregating them. This can relax a constraint of
traditional federated learning where all the clients
use the same model.

e We use dsODENet as a federated learning model.
dsODENet [7] is a lightweight model based on the
idea of Neural ODE. It can achieve the above benefit
while further reducing the communication size.

The rest of this paper is organized as follows. Section 2
introduces the baseline technologies behind our proposal.
Section 3 proposes the combination of federated learning
and Neural ODE method. Section 4 shows evaluation results.
Section 5 analyzes the results with different algorithm and
parameter settings. Section 6 concludes this paper.

2. Related Work

2.1. Depthwise Separable Convolution

CNN is composed of multiple layers, such as convo-
lutional layers, pooling layers, and fully-connected layers.

CNN has good accuracy in image recognition, but each
convolutional layer uses many parameters. Let N, M, and
Ng be the number of input channels, the number of output
channels, and the kernel size of one side, respectively. The
number of parameters in one convolutional layer is N M N7-.

Depthwise Separable Convolution [3] divides this con-
volutional layer into two convolutional steps, depthwise
convolutional step and pointwise convolutional step. In the
depthwise convolutional step, a convolutional operation in-
volving only spatial direction (the size is N7) is applied
for each input feature map. Different weight parameters are
used for each of NV input channels; thus its weight parameter
size is NNZ. Then, an output feature map of the depthwise
convolutional step is fed to the pointwise convolutional step
as an input. A 1 x 1 convolutional operation is applied for
each input feature map and for each output channel; thus its
weight parameter size is N M. The weight parameter size of
Depthwise Separable Convolution is NNz + N M in total,
which is approximately N2 times reduction, assuming that
N,M > Ng.

2.2. Neural ODE

ResNet [1] is a well-known neural network architecture
that can increase the number of stacked layers or building
blocks by introducing shortcut connections. Using a shortcut
connection, an input feature map to a building block is
temporarily saved, and then it is added to the original output
of the building block to generate the final output of the
block.

ODE is composed of an unknown function and its
ordinary derivatives. To obtain an approximate numerical
solution, an ODE solver such as the first-order Euler method
and higher-order Runge-Kutta method can be used. Based
on a similarity between the network structure with shortcut
connections and the ODE solver, one building block can be
interpreted as one step in the ODE solver as suggested in [2].
Assuming that the Euler method is used as an ODE solver, it
can be interpreted that a first-order approximation is applied
to solve the output of the building block. In this paper, one
building block is called ODEBIlock, and the whole network
architecture consisting of ODEBlocks is called ODENet.

2.3. Federated Learning

Mobile devices have a lot of data that can be used to train
models which can contribute to improve user experiences,
such as predictive conversion and image search. However,
since such data should be carefully treated from a privacy
perspective, centralized learning systems that aggregate data
in one place may not be appropriate. To address this issue,
a federated learning is proposed in [4]. It can train a shared
model without aggregating the training data but keeping it
distributed, and then it aggregates the weight parameters.
The algorithm is Federated Averaging, which is shown in
Algorithm 1.

In Algorithm 1, K represents the total number of clients,
k is their index, and Py is data at client k.Also, B is the

size of the local mini-batch, F is the number of epochs
to be trained in mobile devices, and 7 is the learning rate.
In this algorithm, the first step is to initialize the weight
parameters of the model to be used. Then, m clients are
randomly selected from among all the clients, and the server
sends the weight parameters w to the selected clients. The
size of m is determined by client fraction C. The weights w
are updated at each epoch (£ epochs in total) at each client
based on the formula in line 13. After F updates, the weight
parameters w are aggregated by the server and the weights
w are updated by taking the average based on the formula
in line 8, where n is total number of data and ny is total
number of data at client k. The above steps are repeated for
t rounds. The average of the weight parameters sent from
the clients is calculated by the server, so this algorithm is
called Federated Averaging.

However, when the data on each device is unbalanced,
although this algorithm can achieve a good accuracy in the
local model on each device, the accuracy is not high in
the global model that has aggregated all the local models.
Since the goal of federated learning is that the global model
achieves a good accuracy both locally and globally, new
federated learning algorithms have been proposed to replace
Federated Averaging, such as Personalized Federated Aver-
aging [8] and Adoptive Personalized Federated Learning [9].
These algorithms are similar to Federated Averaging, but
instead of training directly, meta-learning is performed using
a portion of the data before training. By the meta-learning,
the model is tuned for each device based on the trend of the
data.

Algorithm 1 Federated Averaging

1: function ExecuteServer()
2: Initialize wy

3: for eachround t =1,2,... do
4 m < max(C - K, 1)
5: S; < (random set of m clients)
6 for each client k € S; in parallel do
7 wf ‘1 + ClientUpdate(k, w;)

K

Nk

8: Wiy1 —w

kzﬂ n t+1

9: function ClientUpdate(k, w) > Run on client k
10: B « (split Py into batches of size B)

11: for each local epoch i from 1 to E do

12: for each batch b € B do

13: w w —nVe(w;b)

3. Proposed Federated Learning Method

In the federated learning, it is necessary to reduce the
communication size involved in exchanging weight param-
eters between the server and each device. In addition, when
ResNet is used as a federated learning model, ResNet mod-
els with different layer depths cannot share their weight
parameters. However, it is likely that some devices partic-
ipating in a federated learning have less available memory

and computation power. Since the federated learning basi-
cally does not allow different models to be mixed together,
a model commonly used in all the devices should be care-
fully selected. In this paper, we use ODENet to reduce the
communication size and enable federated learning between
models with different layer iteration counts.

3.1. Lightweight Model based on Neural ODE

Federated learning requires the exchange of trained
weight parameters between the server and devices at each
round. Since the weight parameters are exchanged at each
round, the larger the size of the weight parameters, the
more the burden on the devices and users. In this paper,
we propose to use ODENet and dsODENet [7], lightweight
models based on the idea of Neural ODE, as a method
to reduce the communication size. First, we explain the
structure of ResNet and ODENet.

Figures 1 and 2 show the basic structure of the 7-
block ResNet-N and the corresponding 7-block ODENet-/V,
where NV is the number of model depths. The Residual Block
is denoted as ResBlock. In general, in deep learning, the
accuracy improves as the number of layers increases. As the
neural network becomes deep, the feature map size tends to
be small and the number of channels tends to be increased.
In ResNet, particular ResBlocks reduce the feature map size
while increasing the number of channels. In Figure 1, convl
performs convolutional operations as a preprocessing layer,
and C' physically-stacked ResBlocks are executed in blockl.
block2_1 is a down-sampling ResBlock to reduce the feature
map size, and C' physically-stacked ResBlocks on the output
of block2_1 are executed in block2_2. The same operation
is performed for block3_1 and block3_2.

ODENet replaces ResBlocks in Figure 1 with ODE-
Blocks as shown in Figure 2. In ResNet, C' ResBlocks are
physically-stacked in blockl, block2_2, and block3_2, but
ODENet replaces these C' ResBlocks with a single ODE-
Block. Instead, ODEBIlock is executed C' times in blockl,
block2_2, and block3_2, whereas it is executed only once
in block2 1 and block3_1.

Here we consider the difference in the number of param-
eters between ResNet and ODENet. Let O(L) be the number
of parameters in one ResBlock and ODEBIlock. In ResNet,
C ResBlocks are stacked in one block, so the number of
parameters is O(CL). In contrast, ODENet repeats ODE-
Block C' times in one block, so the number of parameters is
O(L). The parameter size reduction by ODENet becomes
large as C is increased. Thus, the communication size can
be reduced by using ODENet as a federated learning model
instead of ResNet.

In addition, the number of parameters can be further
reduced by using dsODENet [7], which combines ODENet
and Depthwise Separable Convolution [3]. As mentioned
in Section 2, Depthwise Separable Convolution reduces the
number of parameters in the convolutional operation. In Fig-
ure 3, Conv1 and Conv2 are convolutional layers, and ReLU
(Rectified Linear Unit) is an activation function. Figure 3 left
shows a structure of an ODEBlock in ODENet, while Figure

convl

3 X 3 Conv, BN, RelU, stride=1
blockl ResBlock x C, stride = 1
ResBlock X 1, stride = 2
ResBlock x C, stride =1

ResBlock X 1, stride =2

ResBlock X C, stride =1

=5 =8 =5 =8
=] o =] o
- o o o o
a = = b =
e e N 15
[N = N [

SoftMax

Figure 1. Structure of 7-block ResNet

convl 3 X 3 Conv, BN, RelU, stride =1

blockl

ﬁ

ODEBlock x C, stride=1
DownSampling1, stride = 2

ODEBlock x C, stride=1

ﬁ

DownSampling2, stride = 2

r\

b ODEBlock X C, stride=1

a

=2 =5 =5 =8
o (o) (o) Q
[a] [a] [a] [a]
~ ~ ol reR
IUu ‘Lu \N \N
N} [N [N

SoftMax

Figure 2. Structure of 7-block ODENet

3 right shows that of dsODEBIlock in dsODENet, in which
each convolutional layer of the ODEBIlock is replaced with
two convolutional steps: the depthwise convolutional step
and the pointwise convolutional step. This modification can
further reduce the communication size.

3.2. Federated Learning between Different Models

In the federated learning, the same model is typically
used by all the participating devices. However, in a real
environment, these devices are not the same and are likely to
have different compute resources, such as memory capacity
and computation power. If the common model is accurate
but requires a high computation power, low-end edge de-
vices cannot join the federated learning. However, using the
simplest model may limit the system-wide accuracy. To fully
utilize the performance of each device, it is necessary to use
a well-fitting model for each device.

In the case of ResNet, different models have different
numbers of stacked ResBlocks (i.e., different C) in blockl,
block2_2, and block3_2. In the federated learning, these
different ResNet models cannot be aggregated directly at the

1—

{ Depthwise Convl

]
Convl 1
[Pointwise Convl]

Batchnorm

RelU

Conv2
[Depthwise Conv2]

l

[Pointwise Conv2]

Batchnorm

RelU

Fi

Lt}

RelU

Figure 3. Structure of ODEBlock and dsODEBlock in ODENet and dsO-
DENet

server due to the model incompatibility between them. In
the case of ODENet, as shown in Figure 2, one ODEBlock
is repeated C' times in blockl, block2_2, and block3_2 of
ODENet. In other words, ODENet models with different
C values differ only in the numbers of iterations of ODE-
Blocks, not in the number of weight parameters. In this
case, the structure of the ODENet models is the same, so
these models with different C' values can be aggregated at
the server. Using ODENet as a federated learning model
enables federated learning between models with different
iteration counts in order to fully utilize the performance
of each device. dsODENet also enables federated learning
between models with different iteration counts for the same
reasons as ODENet.

4. Evaluations

In this section, we evaluate the federated learning
method proposed in Section 3 using an image recognition
task. ODENet-N, dsODENet-N, and ResNet-/N are used
in the federated learning and are compared in terms of
the communication size, computation size, and accuracy.
N represents the layer depth in ResNet, ODENet, and
dsODENet. More specifically, we assume N = 6C + 6
in this experiment' and use N = 34,50, and 101. The
numbers of epochs, batch size, and communication rounds
in the federated learning are 100, 100, and 20, respectively.

1. In Figure 1, ResBlocks are executed 3C + 2 times, each contains two
convolutional layers. The pre- and post-processing (convl and fc) layers
are also included in N; thus N = 2(3C + 2) + 2.

Federated Averaging (FedAvg) is used as a federated learn-
ing algorithm. CIFAR-10 dataset [10] is used for training
and inference. Python 3.8.5, PyTorch 1.8.1, and torchvision
0.9.1 are used for model implementation. A machine with
Ubuntu 18.04.5 LTS (64-bit), Intel Core i7-10700K CPU
@ 3.8GHz, 32GB DDR4 SDRAM, and NVIDIA GeForce
RTX 3090 GPU is used for the evaluation in this paper.

TABLE 1. COMMUNICATION SIZE

Model Number of parameters to be transferred | Size / MB
ResNet-34 21,780,648 83.09
ResNet-50 25,505,232 97.29
ResNet-101 44,447,912 169.55
ODENet-34 1,937,034 7.39
ODENet-50 1,937,034 7.39

ODENet-101 1,937,034 7.39

dsODENet-34 1,249,381 4.76

dsODENet-50 1,249,381 4.76

dsODENet-101 1,249,381 4.76
TABLE 2. COMPUTATION SIZE

Model Number of parameters to be processed | Size / MB
ResNet-34 21,797,672 83.15
ResNet-50 25,557,032 97.49
ResNet-101 44,549,160 169.94
ODENet-34 8,952,010 34.15
ODENet-50 16,742,730 63.87

ODENet-101 26,091,594 99.53
dsODENet-34 2,075,480 7.92
dsODENet-50 2,989,670 11.40
dsODENet-101 4,086,698 15.59

4.1. Communication Size

Table 1 shows the communication size of the ResNet,
ODENet, and dsODENet models with different depths (i.e.,
N). Here, the communication size means the sum of the
weight parameters of the convolutional layers and fully-
connected layers in a given federated learning model. The
communication is required between the server and device in
each federated learning round. The size is measured using
torchsummary in PyTorch which is a tool that reports the
size information.

Table | shows that both ODENet and dsODENet have
fewer communication size than the corresponding ResNet
model. Comparing ResNet and ODENet, the communication
size of ODENet-50 is 7.6% of the original ResNet model.
In the case of ResNet and dsODENet, the communication
size of dsODENet-50 is 4.9% of the ResNet model. The
results show that the use of ODENet and dsODENet can
significantly reduce the communication size between the
server and devices.

The communication size increases as the depth N is in-
creased in ResNet. In the cases of ODENet and dsODENet,
on the other hand, their communication size is constant
regardless of the /N parameter. This is because the number
of physically-stacked blocks is the same in ODENet and
dsODENet with different NV depths, and only the number of

iterations of each block is different. Please note that, since
the model size is also small in ODENet and dsODENet,
the required memory capacity is reduced by ODENet and
dsODENet compared to the original ResNet model.

4.2. Computation Size

Table 2 shows the computation size of the three models
with different depths IN. Here, the computation size is
the cumulative total number of weight parameters to be
processed. All these sizes are measured using torchsummary.

Table 2 shows that both ODENet and dsODENet have
fewer computation size than the corresponding ResNet
model. Comparing ResNet and ODENet, the computation
size of ODENet-50 is 65.5% of the original ResNet model.
In the case of ResNet and dsODENet, the computation cost
of dsODENet-50 is 11.7% of the ResNet model. The results
show that the use of ODENet and dsODENet can reduce the
computation cost in addition to the communication size.

Please note that the communication sizes of ODENet and
dsODENet are constant regardless of the depths N. How-
ever, the number of parameters to be processed is increased
when N is increased in the ODENet and dsODENet cases.
This is because the number of iterations of the ODEBlock
and dsODEBIlock is increased as the depth N is increased,
and the computation cost also increases.

4.3. Federated Learning with Different Depths

In the federated learning, different ResNet models with
different /N parameters cannot be aggregated. But ODENet
and dsODENet models with different N parameters are
structurally the same and can be aggregated. To investi-
gate the possibility of federated learning between different
ODENet depths, we selected two models from N = 34, 50,
and 101 and trained them using CIFAR-10 dataset. The same
experiment is also performed for dsODENet.

Figures 4 and 5 show training curves (epoch number
vs. loss value) when ODENet and dsODENet are trained
using non-iid data, respectively. In this case, one model
is trained with only five classes of CIFAR-10, while the
other is trained with the remaining five classes. In Fig-
ure 4, the red, green, and blue lines show the loss value
when federated learning is performed between ODENet-
34 and ODENet-50, between ODENet-50 and ODENet-
101, and between ODENet-34 and ODENet-101, respec-
tively. Similarly, in Figure 5, the red, green, and blue
lines show the loss value when federated learning is per-
formed between dsODENet-34 and dsODENet-50, between
dsODENet-50 and dsODENet-101, and between dsODENet-
34 and dsODENet-101, respectively. The horizontal axis of
Figures 4 and 5 represents the number of epochs, and the
vertical axis represents the loss value. In all the models, the
loss values decrease as the number of epochs is increased
and converged around 50 epochs. This indicates that both
ODENet and dsODENet are trained successfully. In other
words, ODENet and dsODENet are capable of federated
learning between models with different N parameter.

ODENet Result

1.0
—e— ODENet34 + ODENet50
—=— ODENet50 + ODENet101
0.8 —+— ODENet34 + ODENet101

Loss

0 20 40 60 80 100
Epoch num

Figure 4. Training curve (epoch number vs. loss value) of ODENet

dsODENet result

—e— dsODENet34 + dsODENet50
—#— dsODENet50 + dsODENet101
—+— dsODENet34 + dsODENet101

Loss

= - B~ PN

- —
- = = - -

00 i 1 1 1 1 1
0 20 40 60 80 100
Epoch num

Figure 5. Training curve (epoch number vs. loss value) of dsODENet

4.4. Accuracy

Table 3 shows the inference accuracy trained without
using federated learning (i.e., stand-alone learning). Table
4 shows the inference accuracy trained using federated
learning. The accuracy is calculated by taking the average
of two clients. In Table 4, federated learning is performed
between two clients that use models with different depths.
For example, 34+50 means ODENet-34 and ODENet-50,
34+101 means ODENet-34 and ODENet-101, and 50+101
means ODENet-50 and ODENet-101. dsODENet is also
trained under similar conditions. From Tables 3 and 4, both
ODENet and dsODENet are less accurate when trained by
federated learning than those trained by the stand-alone
learning. A similar tendency is observed in ResNet models
with and without federated learning.

Table 4 shows that accuracy of dsODENet is higher
than ODENet for iid data. In the i1id data case, the dataset
is randomly distributed to two models. In the non-iid data
case, each client has five classes. In the ODENet, 50+101
outperforms 34450 and 34+101 by 0.7% and 0.9% for iid
data and by 4.7% and 5.0% for non-iid data. In the dsO-
DENet, 50+101 outperforms 34+50 and 34+101 by 1.4%

and 1.5% for iid data and by 0.9% and 0.4% for non-iid
data. These results show that the combination of models with
larger iteration counts increases accuracy. Table 3 shows
that deeper models achieve better accuracy. In Table 4,
accuracies are calculated by averaging those of two clients.
Therefore, increasing the number of deeper models increases
global accuracy. Comparing the accuracy of iid and non-iid
data cases, both ODENet and dsODENet show a significant
decrease in accuracy for non-iid data.

TABLE 3. ACCURACY [%] OF ODENET AND DSODENET USING
STAND-ALONE LEARNING

N 34 50 101
ODENet 743 | 75.8 | 76.2
dsODENet | 74.2 | 74.6 | 75.3

TABLE 4. ACCURACY [%] OF ODENET AND DSODENET USING
FEDERATED LEARNING

Data iid data non-iid data
N 34450 | 34+101 50+101 34+50 | 34+101 50+101
ODENet 73.6 734 74.3 42.5 422 47.2
dsODENet 69.4 69.3 70.8 49.7 50.2 50.6

5. Discussions

In this section, we discuss the causes of degradation of
accuracy in non-iid data. The training curve is converged
as shown in Figure 5. The accuracy is high enough for iid
data, so it seems that there is no problem with the model.
ResNet-50 is trained using federated learning under the same
conditions, and the inference accuracy is 83% for the iid
data, while it is decreased to 55% for the non-iid data.
As with ODENet and dsODENet, the result also shows a
significant drop in accuracy for non-iid data in ResNet. This
suggests that the cause of the accuracy degradation is related
to the federated learning algorithm.

5.1. Federated Learning Algorithm

To validate the hypothesis above, we evaluate a differ-
ent federated learning algorithm namely APFL (Adoptive
Personalized Federated Learning) [9] instead of FedAvg
for training and inference. FedTroch [11] is used as an
evaluation platform in this case. CIFAR-10 and CIFAR-
100 are used as datasets. FedTorch is built with distributed
APIs of PyTorch. It uses MPI to parallelize the federated
learning over multiple computers, even on a single CPU. We
use ODENet-50 and dsODENet-50 as the federated learning
models. The number of clients is varied between 10 and 20,
the number of classes for each client is varied between 2
and 5, and the impact of these factors is discussed.

Tables 5 and 6 show the results of ODENet and dsO-
DENet with different federated learning algorithms: FedAvg
and APFL. The numbers of clients are 10 and 20 in Tables 5
and 6, respectively. In these tables, (10, 5) means the number
of clients is 10 and the number of classes is 5. Comparing

TABLE 5. AcCURACY OF ODENET AND DSODENET USING APFL
WHEN THE NUMBER OF CLIENTS IS 10 [%]

Algorithm FedAvg APFL
(Clients, Classes) | (10,2) | (10,5) | (10,2) | (10, 5)
CIFAR-10 ODENet-50 24.8 55.2 38.6 59.4
dsODENet-50 24.3 574 36.1 61.0
CIFAR-100 ODENet-50 28.7 29.8 27.1 27.9
dsODENet-50 27.0 31.3 27.3 28.2

TABLE 6. ACCURACY OF ODENET AND DSODENET USING APFL
WHEN THE NUMBER OF CLIENTS IS 20 [%]

Algorithm FedAvg APFL
(Clients, Classes) | (20, 2) | (20,5) | (20, 2) | (20, 5)
CIFAR-10 ODENet-50 31.4 58.7 53.7 64.3
dsODENet-50 32.8 57.5 53.9 65.8
CIFAR-100 ODENet-50 15.2 18.1 20.1 16.8
dsODENet-50 18.0 16.6 17.0 16.4

FedAvg and APFL, the accuracy of APFL is higher than
that of FedAvg in the cases of ODENet and dsODENet. In
the case of (10, 5), APFL improves the accuracy of ODENet
and dsODENet by 4.2% and by 3.6%, respectively. In the
case of (20, 5), it improves their accuracy by 5.6% and by
8.3%, respectively. This suggests that the use of the FedAvg
algorithm is a cause of the low accuracy in the case of non-
iid data. As shown in Table 3, FedAvg does not degrade
accuracy in iid data. However, considering actual situations
where federated learning is used, it is unlikely that users will
use the same data in each device, so data distribution will
be unbalanced. In this case, APFL is better than FedAvg
as a federated learning algorithm. Please note that APFL
uses a meta-learning at the local devices in order to tune
the model parameters, which increases the computational
complexity compared to FedAvg. The results of CIFAR-100
when the number of clients is 10 are fair. However, those
when the number of clients is 20 are lower than expected.
It is expected that increasing the number of epochs can
improve accuracy. In the rest of this section, we discuss
the accuracies using CIFAR-10 as a dataset.

5.2. Number of Clients

Here we focus on the impact of the number of clients on
accuracy. Tables 5 and 6 show the results when the number
of clients are 10 and 20, respectively. Comparing the results
of (10, 5) and (20, 5) when using FedAvg, the increase of the
number of clients from 10 to 20 improves the accuracy of
ODENet and dsODENet by 3.5% and 0.1%, respectively.
Comparing the results when using APFL, the increase of
the number of clients improves the accuracy of ODENet
and dsODENet by 4.9% and 4.8%, respectively. The actual
federated learning involves many clients, not just a small
number of clients such as 10 or 20. In reality, there is a
possibility that the accuracy will further increase because
a large number of clients are expected to participate in the
federated learning.

5.3. Number of Classes

Then we focus on the impact of the number of classes.
Comparing the results of (10, 2) and (10, 5) when using
APFL, the increase of the number of classes from 2 to
5 improves the accuracy of ODENet and dsODENet by
20.8% and 24.9%, respectively. Comparing the results of
(20, 2) and (20, 5), the increase of the number of classes
improves the accuracy of ODENet and dsODENet by 10.6%
and 11.9%, respectively.

In the cases of (10, 2), the accuracies of ODENet and
dsODENet are exceptionally low. Because the experiment
is performed with 10 clients, the total number of data is
also decreased when the number of classes is decreased to
2. That is, when the number of clients is 10, using only 2
classes is insufficient, and increasing the number of clients
or the number of classes can recover the accuracy.

5.4. Limitations

Without federated learning, the inference accuracy of
ResNet-50 is 87.3%, which is 11.5% higher than that of
ODENet-50 and 12.7% higher than that of dsODENet-50.
When APFL is used as a federated learning algorithm with
10 clients and 5 classes, the inference accuracy of ResNet-
50 is 72.3%. This result is 12.9% higher than ODENet and
11.3% higher than dsODENet under the same conditions.
Since ResNet achieves a higher accuracy than ODENet and
dsODENet even in stand-alone learning, the reason for this
lower accuracy of ODENet and dsODENet is not related to
federated learning. Actually, it is pointed out that there is
room for improving the performance of ODENet. ANODE
[12] is an extended approach of ODENet that introduces a
checkpointing technique to compute more precise gradients.
Improving the base accuracy of our ODENet and dsODENet
models by introducing the ANODE approach is thus our
future work.

6. Summary

In this paper, we use two lightweight CNN models,
ODENet and dsODENet, for the federated learning and
compared in terms of the communication size, the number
of parameters to be processed, and accuracy. Compared
to ResNet-50, ODENet-50 and dsODENet-50 successfully
reduce the communication size by 92.4% and by 95.1%,
respectively. These results show that ODENet and dsO-
DENet can be used to reduce the communication size be-
tween the server and devices in federated learning. We also
perform federated learning on two different models, such
as ODENet-50 and ODENet-101, and show that federated
learning of ODENet and dsODENet models with different
iteration counts or depths is possible. This enables the use of
ODENet and dsODENet as the federated learning model that
can take full advantage of the performance of each device.

As a future work, we will evaluate the federated learning
accuracy when the number of clients is increased to 100
or 1000. We will revise the base ODENet and dsODENet

models by introducing ANODE [12]. We will also examine
state-of-the-art federated learning algorithms in addition to
FedAvg and APFL.

Acknowledgements This work was partially supported by
JST CREST Grant Number JPMJCR20F2, Japan.

References

[11 K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770-
778.

[2] R.T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neu-
ral Ordinary Differential Equations,” in Proceedings of the Annual
Conference on Neural Information Processing Systems (NeurIPS),
Dec. 2018, pp. 6572-6583.

[31 A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications,”
arXiv preprint arXiv:1704.04861, Apr. 2017.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decen-
tralized Data,” in Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), Apr. 2017, pp. 1273—
1282.

[51 Q. Li, Z. Wen, Z. Wu, S. Hu, N. Wang, Y. Li, X. Liu, and B. He,
“A Survey on Federated Learning Systems: Vision, Hype and Reality
for Data Privacy and Protection,” IEEE Transactions on Knowledge
and Data Engineering, pp. 1-1, 2021.

[6] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble Distillation
for Robust Model Fusion in Federated Learning,” arXiv preprint
arXiv:2006.07242, Mar. 2021.

[71 H. Kawakami, H. Watanabe, K. Sugiura, and H. Matsutani, “dsO-
DENet: Neural ODE and Depthwise Separable Convolution for Do-
main Adaptation on FPGAs,” in Proceedings of the Euromicro In-
ternational Conference on Parallel, Distributed and Network-based
Processing (PDP), 2022, pp. 152-156.

[8] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized Federated
Learning with Theoretical Guarantees: A Model-Agnostic Meta-
Learning Approach,” in Proceedings of the Annual Conference on
Neural Information Processing Systems (NeurIPS), 2020, pp. 3557—
3568.

[91 Y. Deng, M. M. Kamani, and M. Mahdavi, “Adaptive Personalized
Federated Learning,” arXiv preprint arXiv:2003.13461, Mar. 2020.

[10] A. Krizhevsky and G. Hinton, “Learning Multiple Layers of Features
from Tiny Images,” University of Toronto, Tech. Rep. 0, 2009.

[11] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi,
“Federated Learning with Compression: Unified Analysis and Sharp
Guarantees,” arXiv preprint arXiv:1704.04861, 2020.

[12] A. Gholaminejad, K. Keutzer, and G. Biros, “ANODE: Uncondi-
tionally Accurate Memory-Efficient Gradients for Neural ODEs,”
in Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), Aug 2019, pp. 730-736.

