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PAPER
Federated Learning of Neural ODE Models with Different Iteration
Counts

Yuto HOSHINO†a), Hiroki KAWAKAMI†b), Nonmembers, and Hiroki MATSUTANI†c), Member

SUMMARY Federated learning is a distributed machine learning ap-
proach in which clients train models locally with their own data and upload
them to a server so that their trained results are shared between them without
uploading raw data to the server. There are some challenges in federated
learning, such as communication size reduction and client heterogeneity.
The former can mitigate the communication overheads, and the latter can
allow the clients to choose proper models depending on their available com-
pute resources. To address these challenges, in this paper, we utilize Neural
ODE based models for federated learning. The proposed flexible federated
learning approach can reduce the communication size while aggregating
models with different iteration counts or depths. Our contribution is that
we experimentally demonstrate that the proposed federated learning can
aggregate models with different iteration counts or depths. It is compared
with a different federated learning approach in terms of the accuracy. Fur-
thermore, we show that our approach can reduce communication size by up
to 89.4% compared with a baseline ResNet model using CIFAR-10 dataset.
key words: federated learning, neural networks, neural ODE

1. Introduction

In traditional cloud-based machine learning systems, sending
personal data to cloud servers has become problematic from
a privacy perspective. Federated learning [1] is a distributed
machine learning approach that can keep privacy-sensitive
raw data decentralized. In the federated learning, clients
receive a model from the server. Then they train the model
with their own data and upload trained parameters to the
server. The server aggregates the trained parameters received
from the clients and sends back the aggregated parameters
to the clients. These steps are repeated until the training
process is converged. This eliminates the need to upload
privacy-sensitive raw data to the server.

However, there are some challenges in the federated
learning, such as communication size reduction and client
heterogeneity. Communication size affects communication
delay and power consumption of clients. It is affected by
the machine learning model size. Regarding the client het-
erogeneity, not all clients always have the same hardware,
compute resources, or training data. A client may use a
deeper model for high accuracy, while another client may
use a shallower model to reduce the computation cost. In
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this paper, we exploit Neural ODE [2] as a federated learning
model to address these challenges.

For image recognition tasks, one of methods to improve
accuracy is increasing the number of convolutional layers to
build a deeper neural network. ResNet [3] is one of well-
known CNN models that stack many residual blocks that
contain convolutional layers and shortcut connections. Neu-
ral ODE utilizes a similarity to ODE (Ordinary Differential
Equation) to implement deep neural networks consisting of
residual blocks. Since it can be approximated to a ResNet
model by repeatedly using the same weight parameters, it can
reduce the weight parameters. In addition, it can be approx-
imated to ResNet models with different depths by changing
the iteration counts without increasing the number of param-
eters. dsODENet [4] is a lightweight model that combines
the ideas of Neural ODE and depthwise separable convolu-
tion [5] to further reduce the parameter size and computation
cost. These Neural ODE models are smaller than ResNet.

In this paper, we introduce a flexible federated learn-
ing that allows clients to use models with different iteration
counts and reduces the communication size by using Neural
ODE based models. Our contributions are listed below∗.

• We propose to use the Neural ODE models for fed-
erated learning so that a server can aggregate models
with different iteration counts. This can enhance the
client heterogeneity since clients can use models with
different iteration counts. In addition, using the Neural
ODE models can significantly reduce the communica-
tion size.

• We experimentally demonstrate that the proposed flexi-
ble federated learning can aggregate these models with
different iteration counts. It is compared with a feder-
ated learning approach that uses knowledge distillation.
We discuss the pros and cons of the proposed approach.

The rest of this paper is organized as follows. Section 2
introduces baseline technologies behind our proposal. Sec-
tion 3 proposes the flexible federated learning approach and
shows the feasibility of the proposed approach. Section 4
evaluates the proposed approach in terms of the accuracy and
communication size. Section 5 discusses pros and cons of the
proposed approach against counterparts. Additional evalu-

∗An early stage of this work appeared in our workshop paper [6].
In this paper, we experimentally demonstrate that the proposed
approach can aggregate models with different iteration counts. It
is compared to a federated learning approach that uses knowledge
distillation.
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ations with different hyper-parameters are also conducted.
Section 6 concludes this paper.

2. Related Work

2.1 Federated Learning

Federated Averaging (FedAvg) is a basic federated learning
algorithm proposed in [1]. Algorithm 1 shows the server-
and client-side flows, where K is the total number of clients,
k is their index, and Pk is data at client k. Also, B is the size
of a local mini-batch, E is the number of epochs to be trained
by each client, and η is a given learning rate. In this algo-
rithm, the first step is to initialize global weight parameters
of the model. Then, m clients are randomly selected from
K clients, and the server sends the global parameters to the
selected clients. The size of m is determined by the client
participating rate r . The weight parameters are updated at
each epoch (E epochs in total) by each client based on the
formula in line 13. After E updates, the clients send their
trained local parameters to the server. The server aggregates
the received local parameters by taking the average based on
the formula in line 8, where n is the total number of data
and nk is the total number of data at client k. The aggre-
gated parameters are then sent back to the clients as global
parameters. The above steps are repeated t rounds.

Many federated learning technologies have been stud-
ied since FedAvg was proposed in 2016. These technologies
are surveyed in [7]. Data heterogeneity is one of important
research challenges in these studies since it is a major cause
of accuracy degradation. For instance, since a local model
is optimized toward the local optima by the client, it may be
distant from other clients. Thus, their averaged global model
may be far from a part of clients. To deal with this problem,
FedProx [8] uses an additional proximal term to limit the
number of local updates, and SCAFFOLD [9] uses a vari-
ance reduction to correct local updates. These algorithms
aim to improve the local training step of FedAvg. In con-
trast, Personalized Federated Averaging [10] and Adaptive
Personalized Federated Learning [11] aim to make personal-
ized models that can achieve good accuracy in local clients.

Another challenge is the clients’ model heterogeneity.
Since not all clients always have the same compute resources,
selecting a proper model for each client can help the client
heterogeneity. FedFeNN [12] and FedDF [13] address the
model heterogeneity. In FedHeNN, each client trains its
own model but pulls the representations learned by different
clients closer by adding a proximal term to the client’s loss
function [12]. FedDF is a federated learning algorithm that
utilizes a knowledge distillation at the model aggregation step
of the federated learning server. In the knowledge distilla-
tion step at the server, instead of averaging local parameters
received from clients, a batch of sample data is predicted by
the local parameters and their output logits are averaged. The
averaged logits are then used for updating the client models
at the server. Although FedDF allows a federated leaning of
different model architectures, model training is needed at the
aggregation step of the server in addition to local training at
the clients. This means that server-side samples are needed
for the server-side knowledge distillation. In [14], a model
agnostic federated learning approach that aims to improve
participant model performance through learning from other
participants via public dataset is proposed. It also relies on
public dataset.

2.2 ResNet and Neural ODE

ResNet [3] is a well-known neural network architecture that
can increase the number of stacked layers or building blocks
by introducing shortcut connections. Using a shortcut con-
nection, an input feature map to a building block is temporar-
ily saved, and then it is added to the original output of the
building block to generate the final output of the block. In
this paper, one building block in ResNet is called ResBlock.

ODE is composed of an unknown function and its or-
dinary derivatives. To obtain an approximate numerical so-
lution, an ODE solver such as the first-order Euler method
and higher-order Runge-Kutta method can be used. Based
on a similarity between the network structure with short-
cut connections and the ODE solver, one building block
can be interpreted as one step in the ODE solver as sug-
gested in [2]. Assuming that the Euler method is used as an
ODE solver, it can be interpreted that the first-order approx-
imation is applied to solve an output of the building block.
In this paper, one building block is called ODEBlock, and
the whole network architecture consisting of ODEBlocks is
called ODENet.

2.3 Depthwise Separable Convolution

CNN is composed of multiple layers, such as convolutional
layers, pooling layers, and fully-connected layers. Although
CNN achieves a good accuracy in image recognition tasks,
each convolutional layer has many parameters. Let N , M ,
and NK be the number of input channels, the number of
output channels, and the kernel size of one side, respec-
tively. The number of parameters in one convolutional layer
is N MN2

K .
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Depthwise separable convolution [5] divides this con-
volutional layer into two convolutional steps: depthwise con-
volutional step and pointwise convolutional step. In the
depthwise convolutional step, a convolutional operation in-
volving only spatial direction (the size is N2

K ) is applied for
each input feature map. Different weight parameters are
used for each of N input channels; thus its weight parameter
size is NN2

K . Then, an output feature map of the depthwise
convolutional step is fed to the pointwise convolutional step
as an input. A 1 × 1 convolutional operation is applied for
each input feature map and for each output channel; thus its
weight parameter size is N M . The weight parameter size of
the depthwise separable convolution is NN2

K + N M in total,
which is approximately N2

K times reduction, assuming that
N,M ≫ NK .

As a low-cost CNN model, dsODENet [4] applies the
depthwise separable convolution to convolutional layers of
ODEBlocks in order to further reduce the parameter size.
It was originally proposed to be implemented on resource-
limited FPGA (Field-Programmable Gate Array) devices [4].
In this paper, we use dsODENet as a federated learning model
architecture in addition to ODENet. Their detailed structures
are illustrated in the next section.

3. Proposed Federated Learning

In the traditional federated learning such as FedAvg, the
server and all clients have to use the same model. For exam-
ple, models with different layer depths cannot be averaged
when ResNet is used as a model architecture. However, in
a real environment, client devices are not the same and are
likely to have different compute resources, such as mem-
ory capacity and computation power. Since the traditional
federated learning cannot aggregate models with different
depths, a common model used by all the clients should be
carefully selected. In addition, it is necessary to reduce the
communication size involved in exchanging weight param-
eters between the server and clients. In this paper, we use
ODENet and dsODENet to enable a flexible federated learn-
ing between models with different layer iteration counts and
significantly reduce the communication size. These target
models are illustrated in Sect. 3.1. We discuss the feasibility
of the proposed federated learning in Sects. 3.2 and 3.3.

3.1 Target Models

In this section, we first illustrate the structures and sizes of
ResNet and ODENet. Then, we illustrate dsODENet.

Figures 1 and 2 show basic structures of ResNet and
the corresponding ODENet. They consist of seven blocks
including conv1 and fc. In the ResNet model, conv1 per-
forms convolutional operations as a pre-processing layer,
and fc is a post-processing fully-connected layer. After
the conv1, C physically-stacked ResBlocks are executed in
block1. block2_1 is a downsampling ResBlock to reduce
the feature map size, and C physically-stacked ResBlocks on
the output of block2_1 are executed in block2_2. The same

Fig. 1 Structure of 7-block ResNet

Fig. 2 Structure of 7-block ODENet

operation is performed for block3_1 and block3_2 too.
ODENet replaces ResBlocks in Fig. 1 with ODEBlocks

as shown in Fig. 2. In ResNet, C ResBlocks are physically-
stacked in block1, block2_2, and block3_2, while ODENet
replaces these C ResBlocks with a single ODEBlock. In-
stead, ODEBlock is executed C times in block1, block2_2,
and block3_2. A downsampling ODEBlock is executed only
once in block2_1 and block3_1, respectively.

Here, we analyze the numbers of parameters of ResNet
and ODENet. Let O(L) be the number of parameters in
one ResBlock and ODEBlock. In ResNet, C ResBlocks
are stacked in one block, so the number of parameters is
O(CL). In contrast, ODENet repeats ODEBlock C times
in one block, so the number of parameters is O(L). The
parameter size reduction by ODENet becomes large as C
is increased. As shown, the communication size can be
reduced by using ODENet as a federated learning model
instead of ResNet.

In addition, the number of parameters can be further
reduced by using dsODENet [4] as mentioned in Sect. 2.3.
Figure 3 (a) shows a structure of an ODEBlock in ODENet.
Figure 3 (b) shows that of dsODEBlock in dsODENet, in
which each convolutional layer of the ODEBlock is replaced
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Fig. 3 Structures of ODEBlock and dsODEBLock in ODENet and dsO-
DENet

with two convolutional steps: the depthwise convolutional
step and the pointwise convolutional step. Conv1 and Conv2
are convolutional layers, and ReLU (Rectified Linear Unit)
is an activation function. This modification can reduce the
model and communication sizes compared with ODENet.

3.2 Weight Compatibility with Different Depths

In the case of ResNet, models with different depths have
different numbers of stacked ResBlocks (i.e., different C) in
their block1, block2_2, and block3_2. If we use FedAvg for
federated learning, basically these different ResNet models
cannot be averaged at the server due to the model incompat-
ibility. In the case of ODENet, one ODEBlock is repeated
C times in block1, block2_2, and block3_2 of ODENet.
In other words, ODENet models with different depths dif-
fer only in the numbers of iterations of ODEBlocks, not
in the number of ODEBlocks. Therefore, the structure of
the ODENet models with different C is the same, so their
parameters can be averaged at the server. Using ODENet
as a federated learning model enables a flexible federated
learning between models with different iteration counts and
fully utilizes the performance of each client device. dsO-
DENet [4] also enables such a flexible federated learning
between models with different iteration counts for the same
reason as ODENet.

Here, we examine if the above observation can work.
This section focuses on the weight parameter compatibility of
models which have different C to demonstrate the feasibility
of the proposed federated learning. Specifically, inference
accuracies of ODENet and dsODENet models which were
trained for the same or different C are evaluated. Please note
that, in the following, we use the total number of executed

Table 1 Accuracy of ODENet models trained and tested with same or
different depths

Table 2 Accuracy of dsODENet models trained and tested with same or
different depths

convolutional layers (denoted as N) to represent the depths
of the ResNet, ODENet, and dsODENet models. We assume
N = 6C + 6 in this experiment† and use N = 34, 50, and
101. For example, the inference accuracy of ODENet-34
is evaluated using weight parameters trained as ODENet-
50. We selected two models from N = 34, 50, and 101:
one for training and another for inference. The experiment
is performed 100 times for each combination. CIFAR-10
dataset [15] is used for the training and inference. Here, we
consider all the combinations of two models from ODENet-
34, ODENet-50, and ODENet-101 (e.g., ODENet-34 and
ODENet-50). One of the two models (e.g., ODENet-34)
is trained with the whole CIFAR-10 dataset, and then the
trained weight parameters are used and tested as another
model (e.g., ODENet-50). The same experiment is also
performed for dsODENet.

Tables 1 and 2 show the inference accuracy of every
combination. Figure 4 shows box-plots of accuracies of
ODENet-34, 50, and 101 using weight parameters trained
as ODENet-50. Figure 5 shows those of dsODENet. The
results from Fig. 4 and Table 1 show that the accuracies are
almost the same regardless of the tested models if the trained
model is the same. The results from Fig. 5 and Table 2 also
show the same tendency in dsODENet. Figure 6 shows box-
plots of accuracies of ODENet-50 using weight parameters
trained as ODENet-34, 50, and 101, respectively. Figure 7
shows those of dsODENet-50. The results from Fig. 6 and
Table 1 show that the accuracies depend on N of the trained
model. The results from Fig. 7 and Table 2 show the same
tendency in dsODENet.

†In Fig. 1, ResBlocks are executed 3C + 2 times, each contains
two convolutional layers. The pre- and post-processing (conv1 and
fc) layers are also included in N; thus N = 2(3C + 2) + 2.



HOSHINO et al.: FEDERATED LEARNING OF NEURAL ODE MODELS WITH DIFFERENT ITERATION COUNTS
785

Fig. 4 Accuracy of ODENet-34, 50, and 101 using parameters trained as
ODENet-50 [%]

Fig. 5 Accuracy of dsODENet-34, 50, and 101 using parameters trained
as dsODENet-50 [%]

As mentioned above, the inference accuracies of the
ODENet and dsODENet models are reasonable even if the
trained N and tested N are different. This means that
ODENet and dsODENet models have a weight parameter
compatibility with different depths. Furthermore, Table 1
shows that the accuracies of models that were trained as
ODENet-101 are higher than those that were trained as
ODENet-34 and ODENet-50. Table 2 also shows a simi-
lar tendency in dsODENet. These results indicate that using
a deeper model for training can help to enhance the accuracy
in ODENet and dsODENet models.

3.3 Federated Learning with Different Depths

In Sect. 3.2, we showed the weight parameter compatibility
in ODENet and dsODENet models with different depths. In
this section, we examine the feasibility of federated learning
between ODENet models with different depths. Specifically,
we perform federated learning of two ODENet models from
among N = 34, 50, and 101 to see if it works correctly.
In this experiment, FedAvg is used as a federated learning
algorithm. The number of clients K is only 2, the client par-
ticipating rate r is 1, the number of local epochs E is 5, and

Fig. 6 Accuracy of ODENet-50 using parameters trained as ODENet-34,
50, and 101 [%]

Fig. 7 Accuracy of dsODENet-50 using parameters trained as
dsODENet-34, 50, and 101 [%]

the number of communication rounds is 20. In this experi-
ment, the whole CIFAR-10 dataset is randomly partitioned
into two clients evenly (i.e., not biased). ODENet-50 is used
as a global model regardless of the combinations of two
models. The same experiment is performed for dsODENet
too.

Figures 8 and 9 show training curves (epoch number
vs. loss value) of the ODENet and dsODENet models, re-
spectively. A loss value in Fig. 8 shows a test loss computed
by a global model (i.e., ODENet-50) which has been aggre-
gated from two clients. In Fig. 8, the black line shows the
loss values when federated learning is performed between
ODENet-50 and ODENet-50. The red line shows those be-
tween ODENet-34 and ODENet-50. The green line shows
those between ODENet-50 and ODENet-101. The blue line
shows those between ODENet-34 and ODENet-101. Fig-
ure 9 shows experimental results for dsODENets. Meanings
of line colors are the same as those in Fig. 8 but models used
are dsODENets. The horizontal axis of these figures repre-
sents the number of epochs, and the vertical axis represents
the loss value. As shown, the loss values decrease as the
number of epochs is increased, and then they are converged
around 50 epochs in all the combinations. This indicates that
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Fig. 8 Training curve (epoch number vs. loss value) of ODENet

Fig. 9 Training curve (epoch number vs. loss value) of dsODENet

these model combinations of different depths can be trained
successfully. This and previous sections demonstrated that
ODENet and dsODENet are capable of federated learning
between models with different depths.

4. Evaluations

In this section, we evaluate the proposed flexible federated
learning approach that uses FedAvg as a federated learning
algorithm and ODENet, dsODENet, and ResNet as client
models. They are compared with FedDF which is a model
agnostic federated learning approach using a knowledge dis-
tillation. Finally, the proposed approach is evaluated in terms
of the model size and communication cost.

Python 3.8.5, PyTorch 1.8.1 [16], and torchvision 0.9.1
are used for the model implementation. A machine with
Ubuntu 18.04.5 LTS (64-bit), Intel Core i7-10700K CPU @
3.8GHz, 32GB DDR4 SDRAM, and NVIDIA GeForce RTX
3090 GPU is used for the evaluation in this paper.

4.1 Accuracy

Although Sect. 3.3 showed the feasibility of the proposed
federated learning, only two clients were used in the experi-
ments. However, it is expected that more clients participate
in a practical federated learning scenario. In this section,

Fig. 10 Data distribution using Dirichlet distribution (α = 1)

Fig. 11 Data distribution using Dirichlet distribution (α = 10)

Fig. 12 Data distribution using Dirichlet distribution (α = 100)

we increase the number of clients and conduct additional
experiments.

In addition, it is expected that there is a bias in the data
distribution for each client in the case of real environments.
This means that the data distribution for each client is non-
iid. In this experiment, Dirichlet distribution is thus used
to make non-iid data environments. Dirichlet distribution is
a kind of continuous multivariate probability distributions,
and its data distribution is controlled by a vector α. We use α
= 1, 10, and 100. CIFAR-10 is used as a dataset. Figures 10–
12 show examples of data distributions with α = 1, 10, and
100 as Dirichlet distribution parameters, respectively.
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Table 3 Accuracy of ODENet and dsODENet when using FedAvg and
FedDF (α = 1)

Table 4 Accuracy of ODENet and dsODENet when using FedAvg and
FedDF (α = 10)

Table 5 Accuracy of ODENet and dsODENet when using FedAvg and
FedDF (α = 100)

In this experiment, the number of clients K is 30, the
number of local epochs E is 40, and the number of commu-
nication rounds is 100. Among the 30 clients, the numbers
of clients that use ODENet-34, ODENet-50, and ODENet-
101 are 10, 10, and 10, respectively. ODENet-50 is used as
a global model. In Algorithm 1, r is the client participating
rate in the aggregation at each communication round. In this
experiment, r is set to 0.2, which means that six models are
randomly selected from the 30 clients. FedAvg is used in
the proposed federated learning approach, and the results are
compared with those of FedDF.

Tables 3–5 show the accuracies of ODENet-50 and
dsODENet-50 with FedAvg and FedDF when α = 1, 10, and
100, respectively. Top5 accuracies are mostly high regardless
of α in both the models. Top1 accuracies are decreased when
α is small (e.g., α = 1). In this case, the data distribution
is highly biased, and the biased data distribution negatively
affects the accuracy. Although addressing the data hetero-
geneity is a crucial challenge in federated learning, many
studies have been conducted to overcome this issue as men-
tioned in [7] and thus addressing this is beyond the scope of
this paper.

When we compare the proposed approach using Fe-
dAvg with FedDF, the accuracies of the proposed approach
are lower than those of FedDF. This result is reasonable
since FedDF introduces additional training overheads for the
knowledge distillation (e.g., prediction and training of client
models) at the server in addition to local training at the clients
while the proposed approach does not impose such overheads
as well as the conventional FedAvg based approach. To bring
the evaluation condition of FedDF closer to that of the pro-
posed approach, here we limit the number of samples to be
used in the knowledge distillation at the server.

Table 6 shows the evaluation results of FedDF when the

Table 6 Accuracy of FedDF when varying the number of samples used
for knowledge distillation (α = 10)

number of server-side samples available for the knowledge
distillation is limited. ∞ means that there is no limitation
in the number of server-side samples; that is, the whole
CIFAR-10 training dataset can be used for the knowledge
distillation in FedDF. However, please note that using the
whole CIFAR-10 training dataset for the knowledge distilla-
tion significantly increases the training time of FedDF. We
thus reasonably stop the knowledge distillation if test accu-
racy is not improved during the latest 10 training batches
assuming that the batch size is 100. α is set to 10 as the
data distribution parameter. The other conditions are same
as those in Table 4. As shown in Table 6, the accuracy of
FedDF increases as the number of server-side samples used
in the knowledge distillation is increased. When the number
of the available server-side samples is small, the accuracy
of FedDF becomes close to (or lower than) the proposed ap-
proach as shown in Tables 4 and 6. Please note that “Time”
in Table 6 represents the average time interval between two
successive communication rounds. Such server-side over-
heads of FedDF are discussed in Sects. 5.1 and 5.2.

4.2 Memory and Communication Sizes

Table 7 compares ResNet, ODENet, and dsODENet in terms
of the model size, the forward/backward pass size, and the
total memory size for training. “Model size” means the nec-
essary memory size to retain the model. “Memory size dur-
ing training” includes the model size, the forward/backward
pass size, and the input/output data sizes. These values are
measured by using torchinfo which is a tool that reports the
parameter size information.

The communication is required between the server and
clients in each communication round. In Table 7, “# of
parameters transferred” is the sum of the weight parame-
ters of convolutional layers and fully-connected layers in
these models. In the following discussion, it is simply de-
noted as communication size. Table 7 shows that both the
ODENet and dsODENet models reduce the communication
sizes compared with the corresponding ResNet model. Com-
pared with ResNet, the communication size of ODENet-50 is
10.6% of the original ResNet model. In the case of ResNet
and dsODENet, the communication size of dsODENet-50
is 5.3% of the ResNet model. These results show that the
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Table 7 Memory and communication sizes of ResNet, ODENet, and dsODENet

use of ODENet and dsODENet can significantly reduce the
communication size between the server and clients. The
communication size increases as N is increased in ResNet.
On the other hand, communication sizes are constant regard-
less of N in the cases of ODENet and dsODENet. This is
because the number of physically-stacked blocks is the same
in ODENet and dsODENet even if N is different, and only
the number of iterations of each block is different.

Please note that, since the model size is small in
ODENet and dsODENet, the required memory capacity can
also be reduced by these models compared with the original
ResNet model. As shown in Table 7, the memory sizes to
train ODENet-50 and dsODENet-50 models are 52% and
70% of that of ResNet-50, respectively. This result demon-
strates that our proposed approach is beneficial in terms of
the memory size for the training.

5. Discussions

Here, we discuss pros and cons of the proposed approach
against counterparts. Additional evaluations with different
hyper-parameters are also conducted.

5.1 Overall Comparisons

Here, we compare the proposed approach with ResNet +
FedAvg and ResNet + FedDF in terms of the accuracy, com-
munication size, and computation time. As for the compar-
ison to ResNet + FedAvg, since FedAvg cannot aggregate
ResNet models with different depths, we compare the pro-
posed approach with the ResNet + FedAvg cases where all
the clients have the same ResNet model. We assume that
30 clients join the federated learning where 10, 10, and 10
clients have ResNet-34, ResNet-50, and ResNet-101 mod-
els, respectively. The evaluation conditions are the same as
those of Tables 3, 4, and 5. ResNet-50 is used as a global
model. The number of communication rounds is 100, and
the number of local epochs E is 40. α is set to 10. The client
participating rate r is 0.2.

Table 8 shows the comparison results. In this table,
“Time” represents the average time interval between two
successive communication rounds. “Communication size”
represents the average parameter size that a single client
sends to the server in a single communication round. “Dif-
ferent depth” indicates whether models with different depths
can be aggregated. Although baseline accuracies of ODENet

and dsODENet are inherently lower than ResNet regardless
of the federated learning algorithms (FedAvg and FedDF),
the time interval of our proposed approach is mostly shorter
than the other solutions. Also, our approach is advantageous
in terms of the communication size. Another benefit of our
approach against FedDF is that it does not require server-side
samples, while it can aggregate models with different depths,
which is a benefit against ResNet + FedAvg.

5.2 Comparisons to FedDF

As shown in Tables 3, 4, and 5, FedDF presents a higher ac-
curacy compared to FedAvg. However, as shown in Table 6,
accuracy of FedDF becomes comparable to our proposed ap-
proach if 5 or 10 server-side samples are only available. In
addition, in FedDF, clients need to upload their models to the
server [13], and thus its communication size is comparable
to that of FedAvg. Please note that FedDF can improve the
accuracy by increasing the number of server-side samples
for the server-side knowledge distillation. As shown in Ta-
ble 6, the time interval between two successive communica-
tion rounds of FedDF increases as the number of server-side
samples increases, and this time interval becomes longer than
that of our proposed approach. One of important benefits of
the classic federated learning is that the server does not have
to retain privacy-sensitive training samples. The simplicity
of the server-side processing would also be a benefit. On
the other hand, FedDF requires the server-side training sam-
ples. We need to consider cases where concrete or accurate
server-side training samples which can be uploaded to cloud
servers may not be available. Our approach does not require
server-side samples, while it can aggregate models with dif-
ferent depths, which is a benefit against ResNet + FedAvg.
As shown in Table 7, the model and training memory sizes
of ODENet and dsODENet are smaller than those of ResNet.
Actually, a smaller memory size can help the client hetero-
geneity since clients with a tighter resource limitation can
join the federated learning. As such, in our approach, clients
with rich compute resources can use deeper models, while
those with limited resources can use shallower models.

5.3 Unbalanced Client Heterogeneity

In Sect. 4.1, 30 clients use one of three models with different
depths (e.g., ODENet-34, ODENet-50, and ODENet-101).
Ratios of these three models are balanced; that is, 10 clients,



HOSHINO et al.: FEDERATED LEARNING OF NEURAL ODE MODELS WITH DIFFERENT ITERATION COUNTS
789

Table 8 Overall comparisons of proposed approach and counterparts (α = 10)

Table 9 Evaluation results of proposed approach in weak-biased case

Table 10 Evaluation results of proposed approach in strong-biased case

10 clients, and 10 clients use ODENet-34, ODENet-50, and
ODENet-101, respectively. Here, we conduct experiments
of unbalanced cases. Specifically, we examine two cases:
1) 24 clients use ODENet-34, three clients use ODENet-
50, and three clients use ODENet-101; 2) three clients use
ODENet-34, three clients use ODENet-50, and 24 clients
use ODENet-101. The former case is referred to as “weak-
biased” and the latter case is referred to as “strong-biased”.
The other evaluation conditions are the same as those in
Sect. 4.1. Tables 9 and 10 show the evaluation results of
these two cases. As shown in Tables 9 and 10, accuracy
of the strong-biased case is slightly higher than that of the
weak-biased case.

5.4 Homogenous Model Case

Here, we conduct experiments where all the clients have the
same model, which is an ideal situation. Table 11 shows the
results. α is set to 10. The other evaluation conditions are the
same as those in Sect. 4.1. As shown in Table 11, although
ODENet and dsODENet can significantly reduce the number
of parameters (please see “Model size”) compared to ResNet,
ODENet and dsODENet show a lower accuracy compared
to ResNet. This result is reasonable since the numbers of pa-
rameters of ODENet and dsODENet are significantly small
compared to ResNet. Also, the time intervals of ODENet and
dsODENet are shorter than those of ResNet. When all the
clients have the same model, the time intervals of ODENet
and dsODENet are shorter than those of heterogenous client
cases shown in Table 8. However, our proposed approach

Table 11 Evaluation results when all clients have same model (α = 10)

Table 12 Evaluation results when the number of local epochs E is dif-
ferent for each client

can aggregate models with different depths, while ResNet
cannot allow such a heterogeneity, which is a benefit of our
proposed approach.

5.5 Heterogeneous Epoch Number

As an alternative to our approach, customizing the number
of local epochs E for each client depending on the compute
resource of each client would help the client heterogene-
ity. For example, we can increase the number of epochs for
stronger clients, while we can decrease the number of epochs
for weaker clients. Here, we conduct this experiment. Ta-
ble 12 shows the results. We use CIFAR-10 dataset. FedAvg
is used for the federated learning algorithm. The number of
communication rounds is 100. The number of clients K is
30. r is set to 0.2; thus, six clients join the federated learning.
The important difference to our proposed approach is that all
the clients have the same model, while the number of epochs
is different for each client. Specifically, the number of local
epochs E is randomly selected from 20, 40, and 80 for each
client. The selected epoch number is statically fixed; thus, it
is not changed during the federated learning.

As shown in Table 12, the accuracy of this heteroge-
neous epoch number approach is higher than our proposed
approach. However, regarding the client heterogeneity, the
heterogeneous epoch number approach can address the CPU
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Table 13 Evaluation results when the number of clients K is 50

Table 14 Evaluation results when participating client rate r is 0.1

performance heterogeneity of clients since the number of
epochs can be tuned depending on the CPU performance
of each client. On the other hand, our proposed approach
can customize the model depths depending on the CPU per-
formance and memory size of clients; thus, our approach
can address the client heterogeneity of both the CPU per-
formance and memory capacity of clients. We believe that
this heterogeneous epoch number approach can be combined
with our proposed approach, and exploring this possibility
is our future work.

5.6 Different Client Number and Participating Rate

We conduct an additional experiment in which the number of
clients K is increased to 50, in which 10 clients use ODENet-
34, 30 clients use ODENet-50, and 10 clients use ODENet-
101. Table 13 shows the results. In addition, we conduct
another experiment in which the client participating rate r is
0.1. Table 14 shows the results. In both the cases, the results
are consistent with the results presented in Sect. 4.1.

6. Conclusions

In this paper, we proposed a flexible federated learning ap-
proach that can aggregate models with different iteration
counts by utilizing ODENet and dsODENet as federated
learning models. We demonstrated that these models with
different iteration counts can be aggregated correctly (i.e.,
having the weight compatibility) in the cases of ODENet
and dsODENet. Then, the proposed approach simply using
FedAvg was compared with FedDF in terms of the accuracy.
The experiment results showed that the higher accuracy of
FedDF come from additional knowledge distillation over-
heads at the server. On the other hand, the proposed approach
can simply aggregate models with different iteration counts
without the server-side training nor uploading training sam-
ples to the server. In addition, ODENet and dsODENet were
evaluated in terms of the model and communication sizes.
Compared with ResNet-50, ODENet-50 and dsODENet-50
successfully reduced the communication sizes by 89.4% and

by 94.7%, respectively. These results showed that our ap-
proach can significantly reduce the communication overhead
while enabling the aggregation of models with different iter-
ation counts.

As a future work, we will evaluate the feasibility of
federated learning with ANODE [17] which is a Neural ODE
based approach that utilizes a checkpointing method. We
are also planning to improve accuracy when α is small. We
will combine our approach with state-of-the-art federated
learning algorithms.
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