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Abstract—In the real world, normal and abnormal behavior
patterns vary depending on a given environment, which means
that the abnormal behavior detection model should be cus-
tomized. To address this issue, in this paper, we employ OS-ELM
(Online Sequential Extreme Learning Machine) and Autoencoder
for adaptive abnormal behavior detection. First, state-transition
probability tables of a target during an initial learning period are
learned as normal behaviors. Then, Autoencoder-based anomaly
detection is performed for the state-transition probability tables
of subsequent time frames. The abnormal behavior detection
model is updated by using OS-ELM algorithm every time a new
probability table or behavior comes. The number of abnormal
behavior detection instances is dynamically tuned to reflect the
recent normal patterns or modes. Also, the table is compressed to
reduce the computation cost. Evaluation results using a driving
dataset of cars show that the proposed abnormal behavior
detection accurately identifies normal and aggressive driving
patterns with the optimal number of the abnormal behavior
detection instances.

Index Terms—Machine learning, Abnormal behavior detection,
OS-ELM, Autoencoder, and Clustering

I. INTRODUCTION

Abnormal behavior detection is used to detect unusual be-
havior or state transition of targets. It can be applied to detect
infected or compromised networked systems [1], aggressive
driving of cars [2], and various surveillance applications [3].
In the real world, normal and abnormal behavior patterns vary
depending on a given environment. A normal behavior in
an environment may be abnormal in different environments
or situations. Thus, the abnormal behavior detection model
should be customized to a given environment. To address this
issue, in this paper, we employ OS-ELM (Online Sequen-
tial Extreme Learning Machine) [4] as an online sequential
learning algorithm to adaptively update the model. It is also
combined with Autoencoder [5] for the adaptive unsupervised
abnormal behavior detection.

In the proposed approach, first, state-transition probability
tables of a target during an initial learning period are learned
as normal behaviors. Then, Autoencoder-based anomaly detec-
tion is performed for the state-transition probability tables of
subsequent time frames, in order to detect abnormal patterns.
The abnormal behavior detection model is updated by using
OS-ELM algorithm every time a new probability table or
behavior comes.

In practice, abnormal behaviors should be accurately de-
tected from multiple normal patterns. To improve the accuracy
of abnormal behavior detection in such cases, we introduce

multiple adaptive abnormal behavior detection instances, each
of which is specialized for each normal pattern. Since these
abnormal behavior detection instances should be dynamically
tuned, we propose a reconfiguration technique of these in-
stances, in order to adapt to the recent normal patterns or
modes. Also, the input state-transition probability tables are
typically sparse, so we propose a probability table compression
technique, in order to reduce the computation cost and memory
requirement. Evaluation results using a driving dataset of cars
show that the proposed abnormal behavior detection accurately
identifies normal and aggressive driving patterns with the
optimal number of the abnormal behavior detection instances.

The rest of this paper is organized as follows. Section II
surveys existing work on abnormal behavior detection and
introduces OS-ELM algorithm. Section III proposes the ab-
normal behavior detection using multiple OS-ELM instances,
reconfiguration of the instances, and compression of the state-
transition probability table. Section IV evaluates the proposed
approach using two abnormal behavior detection applications.
Section V concludes this paper.

II. BASELINE

In this section, first, a conventional abnormal behavior
detection approach is introduced. Then, baseline technologies
of the proposed approach are introduced.

A. Abnormal Behavior Detection using Hidden Markov Model
In this paper, state-transition probabilities of a target are

monitored and used for the abnormal behavior detection. In
this case, Hidden Markov Model (HMM) [6] is useful to
represent the probabilistic model of the behavior assuming
a Markov process with unobservable states. That is, state-
transition probabilities of normal behaviors are learned first.
Then, state-transition probabilities of subsequent behaviors are
evaluated in order to detect unusual behaviors.

To learn normal behaviors, the HMM parameters are ex-
tracted from normal state-transition probabilities. A conven-
tional approach for the HMM parameter estimation is Baum-
Welch algorithm [7], which is known as an EM (Expectation-
Maximization) algorithm. EM algorithm is iterative. That is, it
estimates the parameters of the probabilistic model by maxi-
mum likelihood (MAP) estimation by repeatedly alternating
two steps: E-step for calculating an expected value of the
likelihood of the model and M-step for calculating model
parameters that maximize the expected value. These two steps



are continuously performed until convergence. In practice, a
mixture of HMMs is used to improve recognition performance
as in [8]. In their approach, an online parameter estimation of
HMMs is performed to dynamically generate the description
of behaviors.

In this paper, as an alternative approach for the conven-
tional HMM-based abnormal behavior detection, we propose
a neural-network based online algorithm for the abnormal
behavior detection that can update the model so as to adapt
to a given environment. More specifically, a combination
of OS-ELM and Autoencoder [9] is used for such adaptive
unsupervised abnormal behavior detection. In the following
subsections, OS-ELM and Autoencoder are introduced briefly
as baseline technologies of the proposed approach.

B. Online Sequential Extreme Learning Machine (OS-ELM)

OS-ELM [4] is an online sequential learning algorithm for
single-layer feedforward networks that consist of input layer,
hidden layer, and output layer. The numbers of their nodes
are denoted as n, m, and n′, respectively. It sequentially learns
input data x ∈ Rk×n, where k denotes a batch size. As in [9],
k is fixed at one in this paper in order to eliminate the pseudo
inverse operations of k × k, except for initial training phase
mentioned later. This is beneficial since the pseudo inverse
operation is the major bottleneck of this approach. Please note
that, in the abnormal behavior detection, x is a state-transition
probability table of a target in a single time frame.

For the i-th input data xi ∈ R1×n, the hidden layer matrix
is defined as hi ≡ G(xi · α + b) using activation function
G, weight matrix α ∈ Rn×m between the input and hidden
layers, and bias b ∈ Rm of the hidden layer. Here, α is
initialized with random values. Then, the optimized weight
matrix βi ∈ Rm×n′

between the hidden and output layers
can be computed by the following formulas using intermediate
result Pi and training data ti ∈ Rn′

.

Pi = Pi−1 − Pi−1h
T
i hiPi−1

1 + hiPi−1hT
i

βi = βi−1 + Pih
T
i (ti − hiβi−1)

(1)

In particular, the initial values P0 and β0 are obtained as
follows.

P0 = (H0H
T
0 )

−1

β0 = P0H
T
0 t0

(2)

Here, H0 is the initial hidden layer matrix obtained from the
initial data x0 ∈ Rk0×n, where k0 is the initial batch size
which should be greater than m.

In OS-ELM algorithm, weights βi and their intermediate
results Pi are computed from previous learning results βi−1

and Pi−1. Thus, it can sequentially update the model every
time a new state-transition probability table of a target is fed.

C. Autoencoder

Autoencoder [5] is a type of neural network used for
dimensionality reduction, learning of generative models, and
unsupervised anomaly detection.

In this paper, Autoencoder is combined with OS-ELM to
perform the adaptive unsupervised abnormal behavior detec-
tion. In this case, n and n′ are the same. Input data xi is used
also as training data ti. That is, the weight βi is trained so
that input data xi is reconstructed by Autoencoder. Assume
the Autoencoder has been trained only with normal state-
transition probabilities. In this case, the difference between
the input data and reconstructed data (denoted as loss value)
should be small when the input data is close to the normal
patterns. On the other hand, the loss values become large when
unusual probabilities are fed; thus the abnormal behaviors can
be detected.

III. ABNORMAL BEHAVIOR DETECTION USING ONLINE
SEQUENTIAL LEARNING

In this paper, a combination of OS-ELM and Autoencoder
is used for the adaptive unsupervised abnormal behavior
detection that can adaptively update the model depending on
a given environment. A state-transition probability table of
a target in a single time frame is used as an input for the
abnormal behavior detection.

As in a mixture of multiple HMMs used for the improved
abnormal behavior detection, the proposed approach intro-
duces multiple pairs of OS-ELM and Autoencoder, each of
which is denoted as an “instance”. Assuming k is the number
of the instances, the multi-instance version can accurately
identify at least k normal patterns. It can improve the detec-
tion accuracy especially when the target has multiple normal
modes. In the adaptive abnormal behavior detection, k should
be dynamically tuned so as to follow the number of normal
modes of the target. Also, the state-transition probability table
should be compressed to reduce the computation cost and
memory requirement.

In the following subsections, 1) the multi-instance design
of the OS-ELM and Autoencoder based abnormal behavior
detection, 2) the dynamic reconfiguration technique of the
instances based on the optimal k, and 3) the compression
technique of the state-transition probability table are proposed.

A. Multi-Instance Design

In real environments, normal patterns are not always simple,
necessitating a mixture of multiple models for the abnormal
behavior detection. The basic idea is that, assuming multiple
normal patterns, a single OS-ELM and Autoencoder instance is
assigned to each normal pattern. In other words, each instance
is specialized for each normal pattern in order to clearly
distinguish anomaly patterns from multiple normal patterns.

In the multi-instance version, a prediction is performed at
all the instances, while the sequential training is done at a
single instance which is in charge of the input pattern. Thus,
a sequential training is completed with the following two steps.

1) A prediction is performed at all the k instances. The
lowest loss value among them is the prediction result.
When the lowest loss value exceeds a given threshold,
the input data (i.e., state-transition probability table) is
detected as anomaly; otherwise detected as normal.



Fig. 1. Multi-instance design of adaptive abnormal behavior detection.

2) When the prediction result is normal, a sequential train-
ing is performed at the instance that produces the lowest
loss value.

Please note that abnormal data is not trained at any instances
unless the instances and their coverage are reconfigured (see
also Section III-B).

Assuming k is given by users, coverage of the k instances
should be properly configured in order to clearly distinguish
anomaly patterns from multiple normal patterns. Below is the
initialization procedure for the k instances.

1) A certain amount of input data is accumulated. The
amount depends on a buffer size.

2) A clustering is performed for the accumulated input data
so that the accumulated data is broadly partitioned into
k clusters.

3) Each cluster is assigned to each instance. Then each
instance is trained with its assigned input data.

The simplest approach to broadly partition the accumulated
data is K-means algorithm when k is given. When k is not
specified but density parameters of clusters are given, DB-
SCAN algorithm [10] or, for high-dimensional data, SUBCLU
algorithm [11] can be used.

B. Reconfiguration of Multiple Instances

The instance configuration procedure mentioned above is
intended to be performed at the initialization step. In addition,
a runtime reconfiguration of the instances is useful when a
cluster of new patterns appears frequently and finally becomes
a new normal cluster. In fact, there is no guarantee that all
the normal patterns are accumulated during the initialization
phase. Also, an existing normal cluster may disappear as time
goes by.

To address these issues, a dynamic reconfiguration of mul-
tiple instances based on an estimated k parameter is required.
Below is the procedure.

1) A certain amount of input data is accumulated. The
amount depends on a buffer size.

2) Three clustering trials are performed for the accumulated
input data so that the accumulated data is partitioned into
k − 1, k, and k + 1 clusters, respectively.

3) A new k parameter is selected based on a quantitative
evaluation of the three clustering trials.

4) Based on the new k parameter and its clustering result,
each cluster is assigned to each instance. Then each
instance is trained with its assigned input data.

This procedure is executed periodically or when the abnormal
patterns appear frequently.

In step (3), Sum of Squared Error (SSE) and PseudoF [12]
values are used to quantitatively evaluate the three clustering
trials. SSE for k clusters is calculated as follows.

SSEk =

k∑
i=1

∑
x∈Ci

dist2(mi, x), (3)

where x is a data point in cluster Ci, mi is a centroid of cluster
Ci, and dist2(mi, x) is a squared distance between mi and x.
PseudoF is calculated as follows.

PseudoF =
(SSE1 − SSEk)/(k − 1)

SSEk/(n− k)
, (4)

where n is the number of data points and SSE1 is an SSE
value when all the data points are in the same cluster.

PseudoF value describes the ratio of between-cluster vari-
ance to within-cluster variance. A larger PseudoF value means
a better clustering. In step (3), a new k parameter is selected
from k − 1, k, and k + 1 that maximizes the PseudoF value.
Please note that PseudoF value cannot be calculated when
k < 2. In this case, SSE value is used instead.

C. Compression of State-Transition Probability Table
In this paper, a series of behaviors of a target in a time frame

are represented by a state-transition probability table showing a
state-transition probabilities between arbitrary two states. The
left side of Figure 2 shows an example of a state-transition
probability table for nine states. Each row represents a source
state, while each column represents a destination state. For
example, a state-transition probability from state-3 to state-2
is 5. These values are normalized between 0 to 1 when they
are fed to the neural network.

When the number of states is s, the state-transition proba-
bility table size is s2. As s increases, the state-transition prob-
ability table size and the numbers of input/output layer nodes
of a neural network increase significantly, resulting in a high
computation cost for the sequential training1 and prediction.
Also, the probability table is typically sparse because of some
state-transitions that never occur.

The left side of Figure 2 shows a case where state-transitions
within the same state or their neighboring states tend to be
high compared to the other state transitions. That is, state-i
is changed to state-(i − 1), state-i, or state-(i + 1). In this
case, the table forms a band matrix that has nonzero elements

1The computation cost increases as the numbers of input/output layer nodes
increase as modeled in [9].



Fig. 2. Compression of state-transition probability table.

on the main diagonal (state-i to state-i), the first diagonal
below this (state-i to state-(i−1)), and the first diagonal above
this (state-i to state-(i + 1)). We can obtain the compressed
form of this state-transition probability table by extracting the
diagonal band of the tridiagonal matrix. The result is illustrated
in the right side of Figure 2. In Section IV-B, this compression
technique is applied to a driving dataset of cars, where a state
represents their speed in 15 levels (1 level = 10km/h).

IV. EXPERIMENTAL RESULTS

In this section, the reconfiguration technique of multiple in-
stances when multiple normal patterns exist is evaluated. Then
the compression technique of the state-transition probability
table is compared with the uncompressed design.

A. Reconfiguration of Multiple Instances
The multi-instance design and its dynamic reconfiguration

technique are evaluated with the Schonlau dataset [13] that
contains UNIX command histories of 50 users. Below is
the experiment scenario of the multi-instance design and its
dynamic reconfiguration technique using this dataset.

1) An input command history is generated by mixing the
command histories of users 21 and 32. A series of state-
transition probability tables is generated from this mixed
command history. The generated data is denoted as “2-
user input data”.

2) The initial training step is completed with this 2-user
input data by using two instances (i.e., k = 2).

3) Another input command history is generated by mixing
the command histories of users 21, 32, 46, and 17. A
series of state-transition probability tables is generated
from this mixed command history. The generated data
is denoted as “4-user input data”.

4) The sequential training step using this 4-user input data
is started with the original two instances.

The buffer size for the dynamic reconfiguration is set to 280.
We are thus expecting that the number of instances k is
adjusted at every 280 input data and finally it is converged
with four, since the input data is based on four users’ command
histories. Since the length of command histories in the dataset
is not enough, we augmented the 2-user and 4-user input data,
based on their original state-transition probabilities.

Fig. 3. Evaluation result of dynamic reconfiguration of multiple instances.

Here, the size of state-transition probability table is set
to 1,024 assuming 32 types of UNIX commands. Thus, the
numbers of input/output layer nodes of the neural network are
both 1,024. The number of hidden layer nodes is set to 256.

Figure 3 shows the evaluation result of the experiment
scenario. X-axis represents the number of input data. The
instance reconfiguration is done at every 280 input data. A
yellow line (Y-axis on the right side) represents the number of
instances k. As shown, k is increased from two and it is finally
converged with four, which means that the proposed instance
reconfiguration technique accurately reflects the given normal
patterns or modes.

In addition, Y-axis on the left side of Figure 3 shows the
loss values for the four users. When k = 2, the loss values
of users 46 and 17 are quite high, which means that these
two users are not recognized as normal users. As the number
of instances k increases, their loss values are decreased and
finally converged when k = 4, which means that these four
users are recognized as normal users.

B. Compression of State-Transition Probability Table
The compression technique of the state-transition probabil-

ity table is evaluated with the UAH-DriveSet [14] that contains
car driving histories of six drivers simulating three different
behaviors: aggressive, drowsy, and normal. It is used for the
aggressive driving detection. Their car speed is extracted from
the GPS data obtained from a smartphone fixed in their cars.
The sampling frequency of the car speed is 1Hz.

Below is the experiment scenario of the compression tech-
nique of the state-transition probability table using this dataset.
Here, the aggressive, drowsy, and normal driving patterns are
denoted as A, D, and N patterns, respectively.

1) Using the uncompressed state-transition probability ta-
bles, the initial training step is completed with A and D
patterns (denoted as “AD” pattern). Then the sequential



Fig. 4. Evaluation result of compression technique of probability table.

training step is started with A, D, and N patterns.
Their loss values are denoted as before A, before D,
and before N, respectively. In addition to “AD” pattern,
the same procedure is performed for “DN”, “AN”, and
“ADN” patterns.

2) Using the compressed state-transition probability tables,
the same procedure with (1) is performed. Their loss
values are denoted as after A, after D, and after N.

Then the loss values before and after the compression are
compared (e.g., before A vs. after A) to see the accuracy
degradation by the table compression.

Here, the size of the original state-transition probability
table is set to 225 assuming 15 levels of car speeds (1 level
= 10km/h). Thus, the numbers of input/output layer nodes of
the neural network are both 225. The number of hidden layer
nodes is set to 16. The original probability table is compressed
with the same technique as shown in Figure 2. That is, the
probability table is approximated as a tridiagonal matrix, and
only the diagonal band is extracted, resulting in a 15×3 matrix.
In this case, the numbers of input/output layer nodes are only
45. The number of hidden layer nodes is set to 16.

Figure 4 shows the result. X-axis represents the training
patterns including “AD”, “DN”, “AN”, and “ADN” patterns.
Y-axis represents the loss values of before A, before D,
before N, after A, after D, and after N. As shown, only the
loss values of before A and after A for “DN” pattern are
quite high, which means that the aggressive driving patterns
are detected. The important thing is that the same tendency is
observed before and after the compression in all the cases. This
means that the proposed compression technique significantly
reduces the numbers of input/hidden/output layer nodes of the
neural network, while keeping the accuracy of the abnormal
behavior detection.

V. CONCLUSIONS

In the real world, normal and abnormal behavior patterns
vary depending on a given environment, and therefore the

abnormal behavior detection model should be customized to
the environment. In this paper, a combination of OS-ELM
and Autoencoder was introduced for the adaptive unsupervised
abnormal behavior detection that can adaptively update the
model. In addition, a multi-instance design of the OS-ELM and
Autoencoder pair was introduced for improving the detection
accuracy. Then, a dynamic reconfiguration technique of these
instances based on recent normal patterns or modes was
proposed. A compression technique of the state-transition
probability table was also proposed.

The evaluation results using the UNIX command histo-
ries of four users demonstrated that the proposed instance
reconfiguration technique accurately reflects the recent normal
patterns. Also, the evaluation results using aggressive, drowsy,
and normal car driving patterns demonstrated that the proposed
compression technique significantly reduces the numbers of
input/hidden/output layer nodes of the neural network, while
keeping the accuracy of the abnormal behavior detection.
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