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SUMMARY Since deep learning workloads perform a large number of
matrix operations on training data, GPUs (Graphics Processing Units) are
efficient especially for the training phase. A cluster of computers each of
which equips multiple GPUs can significantly accelerate the deep learning
workloads. More specifically, a back-propagation algorithm following a
gradient descent approach is used for the training. Although the gradient
computation is still a major bottleneck of the training, gradient aggregation
and optimization impose both communication and computation overheads,
which should also be reduced for further shortening the training time. To
address this issue, in this paper, multiple GPUs are interconnected with a
PCI Express (PCIe) over 10Gbit Ethernet (10GbE) technology. Since these
remote GPUs are interconnected with network switches, gradient aggre-
gation and optimizers (e.g., SGD, AdaGrad, Adam, and SMORMS3) are
offloaded to FPGA-based 10GbE switches between remote GPUs; thus,
the gradient aggregation and parameter optimization are completed in the
network. The proposed FPGA-based 10GbE switches with the four opti-
mizers are implemented on NetFPGA-SUME board. Their resource utiliza-
tions are increased by PEs for the optimizers, and they consume up to 56%
of the resources. Evaluation results using four remote GPUs connected
via the proposed FPGA-based switch demonstrate that these optimizers are
accelerated by up to 3.0x and 1.25x compared to CPU and GPU imple-
mentations, respectively. Also, the gradient aggregation throughput by the
FPGA-based switch achieves up to 98.3% of the 10GbE line rate.
key words: deep learning, FPGA switch, remote GPU

1. Introduction

A gradient descent optimization algorithm with a back-
propagation algorithm is used for training deep neural net-
works. It iteratively computes gradients of a loss function
and optimizes weight parameters of the neural networks.
The training phase performs a large number of matrix op-
erations, and thus the computation cost is extremely high.
GPUs (Graphics Processing Units) are typically used for ac-
celerating the gradient computation. Actually, a cluster of
computers each of which equips multiple GPUs has been
used for reducing the training time [1]–[3].

In the parallel and distributed deep learning [4], in ad-
dition to the gradient computation parallelized by multiple
GPUs, their gradients are aggregated and the weight param-
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eters are then optimized based on the gradients by using a
parameter optimization algorithm. Although the gradient
computation is still a major computation bottleneck of the
training, the gradient aggregation and parameter optimiza-
tion impose both communication and computation over-
heads, which should also be reduced for further shortening
the training time.

In this paper, we focus on the gradient aggregation
and parameter optimization and accelerate them by using
FPGA-based 10Gbit Ethernet (10GbE) switches. More
specifically, multiple GPUs are interconnected with a PCI
Express (PCIe) over 10GbE technology [5]. Since these re-
mote GPUs are interconnected via network switches, the
gradient aggregation and optimization algorithms are of-
floaded to the FPGA-based 10GbE switches between these
remote GPUs. In this case, the gradient aggregation and
parameter optimization are completed in the network. We
implement the gradient aggregation and four optimization
algorithms (i.e., SGD, Adagrad, Adam, and SMORMS3) on
NetFPGA-SUME card [6] that has four 10GbE interfaces.
The proposed FPGA-based switch is evaluated in terms of
the gradient aggregation performance, parameter optimiza-
tion performance, and FPGA resource utilization ∗∗.

The rest of this paper is organized as follows. Section
2 introduces the parameter optimization algorithms, parallel
and distributed deep learning approaches, and remote GPU
technologies over Ethernet. Section 3 proposes the network
switch that connects remote GPUs and performs the gradi-
ent aggregation and parameter optimization. Section 4 de-
scribes the packet trace used in the experiment and Sect. 5
describes the implementation. Section 6 shows the evalua-
tion results of performance and resource utilization. Section
7 concludes this paper.

2. Related Work

2.1 Parallel and Distributed Training Models

As a distributed deep learning approach, this paper employs
a synchronous data parallel model [4] that combines data
parallel training and synchronous parameter optimization.
In the data parallel model, training data is divided and as-
signed to GPU workers, so that the training phase is per-

∗∗This paper is an extended version of our conference paper [7]
by evaluating resource utilization of the entire 10GbE switch and
revising the description.
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Fig. 1 Training with synchronous data parallel model

Algorithm 1 Algorithm of SGD
Require: lr: Learning rate
Require: θ0: Initial parameter
Require: f (θ): Loss function with parameter θ
Require: g(θ): Gradient of loss function with parameter θ
t ← 0
while Exit condition is not satisfied do

t ← t + 1
g(θt)← ∇θt f (θt)
θt ← θt−1 − lr · g(θt)

end while

formed in parallel by sharing intermediate training results.
Then, the gradients separately computed by GPU work-
ers are combined so as to optimize weight parameters of
a model. Since a synchronous model is assumed, all the
GPU workers are synchronized when they finish the gra-
dient computation of errors for their assigned mini-batch.
Then, the gradients are aggregated and weight parameters
are optimized.

Figure 1 illustrates an outline of a training phase of the
synchronous data parallel model. Below is the procedure
using multiple GPU workers.

1. A certain amount of training data is picked up as a
mini-batch.

2. The mini-batch is assigned to each GPU worker so that
it processes the assigned training data with a neural net-
work.

3. Each GPU worker computes error gradients, and they
are aggregated in a host machine.

4. Weight parameters are optimized with the aggregated
gradients, and then the optimized parameters are dis-
tributed to all the GPU workers.

2.2 Parameter Optimization Algorithms

A gradient method is used for the parameter optimiza-
tion of neural networks so that an error calculated by a loss
function is minimized. There are various algorithms to com-
pute new weight parameters based on gradients of the loss

Algorithm 2 Algorithm of Adagrad
Require: lr: Initial learning rate
Require: θ0: Initial parameter
Require: f (θ): Loss function with parameter θ
Require: g(θ): Gradient of loss function with parameter θ
Require: ε: Small constant
t ← 0
h← 0
while Exit condition is not satisfied do

t ← t + 1
g(θt)← ∇θt f (θt)
ht ← ht−1 + g2(θt)
lrt ← lr√

ht+ε

θt ← θt−1 − lrt · g(θt)
end while

Algorithm 3 Algorithm of Adam
Require: lr: Learning rate
Require: θ0: Initial parameter
Require: f (θ): Loss function with parameter θ
Require: g(θ): Gradient of loss function with parameter θ
Require: ε: Small constant
Require: β1, β2 ∈ [0, 1) :
t ← 0
m0 ← 0
v0 ← 0
while Exit condition is not satisfied do

t ← t + 1
g(θt)← ∇θt f (θt)
mt ← β1 · mt−1 + (1 − β1) · g(θt)
vt ← β2 · vt−1 + (1 − β2) · g2(θt)
m̂t =

mt
1−βt1

v̂t =
vt

1−βt2
θt ← θt−1 − lr · m̂t√

v̂t+ε

end while

Algorithm 4 Algorithm of SMORMS3
Require: lr: Learning rate
Require: θ0: Initial parameter
Require: f (θ): Loss function with parameter θ
Require: g(θ): Gradient of loss function with parameter θ
Require: ε: Small constant
t ← 0
m0 ← 0
v0 ← 0
s0 ← 1
while Exit condition is not satisfied do

t ← t + 1
g(θt)← ∇θt f (θt)
st ← 1 + (1 − xt−1) · st−1

ρt ← 1
st+1

mt ← (1 − ρt) · mt−1 + ρt · g(θt)
vt ← (1 − ρt) · vt−1 + ρt · g2(θt)

xt ←
m2

t
vt+ε

θt ← θt−1 − min{lr,xt}√
vt+ε

· g(θt)

end while

function and current parameters. A well-known algorithm is
SGD (Stochastic Gradient Descent) listed in Algorithm 1. In
SGD, gradients multiplied by a learning rate are subtracted
from current weight parameters to compute new parameters.
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Although SGD is simple, it may converge to a local solution
with low accuracy or require a number of iterations to con-
vergence, depending on a selected learning rate. A careful
tuning is thus required for selecting the hyperparameters.

To improve SGD in terms of accuracy and the num-
ber of iterations to convergence, variants of SGD have been
invented. Typical examples of such algorithms are Ada-
grad [8], Adam [9], and SMORMS3 [10]. They are listed
in Algorithms 2, 3, and 4. They are widely used to opti-
mize a model with higher accuracy and smaller number of
iterations to convergence. Since computation costs for these
algorithms are higher than that of SGD, although they can
reduce the number of iterations, they incur a longer compu-
tation time for each iteration.

2.3 Distributed Deep Learning Using GPUs

A large-scale distributed deep learning has been efficiently
executed on GPU clusters. In a GPU cluster, nodes consist
of a host machine with several GPUs and they are intercon-
nected with a high-speed network, such as 10GbE. In [1], a
GPU cluster consisting of 128 nodes with 1,024 GPUs com-
pleted a training phase of ImageNet in 15 minutes. In [2]
and [3], GPU clusters using 4,352 GPUs and 2,048 GPUs
completed the training phase of ImageNet in 122 seconds
and 74.7 seconds, respectively. They use MPI AllReduce
for communication between the nodes. Although the com-
munication is efficiently done by using Allreduce, the com-
munication overhead increases as the number of nodes in-
creases, and the execution time per iteration increases. In
[1], approximately 15% of execution time is spent for com-
munication at 128 nodes.

In [11], it is reported that a significant portion of train-
ing time is spent for the communication. To reduce the com-
munication overhead, nodes in a cluster circulate their gra-
dients to aggregate them within a cluster without a specific
aggregation node. Also, since the gradients are more toler-
ant of accuracy loss than weight parameters, a compression
technique is applied to the gradients to reduce the commu-
nication overhead.

2.4 Network-Attached GPUs

Since the number of PCIe (PCI Express) slots in a single
machine is limited, the number of required host machines is
increased as the number of GPUs increases, resulting in a
higher cost and power consumption. To mitigate this lim-
itation, GPUs can be connected to network switches and
accessed via a high-speed network remotely by using PCIe
over Ethernet technology.

As a PCIe over 10GbE (10Gbit Ethernet) technol-
ogy, in this paper we use ExpEther 10G [5] that can ex-
tend PCIe over 10GbE. PCIe devices in a 10GbE network
can be assigned to the host machines as shown in Fig. 2.
Such network-attached GPUs have been used to accelerate a
large-scale graph processing [12]. In this paper, we employ
network-attached GPUs for accelerating the gradient com-

Fig. 2 Connection between hosts and GPUs using ExpEther [5]

putation, while the gradient aggregation and parameter opti-
mization are accelerated by using network-attached FPGA.

3. FPGA-Based Switch Design

3.1 Preliminary Evaluations

This section proposes an FPGA-based acceleration of the
gradient aggregation and parameter optimization in dis-
tributed deep learning. First, a preliminary evaluation is
conducted to show execution times for the aggregation and
parameter optimization in an overall training phase. To mea-
sure the execution time, Chainer [13] is used as a deep learn-
ing framework. Table 1 shows the preliminary evaluation
environment. GoogleNet is used as the DNN model, and
Adam is used as a parameter optimization algorithm. A syn-
chronous data parallel model is used in this evaluation.

Figure 3 shows a breakdown of the execution time. The
execution time for each iteration is divided into six parts:
data preparation, forward propagation, back propagation,
gradient aggregation, parameter optimization, and param-
eter distribution. Gradient computation (i.e., forward prop-
agation and back propagation) are executed by four GPUs,
while parameter optimization using Adam is done by a sin-
gle GPU. The other parts, such as gradient aggregation, are
done by a host CPU.

As shown in Fig. 3, the execution times for the
compute-intensive parts, such as forward propagation and
back propagation, are large. Those for the gradient aggrega-
tion and parameter optimization account for approximately
8.1% even with four GPUs. Although they are not a major
bottleneck in the case of four GPUs, their execution times
would be increased as the number of GPUs increases. Thus,
their execution times should be reduced for further shorten-
ing the training time.
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Table 1 Preliminary evaluation environment

CPU Intel Core i7-6850K @3.6GHz
Memory 32GB

GPU NVIDIA Geforce GTX 1080 (8GB RAM) x4
CUDA version 10.0
Chainer version 6.2.0

Fig. 3 Breakdown of execution times in training phase

3.2 System Overview

To further reduce the execution times of distributed deep
learning, in this paper we propose to use network-attached
GPUs for the gradient computation, and offload the gradient
aggregation and parameter optimization to network-attached
FPGA in a network.

When a host machine accesses a remote GPU, input
data and output data to/from the GPU go through one or
more network switches. A high speed data processing can
be performed during a communication between the host ma-
chine and the GPU by incorporating in the network switch.
In this paper, we propose to offload the gradient aggrega-
tion and parameter optimization to an FPGA-based 10GbE
switch. Conventionally, this gradient aggregation and pa-
rameter optimization are processed by CPU. Figure 4 illus-
trates the proposed system, where remote GPUs using PCIe
over 10GbE are interconnected via an FPGA-based network
switch. The gradient aggregation and parameter optimiza-
tion are thus completed in the middle of communication
with low overheads.

The PCIe over 10GbE used in this paper is transparent
to software layer, which means that remote GPUs connected
via the PCIe over 10GbE can be accessed as local GPUs di-
rectly attached to PCIe slots. The proposed FPGA-based
switch performs aggregation or parameter optimization de-
pending on incoming packet information, which means that
the software layer does not explicitly control the proposed
FPGA-based switch. Since the aggregation and parameter
optimization are done by the proposed FPGA-based switch,
the software layer should be modified not to execute these

Fig. 4 Proposed system (gradient computation is done by “GPUs” and
gradient aggregation and parameter optimization are done by “Switches”)

operations though our approach has not been implemented
in well-known DNN frameworks.

Since the 10GbE bandwidth is narrower than PCIe
Gen3 x16, data transfer time may increase in the proposed
system. This issue can be mitigated by using recent Ex-
pEther 40G product. Actually, offloading the gradient ag-
gregation and parameter optimization to a network switch
can compensate for the lower bandwidth and efficiently im-
prove their execution times, as shown in Sect. 6.

In our implementation, packets are encapsulated as
10GbE frames, so 10GbE-based layer-2 switches can be in-
serted between remote GPUs and host machine. However,
layer-3 packet routing cannot be supported and thus layer-3
routing devices cannot be inserted between them.

3.3 Gradient Aggregation Function

Here, data flow of the gradient aggregation in the proposed
system is described below. As shown in Fig. 4, GPU work-
ers compute gradients and then send them to a host machine
(denoted as “CPU”) via the FPGA-based network switch
(denoted as “Switch”). The FPGA-based switch extracts
the gradients from ExpEther packets sent from GPUs to a
host. Then the gradients are aggregated and sent to the host.
The host machine thus receives already-aggregated gradi-
ents from the switch.

In large-scale distributed deep learning, a single host
machine will be a bottleneck, and thus multiple host ma-
chines should be used as shown in Fig. 4. In this case,
these nodes perform AllReduce to exchange their already-
aggregated gradients. Even with such multiple host cases,
gradient aggregation overheads are greatly reduced by the
proposed network switch.

3.4 Parameter Optimization Function

The parameter optimization is performed in the proposed
switch after all the gradients are aggregated in the net-
work. As parameter optimization algorithms, SGD, Ada-
grad, Adam, and SMORMS3 are implemented on the
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Fig. 5 Computation graph of SGD

Fig. 6 Computation graph of Adagrad

Fig. 7 Computation graph of Adam

FPGA-based switch. These algorithms are selected so as
to cover both the simple algorithm (i.e., SGD) and sophisti-
cated algorithm that requires relatively higher computation
cost (i.e., SMORMS3).

Figures 5, 6, 7, and 8 show their computation graphs,
respectively. In the computation graphs, circle symbols rep-
resent computational operations, such as addition, subtrac-
tion, multiplication, division, square root, and minimum.
Square symbols represent storage elements, each of which
is corresponding to a floating point number. grad represents
input gradients and W represents weight parameters under
optimization. The other symbols, such as A, B, and C, are
algorithm-specific parameters.

Fig. 8 Computation graph of SMORMS3

4. Packet Trace

4.1 GPU Packet Trace

Prior to the implementation, this section describes packet
traces of remote GPUs connected via a PCIe over 10GbE
technology. The packet traces were analyzed so that we can
extract the gradients from ExpEther packets and write back
optimized weight parameters to the packets. The packets
were also used for the evaluations of the proposed FPGA-
based network switch.

Since NVIDIA’s GPUs are used for the gradient
computation, CUDA (Compute Unified Device Architec-
ture) [14] is used as an integrated development environment
for the remote GPUs. In a CUDA program, a cudaMemcpy
function copies data from host main memory to GPU device
memory. The instruction and data are transferred as PCIe
over 10GbE packets and go through the proposed FPGA-
based network switch. We collected the PCIe over 10GbE
packet traces between a host machine and remote GPU de-
vices.

Figure 9 shows the packet capture environment. As
shown, there are three machines: a host machine, a switch
machine, and a capture machine. The host machine is
equipped with an ExpEther host adapter. It executes a
CUDA program for a remote GPU connected via the pro-
posed network switch. The switch machine is equipped
with a NetFPGA-SUME card that has a Xilinx Virtex-7
XC7VX690T FPGA and four SPF+ connectors for 10GbE
interfaces. This FPGA card is used as a 4-port 10GbE
switch. The packet capture machine is equipped with a
10GbE network interface card connected to the network
switch. Wireshark is used as a packet capture software at
the capture machine.

In this environment, when a CUDA program is exe-
cuted on the host machine for the remote GPU, PCIe over
10GbE packets are transferred between the host machine
and the remote GPU. These packets go through the network
switch and are captured by the capture machine.
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Fig. 9 Packet capture environment

Fig. 10 The packet format of ExpEther [15]

4.2 ExpEther Packets

Figure 10 shows the format of the captured ExpEther packet.
ExpEther adds the Ethernet header to the packet communi-
cated by PCI Express, and communicates it as an Ethernet
frame. The first part of the packet is the Ethernet header,
and the VLAN-tag is inserted. Next is the control header of
ExpEther [15]. Finally, the main part contains TLP (Trans-
action Layer Packet), which is packet used for sending and
receiving data in PCIe.

When cudaMemcpy is executed to copy values on the
GPU to the host machine, packets containing the value in
TLP data pass through the switch. In the implementation of
this paper, the data communicated between the host machine
and the remote GPU is obtained from TLP data in packets
that pass through the switch.

5. Implementation

5.1 Baseline Network Switch

Reference Switch Lite design provided by NetFPGA
team [6] is used as a baseline 10GbE switch implemented
on NetFPGA-SUME card. The gradient aggregation and
parameter optimization modules are inserted to this base-
line switch. Figure 11 shows a block diagram of the FPGA-
based network switch. When packets are injected to the net-
work switch, they are passed from one of four 10GbE in-

Fig. 11 Block diagram of FPGA-based network switch

terfaces (i.e., RX0 to RX3). Input Arbiter module receives
packets one by one in a round robin manner from these inter-
faces. Next, Outputport Lookup module performs a routing
function based on a packet header to determine a destination
port of the switch. The gradient aggregation and parameter
optimization modules judge if incoming packets are subject
to the gradient aggregation, parameter optimization, or none
of them. The gradient aggregation and parameter optimiza-
tion modules are explained in the next subsections. Finally,
Output Queue module distributes packets to one of the four
10GbE ports according to the routing result by Outputport
Lookup module.

5.2 Gradient Aggregation and Parameter Optimization
Modules

Figure 12 illustrates the gradient aggregation and parameter
optimizations modules proposed in this paper. In these mod-
ules, first, based on the ExpEther packet format captured in
Sect. 4.1, incoming packets are analyzed to see if they are
subject to the gradient aggregation or parameter optimiza-
tion modules. If the packet is not related to the aggregation
nor parameter optimization, the packet simply skips these
modules.

If the packet is subject to the gradient aggregation, the
sequence number of the gradient field in the packet is read,
and the corresponding gradient is retrieved from a BRAM
that stores the aggregated gradients. Then, the gradients of
the packet and those retrieved from the BRAM are added.
After the addition, the result is written back to both the
packet and BRAM, and then the packet is sent to the next
module.
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Fig. 12 Gradient aggregation and parameter optimization modules

If the packet is subject to the parameter optimization,
in the same way, the sequence number of the gradient field
in the packet is read, and the corresponding parameter is re-
trieved from a BRAM that stores the parameter. The gradi-
ents extracted from the packet and the parameters extracted
from the BRAM are fed to PEs, and the parameter optimiza-
tion is performed. After the parameter update is completed,
new parameters are stored in the BRAM.

5.3 Parameter Optimization Algorithms

The parameter optimizer in the 10GbE switch is imple-
mented on NetFPGA-SUME card. The target FPGA device
is Xilinx Virtex-7 XC7VX690T. Xilinx Vivado v2016.4 is
used for logic synthesis and implementation. The target
operating frequency is 200MHz. As arithmetic IP cores,
Floating-Point Operator v7.0 provided by Xilinx is used
for these algorithms. These IP cores include addition,
subtraction, multiplication, division, size comparison, and
square root operations. They use 32-bit single-precision
floating-point numbers. The four optimization algorithms
(i.e., SGD, Adagrad, Adam, and SMORMS3) are imple-
mented on NetFPGA-SUME card. These algorithms are
implemented by combining and/or cascading the above-
mentioned arithmetic IP cores as shown in Figs. 5 to 8.

The latencies (the number of clock cycles) to complete
these algorithms are listed in Table 2. Here, the latency is a
duration between when a single-precision floating-point in-
put data is injected and when the corresponding computation
result is generated.

Please note that the above-mentioned parameter opti-
mization cores are in charge of single input data only. To
accelerate the parameter optimization algorithms, multiple
instances or PEs (processing elements) of these optimizer
cores are implemented, as shown in Fig. 13. Floating-point
numbers of input data are distributed to these PEs in a round-
robin manner and processed in parallel. Throughput of the
parameter optimization increases as the number of the op-
timizer PEs is increased, as long as the parallelism of input
data can be exploited; thus there is a trade-off between the

Table 2 Latency for processing a single parameter by a single PE for
each optimization algorithm

Optimizer # of cycles
SGD 21

Adagrad 99
Adam 137

SMORMS3 164

Table 3 FPGA resource utilization of a single PE for each optimization
algorithm

Optimizer LUTs FFs DSPs
SGD 535 (0.12%) 953 (0.11%) 3 (0.08%)

Adagrad 2,695 (0.62%) 4,880 (0.56%) 9 (0.25%)
Adam 5,409 (1.25%) 10,278 (1.19%) 36 (1.00%)

SMORMS3 6,100 (1.41%) 11,510 (1.33%) 40 (1.11%)

Fig. 13 Multi-PE implementation of optimization algorithms

throughput and the resource utilizations. Because of under-
lying technology of the PCIe over 10GbE, since 32 gradients
can be stored in a single packet, we implemented 32 PEs on
the proposed FPGA-based switch to process such packets at
a time. It may be possible to implement 64 PEs to process
two packets at a time.

The four optimization algorithms are evaluated in
terms of the FPGA resource utilizations of LUTs (Look Up
Tables), FFs (Flip Flops), and DSP (Digital Signal Process-
ing) slices. Table 3 shows the result. In this implementation,
32 gradients are included in a single ExpEther packet, and
thus 32 PEs should be implemented to fully exploit the par-
allelism of input data. As shown in Table 3, the PE sizes
are quite small, and thus we implemented 32 PEs for each
algorithm on the FPGA-based network switch.

6. Evaluations

6.1 Gradient Aggregation Throughput

First, the proposed FPGA-based network switch is evaluated
in terms of the gradient aggregation throughput. Test pack-
ets including gradients in 10GbE line rate are generated by
using Open Source Network Tester [16] and sent to the pro-
posed network switch. The gradients are represented as an
array of 32-bit single-precision floating-point numbers. In
this evaluation, each packet contains 32 gradients and thus
the packet length is 192 bytes including a packet header
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and the payload. Open Source Network Tester is directly
connected to the proposed network switch with a 10GbE
SFP+ cable, and the gradient aggregation is executed on the
switch. The aggregation throughput is measured by count-
ing the number of packets processed by the proposed switch.

The measurements are performed ten times and the av-
erage throughput is 8.92Gbps. Assuming the packet length
is 192 bytes, the 10GbE line rate in our environment is
9.07Gbps when considering the Ethernet preamble and in-
terframe gap inserted for each packet. In this case, the mea-
sured throughput of the gradient aggregation is correspond-
ing to 98.3% of the 10GbE line rate in our environment, and
thus almost the line rate is achieved.

In the experiments, a single FPGA-based switch is in-
serted between a single remote GPU and a single host ma-
chine (i.e., single source and single destination case). It is
possible to connect up to three remote GPUs to the FPGA-
based switch since it has four 10GbE interfaces (i.e., mul-
tiple sources and single destination case). In this case,
however, communication bandwidth (e.g., 10Gbps) between
host machine and the FPGA-based switch would be a bot-
tleneck since multiple remote GPUs share the same 10GbE
link connected to the host machine. Please note that our
proposed aggregation and parameter optimization functions
achieve almost 10GbE line rate. In other words, the 10GbE
host-link would be the bottleneck rather than the aggrega-
tion and parameter optimization overheads when the num-
ber of remote GPUs is increased.

6.2 Resource Utilization

The proposed network switch including the gradient aggre-
gation and parameter optimization modules is evaluated in
terms of FPGA resource utilizations of LUTs, BRAM, and
DSP slices. Figure 14, 15, and 16 shows the resource uti-
lizations of an entire switch in the cases of the four pa-
rameter optimization algorithms. The blue bar represents
the resource utilization of the baseline network switch in-
troduced in Sect. 5.1. The orange bar represents the re-
sources increased by adding gradient aggregation and pa-
rameter optimization module using 32 PEs to the baseline
switch. The addition of the gradient aggregation and pa-
rameter optimization module consumed a small amount of
BRAM. The resource utilization of SGD version is the low-
est. It consumes approximately 15% of LUTs. Adam and
SMORMS3 versions consume more resources. Especially,
SMORMS3 version consumes approximately 56% of LUTs,
but even with Reference Switch modules, their resource uti-
lizations still have room to add more PEs.

6.3 Parameter Optimization Latency

In general, the parameter optimization is done by a host
CPU or GPU after the workers compute gradients. By in-
troducing the proposed network switch, the parameter opti-
mization is completed in the middle of communication path
between host CPU and remote GPUs. In this section, the

Fig. 14 Resource utilization (LUTs)

Fig. 15 Resource utilization (BRAM)

Fig. 16 Resource utilization (DSP)

proposed network switch is evaluated in terms of the execu-
tion time of the parameter optimization.

The proposed network switch is compared with the fol-
lowing CPU and GPU-based approaches in terms of the pa-
rameter optimization.

1. CPU-based approach: Assuming a host CPU has
already-aggregated gradients, the execution time for
the parameter optimization by the CPU is measured.

2. GPU-based approach: After a GPU device receives
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Table 4 CPU- and GPU-based execution environment

OS Ubuntu 16.04
CPU Intel Core i7-6800K @3.4GHz

Memory 32GB
GPU NVIDIA Geforce GTX 1080Ti (11GB RAM) x4

CUDA version 9.0
Chainer version 5.2.0

already-aggregated gradients from a host machine, the
execution time for the parameter optimization by the
GPU is measured.

3. Proposed FPGA-based network switch: Assuming the
proposed network switch is placed in a communication
path between a host CPU and a remote GPU device,
the number of cycles for the parameter optimizations
by the network switch is measured.

The CPU- and GPU-based approaches are implemented as a
software program in Chainer [13]. Their evaluation environ-
ment is listed in Table 4 †. In this evaluation, 800,000 pa-
rameters are assumed, so that the latest DNN models, such
as DenseNet-BN [17], can be supported. SGD, Adagrad,
Adam, and SMORMS3 algorithms are executed for 800,000
gradients using these three approaches.

Figure 17 shows the execution times of the param-
eter optimization of the four algorithms with the three
approaches: CPU-based, GPU-based, and the proposed
FPGA-based network switch approaches. In this graph, X-
axis represents the algorithms and Y-axis represents their
execution times. In the case of SGD, differences between
the three approaches are small. However, the differences
become large as the algorithm becomes complicated; in the
case of SMORMS3, the differences are the largest. As a
result, the proposed network switch approach outperforms
the CPU- and GPU-based approaches by 1.2-3.0x and 1.05-
1.25x, respectively.

In the proposed network switch approach, the differ-
ences between the four optimization algorithms are also
quite small. This is because the serialization of input gra-
dients is a major bottleneck in the proposed network switch
regardless of the optimization algorithm selected. Among
the four optimization algorithms, it turns out that the use
of sophisticated algorithms (e.g., SMORMS3) is beneficial
in the proposed network switch approach compared to the
CPU- and GPU-based approaches.

6.4 Discussions

Although a major bottleneck of the training phase is still
the gradient computation by GPU workers, here we esti-
mate how much an entire training phase can be accelerated
by introducing the proposed network switch in the case of
the preliminary evaluation in Sect. 3.1. Since the aggrega-
tion and parameter optimization are done by the proposed
FPGA-based switch during packet transfer between the re-

†The machine used slightly differs from that used in the pre-
liminary evaluation in Sect. 3.1 due to availability of the machine.

Fig. 17 Execution time of parameter optimization

mote GPUs and host machine, “Aggregation and Optimiza-
tion” of Fig. 3 are accelerated in this paper. These parts ac-
count for 8.1% (2.9% for Aggregation and 5.2% for Opti-
mization) of total execution time. The proposed network
switch accelerates the parameter optimization of Adam al-
gorithm by approximately 1.2x compared to the GPU-based
approach. Also, the parameter aggregation is done in a
stream processing manner in 98.3% of the 10GbE line rate,
which can eliminate most computation time for the aggre-
gation. Based on these results, an entire training phase is
shortened by approximately 5% in the case of the prelim-
inary evaluation in Sect. 3.1. In addition to this speedup,
since the gradient aggregation and parameter optimization
are offloaded to the network switch, the saved CPU and GPU
resources can be used for the other tasks.

In this paper, only four GPUs are used for the eval-
uations, but more GPUs are typically used in distributed
deep learning. As the number of GPUs increases, execution
times for the forward propagation and back propagation de-
crease, but that for the gradient aggregation increases. Fur-
thermore, since the execution time for the parameter opti-
mization cannot be accelerated as the number of GPUs is
increased, the proposed network switch can accelerate espe-
cially such large-scale distributed deep learning with many
GPUs.

Our target FPGA board (i.e., NetFPGA-SUME) has
only four 10GbE interfaces, so the proposed FPGA-based
switch currently implements four ports: one is connected
to host machine and the others are connected to up to three
remote GPUs. Our current implementation thus supports
up to three GPUs. To support more remote GPUs, more
FPGA-based switches will be necessary. However, the num-
ber of the proposed switches is limited by the number of
PCIe slots of the host machine. In addition, communica-
tion bandwidth (e.g., 10Gbps) between host machine and the
proposed FPGA-based switch would be a bottleneck when
multiple remote GPUs are connected to the switch.
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7. Conclusions

In this paper, the gradient aggregation and parameter op-
timization were accelerated by an FPGA-based network
switch for distributed deep learning using remote GPUs via
PCIe over 10GbE. In distributed deep learning, the num-
ber of GPUs is typically increased in order to increase the
degree of parallelism and shorten the training time. How-
ever, communication overheads including gradient aggrega-
tion cannot be ignored in large-scale distributed deep learn-
ing. In this paper, we thus introduced remote GPUs via
PCIe over 10GbE and reduced the overhead by offloading
the gradient aggregation and parameter optimization to the
FPGA-based network switch placed in the middle of com-
munication. There are several parameter optimization al-
gorithms with different characteristics, such as computation
cost and the number of iterations to convergence. Four pa-
rameter optimization algorithms including SGD, Adagrad,
Adam, and SMORMS3 were implemented in the proposed
network switch.

Evaluation results of the proposed FPGA-based net-
work switch demonstrated that the gradient aggregation
achieved 98.3% of the 10GbE line rate. The resource uti-
lization was less than 56% at the maximum when 32 par-
allel PEs were implemented. As for the parameter opti-
mization, the proposed network switch outperformed CPU-
and GPU-based approaches by approximately 1.2-3.0x and
1.05-1.25x, respectively. Also, we estimated that the overall
training phase would be accelerated by approximately 5%
by introducing the proposed network switch. As a future
work, we are planning to demonstrate the performance im-
provement of overall training phase in a real environment
that consists of a host machine, four remote GPUs via PCIe
over 10GbE, and the proposed FPGA-based network switch.
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