
Accelerating Deep Learning using Multiple GPUs
and FPGA-Based 10GbE Switch

Tomoya Itsubo∗, Michihiro Koibuchi†, Hideharu Amano∗, and Hiroki Matsutani∗
∗Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan 223-8522

Email: {itsubo@arc,hunga@am,matutani@arc}.ics.keio.ac.jp
†National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan 101-8430

Email: koibuchi@nii.ac.jp

Abstract—A back-propagation algorithm following a gradient
descent approach is used for training deep neural networks. Since
it iteratively performs a large number of matrix operations to
compute the gradients, GPUs (Graphics Processing Units) are
efficient especially for the training phase. Thus, a cluster of
computers each of which equips multiple GPUs can significantly
accelerate the training phase. Although the gradient computation
is still a major bottleneck of the training, gradient aggregation
and parameter optimization impose both communication and
computation overheads, which should also be reduced for further
shortening the training time. To address this issue, in this paper,
multiple GPUs are interconnected with a PCI Express (PCIe) over
10Gbit Ethernet (10GbE) technology. Since these remote GPUs
are interconnected via network switches, gradient aggregation
and optimizers (e.g., SGD, Adagrad, Adam, and SMORMS3)
are offloaded to an FPGA-based network switch between a host
machine and remote GPUs; thus, the gradient aggregation and
optimization are completed in the network. Evaluation results
using four remote GPUs connected via the FPGA-based 10GbE
switch that implements the four optimizers demonstrate that these
optimization algorithms are accelerated by up to 3.0x and 1.25x
compared to CPU and GPU implementations, respectively. Also,
the gradient aggregation throughput by the FPGA-based switch
achieves 98.3% of the 10GbE line rate.

I. INTRODUCTION

A gradient descent optimization algorithm with a back-
propagation algorithm is used for training deep neural net-
works. It iteratively computes gradients of a loss function
and optimizes weight parameters of the neural networks. The
training phase performs a large number of matrix operations,
and thus the computation cost is extremely high. GPUs (Graph-
ics Processing Units) are typically used for accelerating the
gradient computation. Actually, a cluster of computers each of
which equips multiple GPUs has been used for reducing the
training time [1][2][3].

In the parallel and distributed deep learning [4], in addition
to the gradient computation parallelized by multiple GPUs,
their gradients are aggregated and the weight parameters are
then optimized based on the gradients by using a parameter
optimization algorithm. Although the gradient computation
is still a major computation bottleneck of the training, the
gradient aggregation and parameter optimization impose both
communication and computation overheads, which should also
be reduced for further shortening the training time.

In this paper, we focus on the gradient aggregation and
parameter optimization and accelerate them by using FPGA-

Fig. 1. Training with synchronous data parallel model

based 10Gbit Ethernet (10GbE) switches. More specifically,
multiple GPUs are interconnected with a PCI Express (PCIe)
over 10GbE technology [5]. Since these remote GPUs are
interconnected via network switches, the gradient aggregation
and optimization algorithms are offloaded to the FPGA-based
10GbE switches between these remote GPUs. In this case, the
gradient aggregation and parameter optimization are completed
in the network. We implement the gradient aggregation and
four optimization algorithms (i.e., SGD, Adagrad, Adam, and
SMORMS3) on NetFPGA-SUME card [6] that has four 10GbE
interfaces. The proposed FPGA-based switch is evaluated in
terms of the gradient aggregation performance, parameter op-
timization performance, and FPGA resource utilization.

The rest of this paper is organized as follows. Section
II introduces the parameter optimization algorithms, parallel
and distributed deep learning approaches, and remote GPU
technologies over Ethernet. Section III proposes the network
switch that connects remote GPUs and performs the gradient
aggregation and parameter optimization, and Section IV de-
scribes the implementation. Section V shows the evaluation
results of performance and resource utilization. Section VI
concludes this paper.

II. RELATED WORK

A. Parallel and Distributed Training Models

As a distributed deep learning approach, this paper employs a
synchronous data parallel model [4] that combines data parallel
training and synchronous parameter optimization. In the data



Algorithm 1 Algorithm of SGD
Require: lr: Learning rate
Require: θ0: Initial parameter
Require: f(θ): Loss function with parameter θ
Require: g(θ): Gradient of loss function with parameter θ
t← 0
while Exit condition is not satisfied do
t← t+ 1
g(θt)← ∇θtf(θt)
θt ← θt−1 − lr · g(θt)

end while

Algorithm 2 Algorithm of Adagrad
Require: lr: Initial learning rate
Require: θ0: Initial parameter
Require: f(θ): Loss function with parameter θ
Require: g(θ): Gradient of loss function with parameter θ
Require: δ: Small constant
t← 0
h← 0
while Exit condition is not satisfied do
t← t+ 1
g(θt)← ∇θtf(θt)
ht ← ht−1 + g2(θt)
lrt ← lr√

ht+δ
θt ← θt−1 − lrt · g(θt)

end while

parallel model, training data is divided and assigned to GPU
workers, so that the training phase is performed in parallel
by sharing intermediate training results. Then, the gradients
separately computed by GPU workers are combined so as to
optimize weight parameters of a model. Since a synchronous
model is assumed, all the GPU workers are synchronized when
they finish the gradient computation of errors for their assigned
mini-batch. Then, the gradients are aggregated and weight
parameters are optimized.

Figure 1 illustrates an outline of a training phase of the
synchronous data parallel model. Below is the procedure using
multiple GPU workers.

1) A certain amount of training data is picked up as a mini-
batch.

2) The mini-batch is assigned to each GPU worker so that
it processes the assigned training data with a neural
network.

3) Each GPU worker computes error gradients, and they are
aggregated in a host machine.

4) Weight parameters are optimized with the aggregated
gradients, and then the optimized parameters are dis-
tributed to all the GPU workers.

B. Parameter Optimization Algorithms

A gradient method is used for the parameter optimization of
neural networks so that an error calculated by a loss function
is minimized. There are various algorithms to compute new

Algorithm 3 Algorithm of Adam
Require: lr: Learning rate
Require: θ0: Initial parameter
Require: f(θ): Loss function with parameter θ
Require: g(θ): Gradient of loss function with parameter θ
Require: δ: Small constant
Require: β1, β2 ∈ [0, 1) :
t← 0
m0 ← 0
v0 ← 0
while Exit condition is not satisfied do
t← t+ 1
g(θt)← ∇θtf(θt)
mt ← β1 ·mt−1 + (1− β1) · g(θt)
vt ← β2 · vt−1 + (1− β2) · g2(θt)
m̂t =

mt

1−βt
1

v̂t =
vt

1−βt
2

θt ← θt−1 − lr · m̂t√
v̂t+δ

end while

Algorithm 4 Algorithm of SMORMS3
Require: lr: Learning rate
Require: θ0: Initial parameter
Require: f(θ): Loss function with parameter θ
Require: g(θ): Gradient of loss function with parameter θ
Require: δ: Small constant
t← 0
m0 ← 0
v0 ← 0
s0 ← 1
while Exit condition is not satisfied do

t← t+ 1
g(θt)← ∇θtf(θt)
st ← 1 + (1− xt−1 · st−1)
ρt ← 1

st+1
mt ← ρt ·mt−1 + (1− ρt) · g(θt)
vt ← ρt · vt−1 + (1− ρt) · g2(θt)
xt ← fracm2

t vt + δ

θt ← θt−1 − min{lr,xt}√
vt+δ · g(θt)

end while

weight parameters based on gradients of the loss function and
current parameters. A well-known algorithm is SGD (Stochas-
tic Gradient Descent) listed in Algorithm 1. In SGD, gradients
multiplied by a learning rate are subtracted from current weight
parameters to compute new parameters. Although SGD is
simple, it may converge to a local solution with low accuracy
or require a number of iterations to convergence, depending on
a selected learning rate. A careful tuning is thus required for
selecting the hyperparameters.

To improve SGD in terms of accuracy and the number of
iterations to convergence, variants of SGD have been invented.
Typical examples of such algorithms are Adagrad [7], Adam
[8], and SMORMS3 [9]. They are listed in Algorithms 2, 3,



Fig. 2. Connection between hosts and GPUs using ExpEther [5]

and 4. They are widely used to optimize a model with higher
accuracy and smaller number of iterations to convergence.
Since computation costs for these algorithms are higher than
that of SGD, although they can reduce the number of iterations,
they incur a longer computation time for each iteration.

C. Distributed Deep Learning Using GPUs

A large-scale distributed deep learning has been efficiently
executed on GPU clusters. In a GPU cluster, nodes consist of
a host machine with several GPUs and they are interconnected
with a high-speed network, such as 10GbE. In [1], a GPU
cluster consisting of 128 nodes with 1,024 GPUs completed
a training phase of ImageNet in 15 minutes. In [2] and [3],
GPU clusters using 4,352 GPUs and 2,048 GPUs completed the
training phase of ImageNet in 122 seconds and 74.7 seconds,
respectively. They use MPI AllReduce for communication
between the nodes. Although the communication is efficiently
done by using Allreduce, the communication overhead in-
creases as the number of nodes increases, and the execution
time per iteration increases. In [1], approximately 20% of
execution time is spent for communication at 128 nodes.

In [10], it is reported that a significant portion of training
time is spent for the communication. To reduce the communi-
cation overhead, nodes in a cluster circulate their gradients to
aggregate them within a cluster without a specific aggregation
node. Also, since the gradients are more tolerant of accuracy
loss than weight parameters, a compression technique is applied
to the gradients to reduce the communication overhead.

D. Network-Attached GPUs

Since the number of PCIe (PCI Express) slots in a single
machine is limited, the number of required host machines is
increased as the number of GPUs increases, resulting in a
higher cost and power consumption. To mitigate this limitation,
GPUs can be connected to network switches and accessed via
a high-speed network remotely by using PCIe over Ethernet
technology.

Fig. 3. Breakdown of execution times in training phase

TABLE I
PRELIMINARY EVALUATION ENVIRONMENT

CPU Intel Core i7-6850K @3.6GHz
Memory 32GB

GPU NVIDIA Geforce GTX 1080 (8GB RAM) x4
CUDA version 10.0
Chainer version 6.2.0

As a PCIe over 10GbE (10Gbit Ethernet) technology, in this
paper we use ExpEther 10G [5] that can extend PCIe over
10GbE. PCIe devices in a 10GbE network can be assigned
to the host machines as shown in Figure 2. Such network-
attached GPUs have been used to accelerate a large-scale graph
processing [11]. In this paper, we employ network-attached
GPUs for accelerating the gradient computation, while the gra-
dient aggregation and parameter optimization are accelerated
by using network-attached FPGA.

III. FPGA-BASED SWITCH DESIGN

A. Preliminary Evaluations

This section proposes an FPGA-based acceleration of the
gradient aggregation and parameter optimization in distributed
deep learning. First, a preliminary evaluation is conducted to
show execution times for the aggregation and parameter opti-
mization in an overall training phase. To measure the execution
time, Chainer [12] is used as a deep learning framework. Table
I shows the preliminary evaluation environment. GoogleNet is
used as the DNN model, and Adam is used as a parameter
optimization algorithm. A synchronous data parallel model is
used in this evaluation.

Figure 3 shows a breakdown of the execution time. The
execution time for each iteration is divided into six parts: data
preparation, forward propagation, back propagation, gradient
aggregation, parameter optimization, and parameter distribu-
tion. Gradient computation (i.e., forward propagation and back
propagation) are executed by four GPUs, while parameter
optimization using Adam is done by a single GPU. The other
parts, such as gradient aggregation, are done by a host CPU.



Fig. 4. Proposed system (gradient computation is done by “GPUs” and gradient
aggregation and parameter optimization are done by “Switches”)

As shown in Figure 3, the execution times for the compute-
intensive parts, such as forward propagation and back prop-
agation, are large. Those for the gradient aggregation and
parameter optimization account for approximately 10% even
with four GPUs. Although they are not a major bottleneck in
the case of four GPUs, their execution times would be increased
as the number of GPUs increases. Thus, their execution times
should be reduced for further shortening the training time.

B. System Overview

To further reduce the execution times of distributed deep
learning, in this paper we propose to use network-attached
GPUs for the gradient computation, and offload the gradient
aggregation and parameter optimization to network-attached
FPGA in a network.

When a host machine accesses a remote GPU, input data and
output data to/from the GPU go through one or more network
switches. A high speed data processing can be performed
during a communication between the host machine and the
GPU by incorporating in the network switch. In this paper,
we propose to offload the gradient aggregation and parameter
optimization to an FPGA-based 10GbE switch. Conventionally,
this gradient aggregation and parameter optimization are pro-
cessed by CPU. Figure 4 illustrates the proposed system, where
remote GPUs using PCIe over 10GbE are interconnected via
an FPGA-based network switch. The gradient aggregation and
parameter optimization are thus completed in the middle of
communication with low overheads.

Since the 10GbE bandwidth is narrower than PCIe Gen3 x16,
data transfer time may increase in the proposed system. This
issue can be mitigated by using recent ExpEther 40G product.
Actually, offloading the gradient aggregation and parameter
optimization to a network switch can compensate for the lower
bandwidth and efficiently improve their execution times, as
shown in Section V.

C. Gradient Aggregation Function

Here, data flow of the gradient aggregation in the proposed
system is described below. As shown in Figure 4, GPU workers

Fig. 5. Computation graph of SGD

Fig. 6. Computation graph of Adagrad

compute gradients and then send them to a host machine (de-
noted as “CPU”) via the FPGA-based network switch (denoted
as “Switch”). The FPGA-based switch extracts the gradients
from ExpEther packets sent from GPUs to a host. Then the
gradients are aggregated and sent to the host. The host machine
thus receives already-aggregated gradients from the switch.

In large-scale distributed deep learning, a single host ma-
chine will be a bottleneck, and thus multiple host machines
should be used as shown in Figure 4. In this case, these nodes
perform AllReduce to exchange their already-aggregated gradi-
ents. Even with such multiple host cases, gradient aggregation
overheads are greatly reduced by the proposed network switch.

D. Parameter Optimization Function

The parameter optimization is performed in the proposed
switch after all the gradients are aggregated in the network.
As parameter optimization algorithms, SGD, Adagrad, Adam,
and SMORMS3 are implemented on the FPGA-based switch.
These algorithms are selected so as to cover both the simple
algorithm (i.e., SGD) and sophisticated algorithm that requires
relatively higher computation cost (i.e., SMORMS3).

Figures 5, 6, 7, and 8 show their computation graphs, re-
spectively. In the computation graphs, circle symbols represent
computational operations, such as addition, subtraction, multi-
plication, division, square root, and minimum. Square symbols
represent storage elements, each of which is corresponding
to a floating point number. grad represents input gradients
and W represents weight parameters before optimization. The



Fig. 7. Computation graph of Adam

Fig. 8. Computation graph of SMORMS3

other symbols, such as A, B, and C, are algorithm-specific
parameters.

IV. IMPLEMENTATION

A. GPU Packet Trace

Prior to the implementation, this section describes packet
traces of remote GPUs connected via a PCIe over 10GbE
technology. The packet traces were analyzed so that we can
extract the gradients from ExpEther packets and write back
optimized weight parameters to the packets. The packets were
also used for the evaluations of the proposed FPGA-based
network switch.

Since NVIDIA’s GPUs are used for the gradient computa-
tion, CUDA (Compute Unified Device Architecture) [13] is
used as an integrated development environment for the remote
GPUs. In a CUDA program, a cudaMemcpy function copies
data from host main memory to GPU device memory. The
instruction and data are transferred as PCIe over 10GbE packets
and go through the proposed FPGA-based network switch. We
collected the PCIe over 10GbE packet traces between a host
machine and remote GPU devices.

Figure 9 shows the packet capture environment. As shown,
there are three machines: a host machine, a switch machine,
and a capture machine. The host machine is equipped with
an ExpEther host adapter. It executes a CUDA program for
a remote GPU connected via the proposed network switch.
The switch machine is equipped with a NetFPGA-SUME card
that has a Xilinx Virtex-7 XC7VX690T FPGA and four SPF+
connectors for 10GbE interfaces. This FPGA card is used as a

Fig. 9. Packet capture environment

Fig. 10. Block diagram of FPGA-based network switch

4-port 10GbE switch. The packet capture machine is equipped
with a 10GbE network interface card connected to the network
switch. Wireshark is used as a packet capture software at the
capture machine. In this environment, when a CUDA program
is executed on the host machine for the remote GPU, PCIe
over 10GbE packets are transferred between the host machine
and the remote GPU. These packets go through the network
switch and are captured by the capture machine.

B. Baseline Network Switch

Reference Switch Lite design provided by NetFPGA team
[6] is used as a baseline 10GbE switch implemented on
NetFPGA-SUME card. The gradient aggregation and parameter
optimization modules are inserted to this baseline switch.
Figure 10 shows a block diagram of the FPGA-based network
switch. When packets are injected to the network switch, they
are passed from one of four 10GbE interfaces (i.e., RX0 to



Fig. 11. Gradient aggregation and parameter optimization modules

RX3). Input Arbiter module receives packets one by one in
a round robin manner from these interfaces. Next, Outputport
Lookup module performs a routing function based on a packet
header to determine a destination port of the switch. The
gradient aggregation and parameter optimization modules judge
if incoming packets are subject to the gradient aggregation,
parameter optimization, or none of them. The gradient aggre-
gation and parameter optimization modules are explained in
the next subsections. Finally, Output Queue module distributes
packets to one of the four 10GbE ports according to the routing
result by Outputport Lookup module.

C. Gradient Aggregation and Parameter Optimization Modules

Figure 11 illustrates the gradient aggregation and parameter
optimizations modules proposed in this paper. In these mod-
ules, first, based on the ExpEther packet format captured in
Section IV-A, incoming packets are analyzed to see if they are
subject to the gradient aggregation or parameter optimization
modules. If the packet is not related to the aggregation nor
parameter optimization, the packet simply skips these modules.

If the packet is subject to the gradient aggregation, the
sequence number of the gradient field in the packet is read,
and the corresponding gradient is retrieved from a BRAM
that stores the aggregated gradients. Then, the gradients of the
packet and those retrieved from the BRAM are added. After
the addition, the result is written back to both the packet and
BRAM, and then the packet is sent to the next module.

If the packet is subject to the parameter optimization, in
the same way, the sequence number of the gradient field
in the packet is read, and the corresponding parameter is
retrieved from a BRAM that stores the parameter. The gradients
extracted from the packet and the parameters extracted from
the BRAM are fed to PEs, and the parameter optimization
is performed. After the parameter update is completed, new
parameters are stored in the BRAM.

D. Parameter Optimization Algorithms

The parameter optimizer in the 10GbE switch is imple-
mented on NetFPGA-SUME card. The target FPGA device is
Xilinx Virtex-7 XC7VX690T. Xilinx Vivado v2016.4 is used

TABLE II
LATENCIES OF PARAMETER OPTIMIZATION ALGORITHMS

Optimizer # of cycles
SGD 21

Adagrad 99
Adam 137

SMORMS3 164

TABLE III
FPGA RESOURCE UTILIZATIONS OF OPTIMIZATION ALGORITHMS

Optimizer LUTs FFs DSPs
SGD 535 (0.12%) 953 (0.11%) 3 (0.08%)

Adagrad 2,695 (0.62%) 4,880 (0.56%) 9 (0.25%)
Adam 5,409 (1.25%) 10,278 (1.19%) 36 (1.00%)

SMORMS3 6,100 (1.41%) 11,510 (1.33%) 40 (1.11%)

for logic synthesis and implementation. The target operating
frequency is 200MHz. As arithmetic IP cores, Floating-Point
Operator v7.0 provided by Xilinx is used for these algo-
rithms. These IP cores include addition, subtraction, multipli-
cation, division, size comparison, and square root operations.
They use 32-bit single-precision floating-point numbers. The
four optimization algorithms (i.e., SGD, Adagrad, Adam, and
SMORMS3) are implemented on NetFPGA-SUME card. These
algorithms are implemented by combining and/or cascading the
above-mentioned arithmetic IP cores as shown in Figures 5 to
8.

The latencies (the number of clock cycles) to complete these
algorithms are listed in Table II. Here, the latency is a duration
between when a single-precision floating-point input data is
injected and when the corresponding computation result is
generated.

Please note that the above-mentioned parameter optimization
cores are in charge of single input data only. To accelerate
the parameter optimization algorithms, multiple instances or
PEs (processing elements) of these optimizer cores are imple-
mented, as shown in Figure 12. Floating-point numbers of input
data are distributed to these PEs in a round-robin manner and
processed in parallel. Throughput of the parameter optimization
increases as the number of the optimizer PEs is increased, as
long as the parallelism of input data can be exploited; thus
there is a trade-off between the throughput and the resource
utilizations.

The four optimization algorithms are evaluated in terms of
the FPGA resource utilizations of LUTs (Look Up Tables), FFs
(Flip Flops), and DSP (Digital Signal Processing) slices. Table
III shows the result. In this implementation, 32 gradients are
included in a single ExpEther packet, and thus 32 PEs should
be implemented to fully exploit the parallelism of input data.
As shown in Table III, the PE sizes are quite small, and thus
we implemented 32 PEs for each algorithm on the FPGA-based
network switch.

V. EVALUATIONS

A. Gradient Aggregation Throughput

First, the proposed FPGA-based network switch is evaluated
in terms of the gradient aggregation throughput. Test packets
including gradients in 10GbE line rate are generated by using



Fig. 12. Multi-PE implementation of optimization algorithms

TABLE IV
FPGA RESOURCE UTILIZATION OF PROPOSED SWITCH

Optimizer LUTs FFs DSPs
SGD 66,775 (15.36%) 104,582 (11.68%) 96 (2.67%)

Adagrad 135,895 (31.32%) 230,246 (26.19%) 288 (8.00%)
Adam 222,743 (51.37%) 402,982 (46.13%) 1,152 (32.00%)

SMORMS3 244,855 (56.47%) 442,406 (50.68%) 1,280 (35.56%)

Open Source Network Tester [14] and sent to the proposed
network switch. The gradients are represented as an array of 32-
bit single-precision floating-point numbers. In this evaluation,
each packet contains 32 gradients and thus the packet length
is 192 bytes including a packet header and the payload. Open
Source Network Tester is directly connected to the proposed
network switch with a 10GbE SFP+ cable, and the gradi-
ent aggregation is executed on the switch. The aggregation
throughput is measured by counting the number of packets
processed by the proposed switch.

The measurements are performed ten times and the average
throughput is 8.92Gbps. Assuming the packet length is 192
bytes, the 10GbE line rate in our environment is 9.07Gbps
when considering the Ethernet preamble and interframe gap
inserted for each packet. In this case, the measured throughput
of the gradient aggregation is corresponding to 98.3% of the
10GbE line rate in our environment, and thus almost the line
rate is achieved.

B. Resource Utilization

The proposed network switch including the gradient aggrega-
tion and parameter optimization modules is evaluated in terms
of FPGA resource utilizations of LUTs, FFs, and DSP slices.
Table IV shows the resource utilizations of an entire switch in
the cases of the four parameter optimization algorithms. The
resource utilization of SGD version is the lowest. It consumes
approximately 15% of LUTs. Adam and SMORMS3 versions
consume more resources. Especially, SMORMS3 version con-
sumes approximately 56% of LUTs, but even with Reference
Switch modules, their resource utilizations still have room to
add more PEs.

C. Parameter Optimization Latency

In general, the parameter optimization is done by a host CPU
or GPU after the workers compute gradients. By introducing
the proposed network switch, the parameter optimization is
completed in the middle of communication path between host
CPU and remote GPUs. In this section, the proposed network
switch is evaluated in terms of the execution time of the
parameter optimization.

TABLE V
CPU- AND GPU-BASED EXECUTION ENVIRONMENT

OS Ubuntu 16.04
CPU Intel Core i7-6800K @3.4GHz

Memory 32GB
GPU NVIDIA Geforce GTX 1080Ti (11GB RAM) x4

CUDA version 9.0
Chainer version 5.2.0

Fig. 13. Execution time of parameter optimization

The proposed network switch is compared with the following
CPU and GPU-based approaches in terms of the parameter
optimization.

1) CPU-based approach: Assuming a host CPU has already-
aggregated gradients, the execution time for the parame-
ter optimization by the CPU is measured.

2) GPU-based approach: After a GPU device receives
already-aggregated gradients from a host machine, the
execution time for the parameter optimization by the
GPU is measured.

3) Proposed FPGA-based network switch: Assuming the
proposed network switch is placed in a communication
path between a host CPU and a remote GPU device, the
number of cycles for the parameter optimizations by the
network switch is measured.

The CPU- and GPU-based approaches are implemented as
a software program in Chainer [12]. Their evaluation envi-
ronment is listed in Table V 1. In this evaluation, 800,000
parameters are assumed, so that the latest DNN models, such as
DenseNet-BN [15], can be supported. SGD, Adagrad, Adam,
and SMORMS3 algorithms are executed for 800,000 gradients
using these three approaches.

Figure 13 shows the execution times of the parameter
optimization of the four algorithms with the three approaches:
CPU-based, GPU-based, and the proposed FPGA-based net-
work switch approaches. In this graph, X-axis represents the
algorithms and Y-axis represents their execution times. In the
case of SGD, differences between the three approaches are
small. However, the differences become large as the algorithm

1The machine used slightly differs from that used in the preliminary
evaluation in Section III-A due to availability of the machine.



becomes complicated; in the case of SMORMS3, the differ-
ences are the largest. As a result, the proposed network switch
approach outperforms the CPU- and GPU-based approaches by
1.2-3.0x and 1.05-1.25x, respectively.

In the proposed network switch approach, the differences
between the four optimization algorithms are also quite small.
This is because the serialization of input gradients is a major
bottleneck in the proposed network switch regardless of the
optimization algorithm selected. Among the four optimization
algorithms, it turns out that the use of sophisticated algorithms
(e.g., SMORMS3) is beneficial in the proposed network switch
approach compared to the CPU- and GPU-based approaches.

D. Discussions

Although a major bottleneck of the training phase is still the
gradient computation by GPU workers, here we estimate how
much an entire training phase can be accelerated by introducing
the proposed network switch in the case of the preliminary eval-
uation in Section III-A. Using the proposed network switch, the
gradient aggregation and parameter optimization are performed
during a communication between a host machine and remote
GPU devices, so “Aggregation and Optimization” part of Figure
3 is accelerated. The proposed network switch performs the
gradient aggregation in 98.5% of the 10GbE line rate, and
it accelerates the parameter optimization of Adam algorithm
by approximately 1.2x compared to the GPU-based approach.
Based on these results, an entire training phase is shortened by
approximately 5% in the case of the preliminary evaluation in
Section III-A. In addition to this speedup, since the gradient
aggregation and parameter optimization are offloaded to the
network switch, the saved CPU and GPU resources can be
used for the other tasks.

In this paper, only four GPUs are used for the evaluations,
but more GPUs are typically used in distributed deep learning.
As the number of GPUs increases, execution times for the
forward propagation and back propagation decrease, but that
for the gradient aggregation increases. In [1], it is reported
that when 1,024 GPUs are used for large-scale distributed deep
learning, the communication part consumes approximately 15%
of an entire training time. Furthermore, since the execution time
for the parameter optimization cannot be accelerated as the
number of GPUs is increased, the proposed network switch can
accelerate especially such large-scale distributed deep learning
with many GPUs.

VI. SUMMARY

In this paper, the gradient aggregation and parameter opti-
mization were accelerated by an FPGA-based network switch
for distributed deep learning using remote GPUs via PCIe over
10GbE. In distributed deep learning, the number of GPUs is
typically increased in order to increase the degree of paral-
lelism and shorten the training time. However, communication
overheads including gradient aggregation cannot be ignored in
large-scale distributed deep learning. In this paper, we thus
introduced remote GPUs via PCIe over 10GbE and reduced the
overhead by offloading the gradient aggregation and parameter

optimization to the FPGA-based network switch placed in
the middle of communication. There are several parameter
optimization algorithms with different characteristics, such as
computation cost and the number of iterations to conver-
gence. Four parameter optimization algorithms including SGD,
Adagrad, Adam, and SMORMS3 were implemented in the
proposed network switch.

Evaluation results of the proposed FPGA-based network
switch demonstrated that the gradient aggregation achieved
98.3% of the 10GbE line rate. As for the parameter opti-
mization, the proposed network switch outperformed CPU-
and GPU-based approaches by approximately 1.2-3.0x and
1.05-1.25x, respectively. Also, we estimated that the overall
training phase would be accelerated by approximately 5% by
introducing the proposed network switch. As a future work,
we are planning to demonstrate the performance improvement
of overall training phase in a real environment that consists of
a host machine, four remote GPUs via PCIe over 10GbE, and
the proposed FPGA-based network switch.

Acknowledgements This work was partially supported by JSPS
KAKENHI Grant Number JP19H01106 and JST CREST Grant Num-
ber JPMJCR1785, Japan.

REFERENCES

[1] T. Akiba, S. Suzuki, and K. Fukuda, “Extremely Large Minibatch
SGD: Training ResNet-50 on ImageNet in 15 Minutes,” CoRR, vol.
abs/1711.04325, Nov 2017.

[2] H. Mikami, H. Suganuma, P. U-chupala, Y. Tanaka, and Y. Kageyama,
“Massively Distributed SGD: ImageNet/ResNet-50 Training in a Flash,”
CoRR, vol. abs/1811.05233, Nov 2018.

[3] M. Yamazaki, A. Kasagi, A. Tabuchi, T. Honda, M. Miwa, N. Fuku-
moto, T. Tabaru, A. Ike, and K. Nakashima, “Yet Another Accelerated
SGD: ResNet-50 Training on ImageNet in 74.7 seconds,” CoRR, vol.
abs/1903.12650, Mar 2019.

[4] M. Abadi et al., “Tensorow: A system for large-scale machine learning,”
in Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI’16), Nov 2016, pp. 265–283.

[5] J. Suzuki, Y. Hidaka, J. Higuchi, T. Yoshikawa, and A. Iwata, “Expres-
sEther - Ethernet-Based Virtualization Technology for Reconfigurable
Hardware Platform,” in Proceedings of the IEEE Symposium on High-
Performance Interconnects (HOTI’06), Aug 2006, pp. 45–51.

[6] “The NetFPGA Project,” https://netfpga.org.
[7] J. Duchi, E. Hazan, and Y. Singer, “Adaptive Subgradient Methods

for Online Learning and Stochastic Optimization,” Journal of Machine
Learning Research, vol. 12, pp. 2121–2159, Jul 2011.

[8] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
CoRR, vol. abs/1412.6980, Dec 2014.

[9] “RMSprop loses to SMORMS3,” https://sifter.org/∼simon/journal/
20150420.html.

[10] Y. Li, J. Park, M. Alian, Y. Yuan, Z. Qu, P. Pan, R. Wang,
A. Schwing, H. Esmaeilzadeh, and N. S. Kim, “A Network-Centric
Hardware/Algorithm Co-Design to Accelerate Distributed Training of
Deep Neural Networks,” in Proceedings of the International Symposium
on Microarchitecture (MICRO’18), Oct 2018, pp. 175–188.

[11] S. Morishima and H. Matsutani, “High-Performance with an In-GPU
Graph Database Cache,” IEEE IT Professional, vol. 19, no. 6, pp. 58–64,
Nov 2017.

[12] “Chainer: A Powerful, Flexible, and Intuitive Framework for Neural
Networks,” https://chainer.org.

[13] “NVIDIA CUDA,” https://developer.nvidia.com/cuda-zone.
[14] “OSNT 10G Home,” https://github.com/NetFPGA/OSNT-Public/wiki/

OSNT-10G-Home.
[15] G. Huang, Z. Liu, L. van der Matten, and K. Q. Weinberger, “Densely

Connected Convolutional Networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR’17), Jul 2017,
pp. 2261–2269.


