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Abstract. In statistical analysis and data mining, change-point detec-
tion that identifies the change-points which are times when the probabil-
ity distribution of time series changes has been used for various purposes,
such as anomaly detections on network traffic and transaction data. How-
ever, computation cost of a conventional AR (Auto-Regression) model
based approach is too high and infeasible for online. In this paper, an
AR model based online change-point detection algorithm, called Change-
Finder, is implemented on an FPGA (Field Programmable Gate Array)
based NIC (Network Interface Card). The proposed system computes the
change-point score from time series data received from 10GbE (10Gbit
Ethernet). More specifically, it computes the change-point score at the
10GbE NIC in advance of host applications. This paper aims to reduce
the host workload and improve change-point detection performance by
offloading ChangeFinder algorithm from host to the NIC. As evalua-
tions, change-point detection in the FPGA NIC is compared with a
baseline software implementation and those enhanced by two network
optimization techniques using DPDK and Netfilter in terms of through-
put. The result demonstrates 16.8x improvement in change-point detec-
tion throughput compared to the baseline software implementation. The
throughput achieves 83.4% of the 10GbE line rate.

1 Introduction

Due to advances in information and communication technology, data sets ex-
changed over networks are growing rapidly in size and the number. As the data
sets grow, high-bandwidth becomes more important for data analysis and pattern
recognition. Change-point detection is a method to identify the change-points
which are times when the probability distribution of time series changes. Pop-
ular applications of the change-point detection are related to a security field
[13], such as detecting a sudden increase in traffic volume by computer virus
and worm. It is also used in other applications fields, such as transaction data,
resource management, and trend analysis [3].

In a conventional change-point detection algorithm [5], the computational
cost is too high to use it as an online algorithm. ChangeFinder algorithm [8]
solves this issue and can be used as an online change-point detection. However,
its computational cost is still high to detect change-points from data received via
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high bandwidth networks, such as 1Gbps and 10Gbps, due to heavy workload
imposed to the host.

In this paper, change-point detection using ChangeFinder algorithm is im-
plemented on an FPGA (Field Programmable Gate Array) based NIC (Net-
work Interface Card). The proposed system computes the change-point score
from time series data received from 10GbE (10Gbit Ethernet). More specifically,
ChangeFinder algorithm implemented in the FPGA NIC computes the score
in advance of host applications. This paper aims to reduce the host workload
and improve change-point detection performance by offloading ChangeFinder
algorithm from host to the NIC. As evaluations, change-point detection in the
FPGA NIC is compared with a baseline software implementation and those en-
hanced by two network optimization techniques using DPDK and Netfilter in
terms of throughput. The result demonstrates 16.8x improvement in change-
point detection throughput compared to the baseline software implementation,
while keeping the same change-point detection accuracy.

The rest of this paper is organized as follows. Section 2 introduces Change-
Finder algorithm and related FPGA-based accelerators. Section 3 designs the
ChangeFinder module and Section 4 integrates it in the FPGA NIC. Section 5
evaluates area and throughput. Section 6 concludes this paper.

2 Background

In statistical analysis and data mining, change-point detection has been used for
various purposes, such as step detection, edge detection, and anomaly detection.
Since AR model is a primary approach to describe time-varying process, in this
section, we will start with a conventional change-point detection based on AR
model.

2.1 AR Model: A Conventional Way

Let xn1 = x1, ..., xn denote a time-series, and it is divided into xt1 and xnt+1 by
a time point t, wherext1 = x1, ..., xt and xnt+1 = xt+1, ..., xn. Assuming the k-th
order AR model, the conditional probability density function of xt is given as
follows.

p(xt|xt−1
t−k) =

1

(2π)d/2|Σ|1/2
exp

[
−

(xt − ωt)
TΣ−1(xt − ωt)

2

]
, (1)

where d and Σ denote the number of data dimensions and a covariance matrix,
respectively.

ωt is given as follows.

ωt =

k∑
i=1

αi(xt−i − µ) + µ, (2)

where α1, ..., αk and µ are model parameters.
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Fig. 1. Flowchart of ChangeFinder

Let ω̂t denote an estimated ωt calculated by Equation 2 using estimated
model parameters. The model fitting error for xn1 is thus given as follows.

I(xn1 ) =

n∑
t=1

||xt − ω̂t||2 (3)

Here, time t is detected as a change-point when I(xt1)+I(xnt+1) is sufficiently
small compared to I(xn1 ). Although this method is simple, computation cost is
O(n2) and thus cannot be used for online change-point detection.

2.2 ChangeFinder Algorithm

The above mentioned problem is addressed by SDAR (Sequentially Discounting
Auto-Regression model learning) algorithm [15]. ChangeFinder algorithm em-
ploys SDAR algorithm for the online change-point detection. It has been proven
to be efficient. As one of promising applications, for example, [11] utilizes the
SDAR-based change-point detection for detecting fraudulent calls. Apache Hive-
mall [1], which is a machine learning library on Apache Hive, releases a software
module of ChangeFinder. But its hardware design has not been discussed.

Overview Figure 1 shows the ChangeFinder algorithm that consists of two
learning phases. Each step is described below.

Step 1 (Data Input) xt is received at time point t.

Step 2 (First Learning) For each t, an AR model is built. More specifically, a
sequence of probability density functions pt(x) : t = 1, 2, ... is obtained by the
SDAR model, which will be explained later. Please note that pt−1 is learned
based on xt−1. The “outlier” score at xt is calculated as follows.

Score(xt) = − log pt−1(xt) (4)
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Fig. 2. Two-phase learning of ChangeFinder

Step 3 (First Smoothing) For each t, a moving average of the outlier scores
(obtained in Step 2) in a time window is calculated, More specifically, a sequence
of moving averages of the outlier scores yt : t = 0, 1, 2... is obtained as follows.

yt =
1

T

t∑
i=t−T+1

Score(xi), (5)

where T is the length of a time window.

Steps 4 & 5 (Second Learning & Smoothing) For each t, an AR model is built for
the new time-series data yt : t = 0, 1, 2, ... (obtained in Step 3), and a sequence
of new probability density functions qt(x) : t = 1, 2, ... is obtained by the SDAR
model as well as Step 2. A smoothing step is also applied as well as Step 3. Thus,
a sequence of the moving averages zt : t = 0, 1, 2, ... is obtained as follows.

zt =
1

T

t∑
i=t−T+1

(− ln qt−1(yt)) (6)

Here, zt is denoted as the “change-point” score at time t. A higher change-
point score zt indicates a higher possibility of change-point at time t. As shown
in Figure 2, by using the two-phase learning, outliers are eliminated by the first
smoothing step and thus only the change-points where the probability distribu-
tion of time series changes are extracted.

SDAR Model SDAR model is used for online discounting learning that re-
lies on AR model. ChangeFinder algorithm uses SDAR model to obtain the
sequences of probability density functions pt(x) and qt(x). These probability
density functions are derived from ωt and Σ in Equation 1. To obtain these
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parameters, SDAR model is used as follows.

µ̂ := (1− r)µ̂+ rxt (7)

Cj := (1− r)Cj + r(xt − µ̂)(xt−j − µ̂)T (8)

x̂t :=

k∑
i=1

ω̂i(xt−i − µ̂) + µ̂ (9)

Σ̂ := (1− r)Σ̂ + r(xt − x̂t)(xt − x̂t)T (10)

Here, r is a discounting rate. A smaller r indicates a greater influence on past
data. For each t, an weighted average µ̂ is updated using r and xt in Equation 7.
Based on Cj : j = 1, ..., k obtained in Equation 8, estimated ω1, ..., ωk (denoted
as ω̂1, ..., ω̂k) are derived so that the following equation is satisfied.

k∑
i=1

ωiCj−i = Cj (11)

Then ω̂1, ..., ω̂k are used for Equation 9.
By introducing the discounting effect, SDAR model can be used for online

learning on non-stationary time-series data. In addition, the computation cost is
reduced down to O(n) and thus it is preferred for online change-point detection.

2.3 Related Work

In this paper, change-point detection using ChangeFinder algorithm is imple-
mented on an FPGA NIC. NPCUSUM (Non-Parametric Cumulative SUM) is a
classic and simple change-point detection algorithm. In [4], it is implemented on
a high-speed FPGA NIC in order to detect attacks from network. The network
attack detection using NPCUSUM is illustrated below.

S0 = 0 (12)

Sn = max{0, Sn−1 +Xn − µ̂− εθ̂}, (13)

where Xn denotes input data. µ̂ is an estimated value of Xn before an attack, θ̂
is that after the attack, and ε is a tuning parameter. An attack from the network
is detected when Sn becomes unstable and changes drastically. Although it is
quite simple to implement, µ̂ and θ̂ must be known in advance, which limits the
applications of NPCUSUM.

There are some prior works that present FPGA-based outlier detection that
detects anomaly values (not change-points). In [6], LOF (Local Outlier Factor)
algorithm is accelerated by using an FPGA. Normal data are filtered at the NIC
and only anomaly data are transferred to the host machine to reduce data size.

Although our target is change-point detection to detect trend changes, Change-
Finder algorithm can be used for both the change-point detection and outlier
detection. Actually, the result of the first learning phase Score(xt) is used as
outlier score, while the final output zt is used as change-point score. Please note
that this paper is the first work that accelerates ChangeFinder algorithm that
supports both the change-point and outlier detections by using FPGA NIC.



6

Fig. 3. Pipeline of ChangeFinder module

3 ChangeFinder on FPGA

In this section, ChangeFinder module on FPGA is illustrated. It is integrated
into an FPGA NIC in Section 4. ChangeFinder module is written in C. As a
high-level synthesis tool we use Xilinx Vivado HLS for the implementation.

3.1 Pipeline Structure

Figure 3 illustrates an overview of ChangeFinder module. It consists of pipelined
six stages as mentioned in Section 2.2. As input data, a 32-bit float value is fed
to the module. It is processed as follows.

– sdar1: A probability density function pt(x) for input data xt in the first
learning phase is computed.

– log1: A logarithmic loss of the probability density function is computed as
an outlier score.

– smooth1: A moving average yt of the outlier scores is computed as a result
of the first learning phase.

– sdar2, log2, and smooth2: A change-point score zt is computed by the same
operations as the first phase.

These stages are operated at 125MHz. In Figure 3, the number in each
pipeline stage indicates the minimum interval between two input data in the
stage. For example, “1clk” indicates that new data can be accepted in every
cycle. Thus, log1, smooth1, log2, and smooth2 can accept new data every cy-
cle, while sdar1 and sdar2 accept new data in every eight cycles. Please note
that sdar1 and sdar2, log1 and log2, and smooth1 and smooth2 are identical,
respectively. In the following, sdar1, log1, and smooth1 modules are illustrated.

3.2 Detail of Each Module

Figure 4 shows sdar module. Its inputs are r and xt. r is a discounting parameter.
Based on it, (1 − r) is computed. xt is an input float value. The outputs are x̂
and Σ̂. x̂ is an estimated value of xt and Σ̂ is that of Σt.
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Fig. 4. sdar module

As shown, sdar1 is further divided into five pipelined submodules: update mu,
update c, update omega, update estx, and update sigma. xt is stored in (k+1) 32-
bit registers (pastData in the figure) to refer to past k data, where k is the order
of AR model. Ci and ωi are accumulated in (k+ 1) 32-bit registers, respectively.

xt, r, and (1− r) are fed to update mu submodule. update mu submodule is
corresponding to Equation 7 and computes µ. update c submodule is correspond-
ing to Equation 8 and updates Ci registers. update omega submodule updates
ωi registers based on Equation 11. update estx submodule is corresponding to
Equation 9. It computes x̂t. Finally, update sigma submodule is corresponding
to Equation 10. It computes Σ̂.

These five submodules work in a pipelined manner. As a result, sdar1 module
accepts new data xt in every eight cycles.

Log module performs a logarithmic computation as in Equation 4. It is fully
pipelined and can accept new data in every cycle.

Then smooth module computes a moving average of recent T data as in
Equation 5. The maximum T is set to 16 in our design. It is also fully pipelined
and can accept new data in every cycle.

4 ChangeFinder on FPGA NIC

ChangeFinder module is implemented on a 10GbE FPGA NIC. It is denoted as
ChangeFinder NIC in this paper. It performs change-point detection for each
numerical value coming from the 10GbE network. The change-point score com-
puted at the NIC is passed to a host application so that it can identify changes
in given time series data.

In this paper, NetFPGA-SUME [17] is adopted as a 10GbE FPGA NIC. It
has four 10GbE interfaces. Packets received by these interfaces are processed at
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Fig. 5. ChageFinder on FPGA NIC

Fig. 6. Connection between wrapper and ChangeFinder modules

an on-board FPGA and the results are transferred to a host machine via a PCI-
Express Gen3 x8 interface. We use 10GbE MAC IP core provided by Xilinx. We
also use Reference NIC design provided by NetFPGA project [2] as a standard
10GbE NIC function.

We implemented a wrapper module along the datapath of Reference NIC
design so that all the received packets go through the wrapper module. Then
ChangeFinder module designed with Xilinx Vivado HLS is implemented inside
the wrapper module. Figure 5 shows a block diagram of ChangeFinder NIC con-
sisting of ChangeFinder module and Reference NIC. In Reference NIC, packets
received by the four 10GbE interfaces (i.e., RX0 to RX3) and host DMAC are
arbitrated at Input Arbiter module. Then, an output port is selected among
the four 10GbE interfaces (i.e., TX0 to TX3) and host DMAC for each packet.
Packets are stored and transmitted via BRAM Output Queues corresponding
to the selected output ports. Packets are transferred between these modules as
AXI4 stream [14]. The wrapper module is implemented between Input Arbiter
and Outport Lookup modules. We use UDP/IP as transport/network layer pro-
tocols. ChangeFinder module computes a change-point score for each incoming
packet destined to a specific UDP port. All the other packets including ARP
and ICMP just skip the wrapper module without any additional delay.

Figure 6 illustrates the wrapper module and input/output signals of Change-
Finder module. A clock generator of 125MHz and parameter registers are im-
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Fig. 7. Evaluation environment for throughput

plemented for ChangeFinder module. In addition, an input asynchronous FIFO
buffer is inserted between them, because ChangeFinder module is operating at
125MHz and Reference NIC is operating at 160MHz.

The wrapper module identifies packets that contain sample data. Then it
extracts the sample data and feeds them to ChangeFinder module. The packet
conveys sample data xt in a 32-bit float format in a UDP payload. UDP packets
with a specific destination port number are extracted as sample packets and
they are fed to the input FIFO buffer. As tuning parameters, AR model order
k, discounting rate r, and smoothing window size T are stored in the parameter
registers. They are fed to ChangeFinder module in addition to input data xt
when ChangeFinder module is ready. Then the change-point score zt is computed
and fed to an output asynchronous FIFO buffer. The score zt can be embedded
in the original packet and passed to host application.

5 Evaluations

5.1 Evaluation Environment

The target 10GbE FPGA NIC is NetFPGA-SUME that has a Xilinx Virtex-7
XC7VX690T FPGA and four SFP+ 10GbE interfaces. It is mounted to a host
machine via PCI-Express Gen3 x8 interface. We use Xilinx Vivado HLS version
2016.4 for the implementation. Reference NIC part is operating at 160MHz,
while the proposed ChangeFinder module is running at 125MHz.

Figure 7 shows the evaluation environment using two machines and Table 1
shows their specification.

The client and server machines are connected by a SFP+ direct attached
cable for 10GbE. The client machine has an FPGA NIC with OSNT (Open
Source Network Teste) installed, which is a hardware packet generator, and
sends packets to the server. In the server machine, the proposed ChangeFinder
module is implemented on the FPGA NIC and processes incoming time series
data. We measured the number of sample data processed at the ChangeFinder
module per a second as throughput.
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Table 1. Machines used in the environment

Server (host) machine Client machine

CPU Intel Core i5-4460 Intel Core i5-4460
OS Ubuntu 14.04 CentOS 6.6
NIC NetFPGA-SUME (Proposal) NetFPGA-10G for OSNT

Intel X520-DA2 (Software)

5.2 Area Utilization

Table 2 shows area utilization of ChangeFinder NIC including ChangeFinder
module and Reference NIC. As shown in Table 2, ChangeFinder module con-
sumes 5.1 to 12.1% of the FPGA resources. Even with 10GbE NIC functionality,
the entire resource utilizations are less than or equal to 18.8%.

Table 2. Resources used in ChageFinder NIC

ChangeFinder ChangeFinder + Reference NIC

DSP 437 (12.1%) 437 (12.1%)
FF 44,519 (5.1%) 100,403 (11.6%)

LUT 45,836 (10.6%) 81,517 (18.8%)

5.3 Throughput

As mentioned above, OSNT at the client machine transmits time series data at
10GbE line rate to the server machine, and the number of sample data processed
in one second at the server machine is measured as throughput.

The proposed ChangeFinder NIC is compared with three software-based
counterparts implemented in C: Baseline, DPDK, and Netfilter. In Baseline,
a ChangeFinder program is running on the application layer. In DPDK, al-
though the ChangeFinder program is running on the application layer, the pro-
gram directly accesses the NIC without kernel UDP/IP stack. In Netfilter, the
ChangeFinder program is implemented as a kernel module.

Figure 8 shows their throughput. The proposed ChangeFinder module is de-
noted as FPGA(sim) and the ChangeFinder NIC consisting of ChangeFinder and
Reference NIC modules is denoted as FPGA(actual). FPGA(sim) throughput is
derived by the number of cycles, pipeline structure (i.e., interval), and oper-
ating frequency of the ChangeFinder module. FPGA(actual) is the measured
throughput. The proposed FPGA(actual) achieves 16.8x throughput improve-
ment compared to Baseline. It is much higher than those with software-based
optimizations by DPDK and Netfilter.

In practical use cases, a specific field of received packets is extracted and fed
to ChangeFinder module. In this experiment, we used 46-Byte UDP/IP packets
containing a single 32-bit float value. This assumption is pessimistic in terms of
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Fig. 8. Throughput of change-point detection [samples / sec]

throughput. Since internal data width of Reference NIC is 256 bits, these sdar
modules are not bottleneck when packet length is greater than or equal to 256
Bytes. Considering the packet length of 46 Bytes1, the proposed FPGA(actual)
achieves 83.4% of 10GbE line rate.

6 Summary

Toward anomaly detection, change-point detection is used to look for change in a
probability distribution of time series, while outlier detection is used to look for
entity being away from the mean of a probability distribution. ChangeFinder al-
gorithm based on SDAR model supports both the outlier and change-point detec-
tions and can be used for online use. This paper is the first work that accelerates
ChangeFinder algorithm using FPGA and integrates it into NetFPGA-SUME for
high-speed change-point detection at 10GbE NICs. The proposed ChangeFinder
NIC is compared to a UDP baseline and two software-based optimizations, i.e.,
DPDK and Netfilter. The throughput is much higher than these counterparts
and it is 16.8x higher than the UDP baseline. The throughput is corresponding to
83.4% of the 10GbE line rate. To achieve full 10GbE line rate or more, as future
work, we are considering the possibility to use multiple ChangeFinder modules
while keeping their consistency. A demonstration video of current design can be
found in [16].
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