1186

IEICE TRANS. INF. & SYST., VOL.E106-D, NO.7 JULY 2023

[PAPER

A Low-Cost Neural ODE with Depthwise Separable Convolution
for Edge Domain Adaptation on FPGAs

Hiroki KAWAKAMI'®, Hirohisa WATANABE™, Keisuke SUGIURA®, Nonmembers,

SUMMARY High-performance deep neural network (DNN)-based
systems are in high demand in edge environments. Due to its high com-
putational complexity, it is challenging to deploy DNNs on edge devices
with strict limitations on computational resources. In this paper, we derive
a compact while highly-accurate DNN model, termed dsODENet, by com-
bining recently-proposed parameter reduction techniques: Neural ODE
(Ordinary Differential Equation) and DSC (Depthwise Separable Convo-
lution). Neural ODE exploits a similarity between ResNet and ODE, and
shares most of weight parameters among multiple layers, which greatly
reduces the memory consumption. We apply dsODENet to a domain adap-
tation as a practical use case with image classification datasets. We also
propose a resource-efficient FPGA-based design for dsODENet, where all
the parameters and feature maps except for pre- and post-processing lay-
ers can be mapped onto on-chip memories. It is implemented on Xilinx
ZCU104 board and evaluated in terms of domain adaptation accuracy, in-
ference speed, FPGA resource utilization, and speedup rate compared to
a software counterpart. The results demonstrate that dSODENet achieves
comparable or slightly better domain adaptation accuracy compared to our
baseline Neural ODE implementation, while the total parameter size with-
out pre- and post-processing layers is reduced by 54.2% to 79.8%. Our
FPGA implementation accelerates the inference speed by 23.8 times.

key words: domain adaptation, neural ODE, distillation, FPGA, edge de-
vice

1. Introduction

To improve the accuracy of CNNs (Convolutional Neural
Networks) in image recognition tasks, a typical approach
is to build deeper models by stacking more convolutional
layers [1]. Although such image recognition tasks are in
high demand in edge environments, computation resources
are strictly limited in edge devices, making it difficult to
use high-performance CNN models. To reduce the amount
of parameters and mitigate this issue, light-weight neural
network models have been developed [2]-[4]. Their key
idea is to employ DSC (Depthwise Separable Convolution)
that decomposes a conventional convolutional layer into two
smaller convolutional steps.

ResNet[1] is one of conventional CNN models that
stacks a lot of layers for a higher accuracy. To reduce the

Manuscript received August 20, 2022.
Manuscript revised January 11, 2023.
Manuscript publicized April 5, 2023.
"The authors are with Graduate School of Science and Tech-
nology, Keio University, Yokohama-shi, 223-8522 Japan.
a) E-mail: kawakami@arc.ics.keio.ac.jp
b) E-mail: watanabe @arc.ics.keio.ac.jp
¢) E-mail: sugiura@arc.ics.keio.ac.jp
d) E-mail: matutani@arc.ics.keio.ac.jp
DOI: 10.1587/transinf.2022EDP7149

and Hiroki MATSUTANI'®, Member

parameter of ResNet, by utilizing a similarity to ODE (Ordi-
nary Differential Equation), Neural ODE [5] repeatedly uses
weight parameters instead of having a lot of different param-
eters. More specifically, ResNet consists of sets of layers or
building blocks. An input to a building block is added to an
output of the block via a shortcut connection for the resid-
ual learning. This stacking structure of ResNet is interpreted
as an ODE solver, and one execution of a building block is
interpreted as one step of the ODE solver. By repeatedly
executing the same building block C times instead of imple-
menting C different building blocks, the parameter size of
these C blocks in ResNet is theoretically reduced to = 1/C.
Thus, Neural ODE becomes significantly small compared to
that of ResNet, and can be implemented in resource-limited
edge devices.

Recently its implementation on a low-end FPGA
(Field-Programmable Gate Array) device has been reported
in [6]. However, its performance improvement is limited
since only one or two building blocks are implemented on
the programmable logic, and it does not employ any other
parameter reduction techniques. For example, FPGA-based
neural network accelerators and their optimization tech-
niques, such as binarization and quantization, are surveyed
in [7]. In [8], to fully exploit small but high-throughput
on-chip memories of FPGAs, a Feature-Map-Split-CNN
technique that splits a feature map into smaller patches to
be stored in the on-chip memories is proposed. FPGA-
optimized multipliers for DNNs that minimize information
loss from quantization are studied in [9]. DSC is applied
to an FPGA-based CNN accelerator in [10]. Binary neu-
ral network (BNN) is another approach to reduce memory
sizes and computation costs. In [11], FracBNN that exploits
fractional activations to improve the accuracy of BNNs is
proposed.

In this paper, a combination of Neural ODE and DSC,
called dsODENet, is proposed and implemented for FPGAs
to fully utilize on-chip memory resources. As a practical use
case, dsODENet is applied to domain adaptation, which is
useful in a common edge Al deployment scenario. When
a trained model at server side is deployed to edge devices,
the distribution difference between training data and infer-
ence data acquired at edge devices often causes a perfor-
mance degradation, which can be dealt with domain adap-
tation techniques. There are several forms of edge training
scenarios, as surveyed in [12]. In this paper, we assume an
edge training scenario, where the edge training is done at

Copyright © 2023 The Institute of Electronics, Information and Communication Engineers

KAWAKAMI et al.: A LOW-COST NEURAL ODE WITH DEPTHWISE SEPARABLE CONVOLUTION FOR EDGE DOMAIN ADAPTATION ON FPGAS

edge servers (e.g., home servers and MEC servers) located
between edge devices and cloud servers. The edge server
has a general teacher model and datasets collected at the
edge environment, leading to improved scalability and se-
curity. The edge server executes the proposed domain adap-
tation method so that it produces the student models opti-
mized for the edge environment. The students models are
then used in FPGA-based edge devices.

Please note that our approach is basically orthogonal
to quantization techniques and can be combined with them.
dsODENet is implemented on Xilinx ZCU104 board and
evaluated in terms of the domain adaptation accuracy us-
ing image classification datasets, training speed, FPGA re-
source utilization, and speedup rate compared to a software
execution '

The rest of this paper is organized as follows. Section 2
introduces baseline technologies behind our proposal. Sec-
tion 3 introduces our domain adaptation method and Sect. 4
proposes dsODENet and describes the FPGA implementa-
tion of dsODENet. Section 5 shows evaluation results and
Sect. 6 concludes this paper.

2. Related Work
2.1 Depthwise Separable Convolution

CNNs typically stack a set of convolutional layers for a
higher image recognition accuracy, and each convolutional
layer contains a lot of parameters. The parameter size of
a convolutional layer can be calculated as a product of the
number of input channels, the number of output channels,
and kernel size. Let N, M, and K be the number of input
channels, the number of output channels, and the length
of one side of kernel, respectively. The weight parame-
ter size of a conventional convolutional layer is NMK>.
DSC decomposes a conventional convolutional layer into
two smaller convolutional steps: depthwise convolutional
step and pointwise convolutional step (see Figs. 1 and 2).

In DSC, as depthwise convolutional step, as shown in
Fig. 1, a convolution operation involving only spatial direc-
tion (the size is K?) is applied for each of an input feature
map. Different weight parameters are used for each of N in-
put channels; thus its weight parameter size is NK>. Then,
an output feature map of the depthwise convolutional step
(Fig. 1 right) is fed to the pointwise convolutional step as an
input. As shown in Fig.2, a 1 x 1 convolution operation is
applied for each of the input feature map and for each of
M output channels; thus its weight parameter size is NM.
The weight parameter size of DSC is NK? + NM in total,
which is approximately K? times reduction, assuming that
N, M > K.

"This paper is an extended version of a conference version [13]
by fully revising the FPGA implementation. The demonstration
video of the revised FPGA implementation is available at https:
//youtu.be/S4EFQ6ZuX9c.

1187

N / [

\ [L

Filters

Fig.1 Depthwise Convolutional step
N
T
\ M
M

i
B

Filters

Fig.2 Pointwise Convolutional step

2.2 Ordinary Differential Equation

ODE is an ordinary differential equation that contains an un-
known function and its derivatives. An example of a first-
order differential equation is shown in Eq. (1).

dz

— = 1),t,0), 1

7 Jz(0),1,0) (D)
where f(-) is a known function and 6 is the parameter. When
the initial value z(#y) is given, a problem to find z(#;) that
satisfies Eq. (1) is known as an initial value problem. The
solution is formulated as shown in Eq. (2).

2(11)=Z(to)+f f&(®),1,0)dt 2)

In the right side of Eq. (2), the second term contains an inte-
gral of the function, and thus it cannot be solved analytically
for arbitrary functions. To solve the solution approximately,
the following ODESolve function is introduced.

z(t1) = ODES olve(z(ty), to, 1, f) 3)

As an ODESolve function, Euler method shown in Eq. (4)
can be used.

2(tiv1) = z2(8) + hf(2(t), 1, 6) “4)

Euler method is a first-order approximation for solving the
initial value problem, and it is used in this paper.

2.3 Neural ODE

ResNet is a well-known neural network architecture that can
increase the number of stacked layers or building blocks by
introducing shortcut connections. Using a shortcut connec-
tion, an input feature map to a building block is temporarily

1188

‘ Pre-processing + Conv ‘

= , \
C| | ODEBlockl | z

—

~

Downsamplingl

% Batchnorm
C| | ODEBlock2 | =

—] .60
Downsampling2

¥ l . Shortcut
c| | ODEBlock3 | Batchnorm connection
— T @

+ —

Downsampling3

e
C ODEBIock4

l w1 =Mz, 0) + 2¢

Post-processing + FC

Fig.3 ODENet architecture

saved and then it is added to the original output of the build-
ing block to generate the final output of the block. Let z, 6,
and f(z;, 6,) be an input feature map to a building block, pa-
rameters of the building block, and processing result of the
block, respectively. The final output of the building block is
represented as Eq. (5).

Zie1 = f(21,00) + 24)

Please note that Eq. (5) is similar to Eq. (4), though the for-
mer basically assumes vector values while the latter assumes
scalar values. Based on this similarity, one building block
can be interpreted as one step of an ODESolve function.
Assuming that Euler method is used as an ODE solver, it
can be interpreted that a first-order approximation is applied
to solve the output of the building block. In this paper, one
building block is called ODEBlock and the whole network
architecture consisting of ODEBlocks is called ODENet.

Figure 3 illustrates a practical example of ODENet.
The left side of Fig.3 shows the overall ODENet architec-
ture that consists of ODEBlocks and downsampling blocks
in addition to pre-processing and post-processing layers.
The pre-processing layer has a convolutional layer (denoted
as Conv) and the post-processing layer has a fully-connected
layer (denoted as FC). The right side of Fig. 3 shows the in-
ternal structure of an ODEBlock that consists of convolu-
tional layers, batch normalization layers (denoted as Batch-
norm), and ReLU layer. Each ODEBIock is repeatedly ex-
ecuted C times in ODENet, while in ResNet, C different
building blocks are executed once. Let O(L) be the param-
eter size of one building block or ODEBIlock. Total param-
eter sizes of convolutional layers in ResNet and ODENet
are O(CL) and O(L), respectively; thus ODENet can signif-
icantly reduce the parameter size.

2.4 Edge Domain Adaptation

Domain adaptation is a kind of transfer learning, where
knowledge obtained at a source domain is transferred to a

IEICE TRANS. INF. & SYST., VOL.E106-D, NO.7 JULY 2023

different domain called target domain. It is typically as-
sumed that the source domain has enough labeled training
data while the target domain does not. There are three do-
main adaptation approaches: discrepancy-based approach,
adversarial-based approach, and reconstruction-based ap-
proach. The discrepancy-based approach uses fine-tuning
to adapt to a target domain by reducing the domain shift.
The adversarial-based approach reduces the distance be-
tween source and target distributions by using a discrimina-
tor to distinguish between source and target domains. The
reconstruction-based approach assumes that reconstruction
can help improving the performance of domain adaptation.

As explained in Sect. 1, it is useful in a common edge
Al deployment scenario. MobileDA [14] is a discrepancy-
based domain adaptation technique for edge devices based
on knowledge distillation and DeepCORAL [15]. Knowl-
edge distillation is a learning method that uses a large
model and a small model. The large model is called a
teacher model and the small model is called a student model.
By transferring knowledge from a teacher model to a stu-
dent model, the student model can acquire a similar accu-
racy to the teacher model. As a result, the model can be
made smaller while keeping the accuracy. DeepCORAL
is a method to reduce the distance between domains. In
MobileDA, knowledge distillation and DeepCORAL are
used when training student models, which will be detailed
in the next section.

Since the target domain is an edge environment in the
edge domain adaptation scenario, the target model should be
further reduced in parameter size and computation cost. Al-
though pruning, quantization, and distillation are very com-
mon model compression techniques, in this paper we pro-
pose a combination of ODENet (see Fig. 3) and DSC to fur-
ther reduce the number of parameters of the target domain
model.

3. Domain Adaptation Method

In this paper, a modified version of MobileDA is used as an
edge domain adaptation procedure to gain a higher perfor-
mance. While MobileDA uses one teacher model and one
student model as knowledge distillation, our approach uses
one teacher model and two student models. ResNet is used
as the teacher model, while the combination of ODENet and
DSC, called dsODENet, is used in the two student models.
In Sect.5, our approach will be compared to the original
MobileDA.

The training phase consists of three steps. First, a
teacher model is trained with source domain data in Step
1, and then two student models are trained in Steps 2 and
3. Finally, the student model makes inferences. Steps 1, 2,
and 3 of the learning process are shown in Fig.4. In Step
2, the teacher model is fixed (i.e., no update is allowed),
and parameters of student modell are trained by the help of
the teacher model. In Step 3, the student modell is fixed,
and parameters of student model2 are trained by the help of
the student modell. Step 3 is optional, and either student

KAWAKAMI et al.: A LOW-COST NEURAL ODE WITH DEPTHWISE SEPARABLE CONVOLUTION FOR EDGE DOMAIN ADAPTATION ON FPGAS

Step 1: Pretrain Teacher Model

Step 2: Training of Student Modell

1189

Step 3: Training of Student Model2

d N

f—

L [| |

fesnehonel Teacher Model

k & / K Soft

r @.br\(ﬁ ‘

@-br

7 ”
—

Student Model2

Student Modell

DC / k Soft

CE Cross entropy loss
DC DC loss
Soft Soft loss

- -- Trained parameters at current step

— Fixed parameters at current step

—> Source data flow

~— Target data flow

Fig.4 Training steps of our approach. Stepl: Training a teacher model on a server (left). Step2:
Training a student modell on an edge device based on the teacher model with fixed parameters (middle).
Step3: Training a student model2 on an edge device based on the student modell with fixed parameters

(right).

modell or model2 (whichever shows better accuracy) can
be used for the prediction.

As shown in Fig. 4, two loss functions are used in this
domain adaptation: Lg, s and Lpc. Ls,y; is a soft target loss
of knowledge distillation and it is defined in Eq. (6). Lpc is
a loss function borrowed from DeepCORAL [15] and it is
defined in Eq. (7).

Lsofi = Byx,) (LM (x), Ms (x,))] (©6)
k
1 2
Lpc = @Hcs = Cillg, (7)

where L(-) is a loss function, Ms(x;) is an output when tar-
get domain data is fed to a student model, Mr(x;) is an out-
put when target domain data is fed to a teacher model, C;
is a covariance matrix of Mg (x;), C; is a covariance matrix
of Mg(x,), d is degree of the covariance matrix (e.g., the
number of samples), and || - ||12F is Frobenius norm, respec-
tively. Given that target domain labels are produced by a
teacher model, Ly, is a loss value computed by comparing
the generated target domain labels and those predicted by a
student model. Lp¢ is computed by the distance between
the covariance matrices of the two domains. The final loss
function combines Lg, s, and Lpc as shown in Eq. (8).

L =Lsof + ALpc ®)

Lpc is weighted by a hyper-parameter A that controls the
strength of domain confusion. A smaller A increases the
importance of class prediction results by a teacher model,
which was trained by the source domain data. On the other

hand, a larger A increases the importance of domain in-
variant representation, but class prediction accuracy may be
weaken.

Here, target domain samples to be trained are selected
by a given threshold value. Specifically, target domain sam-
ples are first fed to the teacher model in Step 2 or the student
modell in Step 3. Softmax function is then applied to the
class prediction results so that the sum of the probability of
each class is 1.0. If the highest class probability value of a
sample is greater than a given threshold value, the sample is
used for the student model training. This can prevent situa-
tions that incorrect labels produced by the teacher model in
Step 2 or student modell in Step 3 are used for the student
model training. The overall flow of our domain adaptation
method is summarized in Algorithm 1.

Algorithm 1 Proposed domain adaptation method

Pretrain: Training of teacher model
for each epoch do

1) Obtain x; from teacher model if the highest predicted probability
value is higher than threshold

2) Calculate the Soft Target Loss (Eq. (6))

3) Calculate the DC Loss (Eq. (7))

4) Train student modell by the loss function (Eq. (8))
for each epoch do

1) Obtain x; from student modell if the highest predicted probability
value is higher than threshold

2) Calculate the soft target loss (Eq. (6))

3) Calculate the DC loss (Eq. (7))

4) Train student model2 by the loss function (Eq. (8))

Output: Student modell and student model2

1190

4. dsODENet
4.1 Models

Here, we propose a resource-efficient and lightweight DNN
model, termed dsODENet, that takes advantages of both
ODENet and DSC for resource-limited FPGAs. Figures 5
and 6 show two dsODENet models: model with two ODE-
Blocks and that with three ODEBIlocks.

In Fig. 5, the right box shows an internal structure of
ODEBlocks and the left box shows that of a downsampling
block. The structures of ODEBlocks and downsampling
blocks are similar, but in the ODEBlocks, input and out-
put feature map sizes are the same and M = N, while in
downsampling block, input feature map size is scaled down
to 1/2 x 1/2 and M = 2N. Each ODEBIlock is executed
C times, while the downsampling block is executed once.
In the downsampling blocks, a 1 X 1 convolutional operation
with stride 2 (denoted as Conv) is additionally applied to the
shortcut connection. To reduce the parameter size of the two
ODEBIocks case, DSC can be applied to convolutional lay-
ers of ODEBIlocks and downsampling block. We observed
that the accuracy is sometimes sensitive to the DSC on the
downsampling block that rescales the feature map. Con-
sidering the stability, in the two ODEBlocks case, DSC is
applied to the two ODEBlocks while it is not applied to the
downsampling block, as shown in Fig.5. Assuming that N
is 64 in ODEBIlockl, total parameter size of ODEBlockl,
downsamplingl, and ODEBIlock2 in the ODENet without
DSC is 598,016. In dsODENet, the total size is 273,792,
which is 54.2% reduction. Assuming a 32-bit fixed-point
representation, their sizes are 19.1 Mb and 8.8 Mb, respec-
tively.

As shown in Fig. 6, the three ODEBlocks case has three
ODEBIlocks and two downsampling blocks. DSC is ap-
plied to all the three ODEBlocks. Regarding the down-
sampling blocks, their parameter sizes without DSC are
221,184 and 884,736, respectively, assuming that N is 64
in ODEBIlockl. Their sizes depend on the numbers of input
and output channels, and these numbers are doubled once
the downsampling is applied; thus, the second downsam-
pling block (Downsampling2) is much larger than that of
the first one (Downsamplingl). Since DSC on the down-
sampling block is sometimes sensitive to accuracy as men-
tioned above, in this paper DSC is applied only to the sec-
ond downsampling block. Please note that the total pa-
rameter size of ODEBlock1, Downsampling1, ODEBlock2,
Downsampling2, and ODEBlock3 in the ODENet without
DSCis 2,695,168. In dsODENet, the total parameter size is
544,000, which is 79.8% reduction. When a 32-bit fixed-
point representation is employed, their sizes are 86.2Mb
and 17.4Mb, respectively. This parameter size reduction
by DSC is significant since these parameters can be imple-
mented on BRAM or URAM of modest FPGA devices for
simplicity.

In Sect. 5, ResNet, ODENet, and dsODENet are used

IEICE TRANS. INF. & SYST., VOL.E106-D, NO.7 JULY 2023

Depthwise Convl
\ Pre-processing + Conv \ —
Convl Pointwise Convl

C| | ODEBlockl | —

'
Downsamplingl

c| | ODEBlock2 |
v

Batchnorm
+)Je— Post-processing + FC

b

Batchnorm

Batchnorm [Conv

Depthwise Conv2

Batchnorm
12
RelLU + —

- @@

Fig.5 Model with two ODEBlocks

L

|

Depthwise Convl

|
| Pre-processing + Conv | |

Depthwise Convl

Pointwise Convl

Batchnorm

C| | ODEBlockl |

Pointwise Convl
Batchnorm [Conv

Downsamplingl

C| | ODEBlock2 | =

Depthwise Conv2
Pointwise Conv2 Pointwise Conv2

Batchnorm C| | ODEBlock3 | Batchnorm
v v

+ e o

Fig.6 Model with three ODEBlocks

Depthwise Conv2

— Downsampling2

Post-processing + FC

as student models of the domain adaptation as mentioned in
Sect.3. In this paper, ResNet-50[1] is used as a baseline.
C is set to 10 so that the number of convolutional layers of
ODENet/dsODENet is same as that of ResNet-50.

4.2 FPGA Accelerator

This section describes the design of a dSODENet accelera-
tor using FPGA SoC. As mentioned in Sect. 3, dsODENet
repeatedly executes ODEBlocks, which is a bottleneck in
the execution time. Thus, all the ODEBlocks and interme-
diate processing between them are accelerated by the pro-
grammable logic of the FPGA.

4.2.1 Top Module

Figure 7 illustrates a block diagram of the board-level imple-
mentation, which is divided into a processing system (PS)
part and a programmable logic (PL) part. The proposed
dsODENet IP core and a direct memory access (DMA) con-
troller are instantiated in the PL part. The PS part sets up
the IP core and transfers input images to the PL part by

KAWAKAMI et al.: A LOW-COST NEURAL ODE WITH DEPTHWISE SEPARABLE CONVOLUTION FOR EDGE DOMAIN ADAPTATION ON FPGAS

: Master Port

: Slave Port AL
dsODENet IP
ZYNQ PS n AXl4-Lite @
DMAC
ARM | DDR «—{HPMport M}«{ }++8| M——s]
Cortex-A53 Memory
{ HPC port [S M [§«—M
AX14-Stream

Fig.7 Board-level implementation

the DMA controller, while the PL part computes feature
maps of the incoming images sent from the PS part. The PS
part is also in charge of pre-processing and post-processing
parts of dsODENet. For high-speed data transfer, the DMA
controller is connected to a 32-bit wide high-performance
slave port (HPC port) in the AXI4-Stream protocol (red line
in Fig.7). The control registers are connected to a high-
performance master port (HPM port) via the AXI4-Lite in-
terface (blue line in Fig. 7).

The dsODENet core has two modes: weight transfer
mode and feature map computation mode. In the weight
transfer mode, the IP core receives weight parameters of
dsODENet via the AXI4-Stream interface and stores them
in on-chip BRAM and URAM buffers. The transfer mode is
finished when the IP core sends back a 32-bit nonzero value
as an acknowledge message. In the feature map computa-
tion mode, a pre-processed input image (R¥®*?) is sent to
the IP core, and then it is processed by ODEBlock1, Down-
sampling1l, ODEBlock2, Downsampling2, and ODEBlock3
in sequence to produce the final feature map (R!*1%236),

These ODEBIlocks are iteratively executed by feeding
back the output of an iteration step to the input of the next
step. Since the weight parameters used in the iterations
are the same, utilizations of internal memories (BRAM and
URAM) can be significantly reduced. In addition, the de-
sign is scalable in terms of the number of iterations, since
the hardware resources are constant even if the number of
iterations is increased. Please note that the weight param-
eters and feature maps are packed in the internal memories
by quantizing them with 24-bit or 20-bit fixed-point formats,
as analyzed in Sect. 5.3.1. By the quantization, these blocks
are running efficiently without accessing on-board DRAM
modules.

4.2.2 dsODENet and ODEBlock Modules

As shown in Fig.8, the dsODENet IP core consists of
five major modules: ODEBlockl, Downsamplingl, ODE-
Block2, Downsampling2, and ODEBlock3. The number of
output channels is increased while the output feature map
size (width and height) is decreased at each Downsampling
block. That is, output feature map sizes of ODEBlockl,
Downsamplingl, ODEBlock2, Downsampling2, and ODE-
Block3 are 8 x 8 x 64,4 x4 x 128,4 x4 x 128,2 x 2 X 256,
2 x 2 x 256, respectively. As shown in Fig. 8, each ODE-
Block consists of two sets of AddTime, DepthwiseConv,

1191

B

AddTime
ODEElockl —
DepthwiseConv

Downsamplinl

BatchMormReLL!
‘ODEElock2
AddTime

Downsamplin2

CODEBIOCkS

Fig.8 computation of dSODENet IP core

PaointwiseConv

DepthwiseConv

PointwiseConv

BatchMormRelLU

[M]

PointwiseConv, BatchNorm, and ReLU modules. AddTime
module inserts a new channel representing the current it-
eration count to the feature map. That is, it increases the
number of channels by one, and its feature map buffer is
also extended to store one more channel. Since ODEBlocks
have a skip-connection structure, three feature map buffers
are implemented in each ODEBIlock: two for input and out-
put buffers of the convolutional modules and one for saving
the original input feature map.

Loop unrolling and loop pipelining directives are used
in DepthwiseConv, PointwiseConv, ReLU, and BatchNorm
modules. The unrolling factor is set to eight in these mod-
ules, so they are processed by eight arithmetic units in par-
allel.

4.2.3 Implementation

dsODENet IP core was designed and implemented with Xil-
inx Vitis HLS 2020.2 and Xilinx Vivado 2020.2 for the high-
level synthesis and place-and-route of the design. We chose
Xilinx Zynq UltraScale+ MPSoC series as a target FPGA
platform, and ZCU104 evaluation board kit (XCZU7EV-
2FFVC1156) was used in this paper. The CPU on the FPGA
device is ARM Cortex-A53 running at 1.2 GHz. We used
Python 3.8.2 and PyTorch 1.10.2 in the software stack.

The weight parameters of dsSODENet are trained by a
domain adaptation method described in Sect. 3. The trained
parameters are then transferred to the DRAM of the target
FPGA SoC. To start an inference processing at the PL part,
the parameters are moved to internal BRAM and URAM
buffers in the weight transfer mode. In the feature map com-
putation mode, an input feature map is transferred to the PL
part, it is processed at the PL part, and then the output fea-
ture map is sent back to the PS part. Please note that the pa-
rameters and feature maps are implemented on the BRAM
and URAM of the FPGA to fully enjoy benefits of using
fast on-chip memories. A larger batch size is typically used
in the training phase for a fast training. In contrast, this
inference accelerator assumes a single batch size since the

1192

inference processing is triggered by a per-request basis.

Although the BRAM and URAM sizes are 11 Mb and
27Mb in total, respectively, their instance sizes are 36 kb
and 288 kb, which means that, depending on the number
and sizes of parameter arrays, a part of BRAM and URAM
instances is underutilized. In our design, each parameter ar-
ray is carefully implemented on either BRAM or URAM
instances to minimize the underutilized on-chip memories.
More specifically, in the three ODEBlocks case, param-
eter arrays of normal convolutional layers of Downsam-
pling1, those of depthwise and pointwise convolutional lay-
ers of Downsampling2, and those of pointwise convolu-
tional layers of ODEBIlock3 are implemented on the URAM
instances; and the others are implemented on BRAM in-
stances.

5. Evaluations

The proposed dsODENet for FPGAs is evaluated with an
edge domain adaptation scenario using image recognition
datasets. For accuracy evaluations, it is implemented with
Pytorch 1.8.1 and torchvision 0.9.1. For resource utilization
and performance evaluations, it is implemented with Xilinx
Vivado v2020.2 for ZCU104 FPGA board. Specification of
the board is shown in Table 1.

5.1 Number of Parameters

A comparison of the number of parameters for ResNet,
ODENet, and dsODENet is shown in Tables 2 and 3. The
percentage compared to the number of parameters in ResNet
is listed in ODENet and dsODENet. The reduction in the
number of parameters from the third building block, which
has a large number of parameters in ResNet, to ODEBlock3
in dSODENet is significant. In total, dSODENet reduces the

Table 1 Specification of ZCU104 board
(N} Pynq Linux (Ubuntu 18.04)
CPU ARM Cortex-A53 @ 1.2GHz
DRAM DDR4 2 GB
FPGA Zynq UltraScale+ XCZU7EV-2FFVC1156

Table2 Number of parameters of ResNet
ResNet

o Convl 368,640
Building block1 Conv2 368.640
Conv 8,192

Downsamplingl | Convl 73,728
Conv2 147,456

o Convl 1,474,560
Building block2 Conv2 1,474,560
Conv 32,768

Downsampling2 | Convl 294,912
Conv2 589,824

o Convl 5,898,240
Building block3 Conv2 5.898.240
Others 9,728
Total 16,639,488

IEICE TRANS. INF. & SYST., VOL.E106-D, NO.7 JULY 2023

number of parameters of these blocks by 96.7% compared
to ResNet.

A comparison of the number of parameters in the
two building-block case (denoted as Block2) and the
three building-block case (denoted as Block3) for ResNet,
ODENet, and dsODENet is shown in Fig.9 in a logarith-
mic scale. As shown, the number of parameters is greatly
reduced in the order of ResNet, ODENet, and dsODENet.
Also, the three ODEBIlocks case in dsODENet has fewer
parameters than the two ODEBIlocks case in ODENet.

5.2 Accuracy

For accuracy evaluations, Office-31 dataset (Office-31 [16]),
road signs datasets (Synth signs [17] and GTSRB [18]), and
digit datasets (SVHN [19] and MNIST [20]) are used as the
datasets. Their input image sizes are 256x256, 40x40, and
32x32, respectively. The numbers of their classes are 31,
43, and 10. The amounts of their domain shifts are various,
small, and large. The MNIST images are grayscale, while
SVHN images are RGB colored; thus the MNIST images
are duplicated for three channels so that they are compatible
with the 3-channel SVHN images. Office-31 is a popular
dataset used for domain adaption tasks. It contains 4,110
images, and they are divided into three domains: Amazon
(A-domain), Webcam (W-domain), and DSLR (D-domain).
The numbers of their images are 2817, 795, and 498, respec-

Table3 Numbers of parameters of ODENet and dsODENet
ODENet dsODENet
ODEBlockl | €onvl| 36864 (10.0%) | 4,672 (1.3%)

Conv2 36,864 (10.0%) 4,672 (1.3%)
Conv 8,192 (100.0%) 8,192 (100.0%)
Downsampling! | Convl 73,728 (100.0%) | 73,728 (100.0%)
Conv2 | 147,456 (100.0%) | 147,456 (100.0%)
Convl 147,456 (10.0%) | 17,536 (1.2%)
Conv2 | 147,456 (10.0%) | 17,536 (1.2%)
Conv 32,768 (100.0%) | 32,768 (100.0%)
Downsampling2 | Convl | 294,912 (100.0%) | 33,920 (11.5%)
Conv2 | 589,824 (100.0%)| 67,840 (11.5%)
Convl | 589,824 (10.0%) | 67,840 (1.2%)

ODEBIlock2

ODEBlock3 Conv2 | 589,824 (10.0%)| 67.840 (1.2%)
Others 1,664 1,664
Total 2,696,832 (16.2%) | 545,664 (3.3%)
- mm Block2
» 107 — B Block3
g —
7] |]
£ —
o [
2 | . .
> .| . ||
2 10° | S -_
I I
g . |
I I —
z [I —
| I |
ResNet ODENet dsODENet

Fig.9 Comparison of the numbers of parameters of three models

KAWAKAMI et al.: A LOW-COST NEURAL ODE WITH DEPTHWISE SEPARABLE CONVOLUTION FOR EDGE DOMAIN ADAPTATION ON FPGAS

Table4 Number of parameters of models
Mode Number of parameters
dsODENet 595,072
AlexNet 61,100,840
CDTrans [22] 86,578,408
DSN [23] 1,102,159
DFA [24] 31,493,150
ADDA [25] 426,070
M-T [26] 4,338,283

tively. A—W means a domain adaptation scenario in which
A-domain is a source domain and W-domain is a target do-
main. The numbers of W-domain and D-domain images are
smaller than that of A-domain. A—W and A—D scenar-
ios are examined in this paper because domain adaptation
from a domain with more images to that with less images is
a typical use case. The edge domain adaptation procedure
proposed in Sect. 3 is used. All the labeled source domain
data and all the unlabeled target domain data are used for
the training phase. The accuracy is then evaluated with all
the labeled target data.

Either SGD or Adam (whichever shows better accu-
racy) is selected as an optimizer. The learning rate is re-
duced based on Eq. (9).

_ 10
(1 +ap)’

where 79 = 0.01, @« = 10, § = 0.75, and p is linearly
changed from O to 1. In the evaluations, the same exper-
iments are executed three times and their accuracy values
are averaged and reported. As for a teacher model, an ini-
tial model was pre-trained with ImageNet dataset, and using
this initial model without the final fully-connected layer, the
teacher model is trained. The learning rate is reduced to 1/10
for these pre-trained layers. Different student models that
use ResNet-50, ODENet, and dsODENet are compared in
terms of accuracy. ODENet and dsODENet use three ODE-
Blocks as shown in Fig. 6. The number of executions C of
an ODEBIlock is set to 10. They are also compared to a
teacher model of ResNet-50 and other domain adaptation
techniques [14], [21]-[26].

Table 4 compares the parameter sizes of dsODENet,
AlexNet, CDTrans, DSN, DFA, ADDA, and M-T. Please
note that the accuracies of CDTrans, DFA, and M-T are
higher than the proposed approach as shown in Tables 5—
7, only the dsODENet and ADDA models could be im-
plemented solely using BRAM/URAM slices of the tar-
get FPGA board (Xilinx ZCU104 board) due to the their
scarcity. Please note tha, CDTranst DSN, DFA, ADDA, and
M-T are domain adaptation methods but they do not rely
on the knowledge distillation; thus they do not use student
models.

n €))

5.2.1 Office-31 Dataset

As a counterpart, MobileDA uses AlexNet as a student
model and ResNet-50 as a teacher model. 80% of target

1193
Table 5 Domain adaptation accuracy of Office-31 dataset
Model A-W (%) A-D (%)
CDAN [21] 77.9 75.1
MobileDA [14] 71.5 75.3
CDTrans [22] 97.0 96.7
Teacher model ResNet-50 75.8 78.3
Student modell ResNet-50 80.6 80.9
Student modell ODENet 71.3 78.8
Student modell dsODENet 80.4 79.1
Student model2 dsODENet 83.2 79.1

domain data is used for the training. As another coun-
terpart, CDAN [21] is also considered, which is a domain
adaptation technique based on adversarial training. In addi-
tion, CDTrans [22] is a domain adaptation method using a
transformer. Table 5 shows the evaluation results of CDAN,
MobileDA, and our approach with different student models.

“Student modell dsODENet” and “Student model2
dsODENet” are our proposed models, where dsSODENet is
used for student modell and student model2, respectively.
As shown in the table, the accuracy of A—»W is improved
by 4.6% and 2.8% for the teacher model to “Student modell
dsODENet” and “Student modell dsODENet” to “Student
model2 dsODENet”, respectively. Also, the accuracy of
A—D is improved by 0.8% for the teacher model to ““Stu-
dent modell dsODENet”. However, there is no improve-
ment in accuracy from the student modell to the student
model2.

Please note that the proposed approach differs from the
original MobileDA in the following points. The proposed
approach does not use hard target loss in the loss function
because in our evaluation environment the accuracy was
slightly improved by not using it. In the proposed approach,
two student models are used. That is, a student modell is
trained from a teacher model, and then a student model2
is trained from the student modell. In this paper, we as-
sume that “Student modell dsODENet” corresponds to the
results of MobileDA when dsODENet is used as a student
model. In other words, accuracy differences between ““Stu-
dent modell dsODENet” and “Student model2 dsODENet”
are improvements obtained by the proposed approach. As
shown in Tables 5, 6, and 7, the proposed approach actually
improves the accuracy in most cases. Accuracy of CDTrans
outperforms the proposed approach while its parameter size
is much larger than the proposed one.

Figure 10 shows the training speeds of different student
models (ResNet-50, ODENet, and dsODENet) for A—D
scenario. As shown in the figure, the student model of
ResNet-50 is converged faster than the others, followed by
those of dSSODENet and ODENet. In ResNet-50, the number
of implemented building blocks is optimized for each fea-
ture map size in this experiment. These numbers in ResNet-
50 are interpreted as the numbers of continuous executions
of ODEBIlocks in the cases of ODENet and dSODENet (C in
Figs. 5 and 6). As mentioned, in ODENet and dsODENet, a
single execution of an ODEBlock is interpreted as a single
step of Euler method. Reducing the number of executions C

1194
Table 6 Domain adaptation accuracy of road sign datasets

Model Synth signs—GTSRB (%)

DSN [23] 93.1

DFA [24] 97.5

Teacher model ResNet-50 95.1

Student modell ResNet-50 97.1

Student modell ODENet 97.0

Student modell dsODENet 97.1

Student model2 dsODENet 97.3

Table 7 Domain adaptation accuracy of digit datasets
Model SVHN—MNIST (%)
ADDA [25] 76.0
M-T [26] 93.3
Teacher model ResNet-50 76.5
Student modell ResNet-50 82.6
Student modell ODENet 82.5
Student modell dsODENet 83.5
Student model2 dsODENet 86.6

80 SSa
60

Accuracy [%]
N~
o

20 / — ResNet
) —— ODENet
| dsODENet
0
0 10 20 30 40 50
Epochs

Fig.10 Training speed of different student models in Offce-31 dataset

of an ODEBIock degrades the approximation performance
and reduces the accuracy. To obtain a stable accuracy, the
number of continuous executions C of an ODEBlock is
equally set to 10 for each feature map size in ODENet and
dsODENet cases, though there is still a room for optimiza-
tion. Please note that the training speed of dsODENet is
faster than ODENet, because in dSODENet the number of
parameters to be trained is reduced by 54.2% to 79.8% by
DSC.

5.2.2 Road Sign Dataset

As a counterpart, DSN [23] which is a domain adaptation
based on adversarial training is compared to our approach
with different student models. In addition, DFA [24] em-
ploys a latent alignment approach based on the encoder-
decoder formulation. Table 6 shows the evaluation results of
DSN and our approach with different student models. Please
note that network structures of DSN and ours are different
and a fair comparison is difficult. Accuracy of DFA is higher
than that of the proposed approach and DSN while its pa-
rameter size is larger than the proposed one.

“Student modell dsODENet” and “Student model2

IEICE TRANS. INF. & SYST., VOL.E106-D, NO.7 JULY 2023

dsODENet” are our proposed models, where dsODENet is
used for student modell and student model2, respectively.
As shown in the table, the accuracy of Synth signs—GTSRB
is improved by 2.0% and 0.2% for the teacher model to “Stu-
dent modell dsODENet” and “Student modell dsODENet”
to “Student model2 dsODENet”, respectively. The accu-
racy of “Student modell dsODENet” becomes higher than
that of the teacher model because the two datasets contain
a large enough number of images and their domain shift is
small. In contrast, the improvement in accuracy from “Stu-
dent modell dsODENet” to “Student model2 dsODENet”
is small. As the domain shift is small, the accuracies of
ResNet-50, ODENet, and dsODENet are similar.

5.2.3 Digit Dataset

As a counterpart, ADDA [25] which is also a domain adap-
tation based on adversarial training is considered. In addi-
tion, Mean teacher (M-T) [26] is an approach using a self-
ensembling technique.

Table 7 shows the evaluation results of ADDA and our
approach with different student models. As shown in the
table, there is an improvement of 7.0% and 1.7% in accu-
racy from teacher model to “Student modell dsODENet”
and from “Student modell dsODENet” to “Student model2
dsODENet”. Accuracy of M-T is higher than that of the
proposed approach and ADDA while its parameter size is
larger than the proposed one. We consider that this two-step
improvement in accuracy is the result of both the domain
adaptation and knowledge distillation. As shown in Algo-
rithm 1, target domain samples to be used for knowledge
distillation are selected by a given threshold value. If the
threshold value is low, the number of training samples for
a student model1/2 increases, while it becomes more likely
that samples mislabeled by a teacher model/student model 1
are used during training. We set a higher threshold value
in the first knowledge distillation from a teacher model to
a student modell. We observed a lower threshold causes
a training instability because this is an adaptation from a
larger model to a smaller model. We set a lower threshold
value in the second knowledge distillation from the student
modell to a student model2. Since their model sizes are the
same, we observed that the lower threshold can increase the
number of training samples and produce slightly better ac-
curacy, as reported in this section. Please note that adding
the second-step is meaningful while adding the third-step
does not have a similar impact if the threshold value is the
same.

Figure 11 shows the training speeds of different student
models (ResNet-50 and dsODENet) for SVHN—MNIST
scenario. In Fig. 11, six lines are shown in total since
ResNet-50 and dsODENet are trained three times each.
dsODENet is converged fast and stable compared to
ResNet-50 because the number of parameters of dsODENet
is significantly reduced compared to ResNet-50. For domain
adaptation tasks with a larger domain shift, the accuracy of
ResNet-50 becomes higher than that of dsODENet but the

KAWAKAMI et al.: A LOW-COST NEURAL ODE WITH DEPTHWISE SEPARABLE CONVOLUTION FOR EDGE DOMAIN ADAPTATION ON FPGAS

e —
80 =

<60

>

&)

e

240

()

P
20 —— ResNet

dsODENet

0 1 2 3 4 5 6 7 8
Epochs

Fig.11 Training speed of different student models in digit datasets

Table 8

Model SVHN—-MNIST (%)
Teacher model ResNet-50 76.51
Student model2 dsODENet w/o quantization 86.57
Student model2 dsODENet w/ quantization 86.55

Domain adaptation accuracy of digit datasets with quantization

training curve of dSODENet is still stable.
5.3 FPGA Evalutation

We develop a dSODENet accelerator by offloading the com-
putation onto the FPGA SoC. Since a quantization is applied
in our FPGA implementation, in this section it is evaluated
in terms of the inference accuracy, resource utilization, and
performance on the FPGA.

5.3.1 Effect of Quantization

In the FPGA implementation, a quantization is applied to
pack the weight parameters and feature maps in the BRAM
and URAM slices. More specifically, a 20-bit fixed-point
format is used in the convolutional layers, while a 24-bit
fixed-point format is used in the other layers. It is thus ex-
pected that the actual accuracy of the FPGA implementation
slightly differs from those evaluated in Sect.5.2. Table 8
shows evaluation results of the accuracy with digit Dataset
when the quantization is applied. We evaluated the effect
of quantization only with the digit datasets. This is because
only the dSODENet models for relatively small inputs (digit
images) could be implemented solely using BRAM/URAM
slices due to their scarcity. Because the other datasets (e.g.,
Office-31) contain larger images, which necessitates more
aggressive quantizations and manual optimizations in order
to implement dsSODENet models for those larger inputs on
the target FPGA. Since BRAM/URAM sizes of FPGA de-
vices are continually increasing, such optimized implemen-
tations for larger datasets are our future work. The results
show that the accuracy drops by 0.02% but this accuracy loss
is much smaller than the accuracy improvement obtained
by the proposed domain adaptation method compared to the
original teacher model.

1195

Table 9 FPGA resource utilization of dsSODENet

BRAM DSP FF LUT URAM
Block2 | 208 (67%) 760 (44%) 22,880 (5%) 63,461 (28%) 64 (67%)
Block3 | 265 (85%) 138 (8%) 19,755 (4%) 49,014 (21%) 92 (96%)

Table 10 Execution time of each block on FPGA

FPGA (ms) CPU (ms) | Speedup
ODEBIlock1 7.30 112.85 15.5
Downsampling1 5.14 16.13 3.1
ODEBIlock2 6.42 213.42 332
Downsampling2 1.46 34.56 23.7
ODEBIlock3 4.84 396.98 82.0
DMA transfer (PL) 0.13 - -
DMA transfer (PS) 7.24 - -
Total 32.53 £ 1.58 (773.94 + 35.0 23.8

5.3.2 Resource Utilization

Table 8 shows FPGA resource utilizations when two ODE-
Blocks case (Block2) and three ODEBIlocks case (Block3)
are implemented. Importantly, weight parameter and fea-
ture map arrays of the Block3 case can be implemented on
the BRAM and URAM slices of the FPGA without using
external DRAMs. The results also show that the Block2
implementation still has room in the BRAM and URAM ca-
pacities, while they are close to 100% in the Block3 im-
plementation, which means that there is room for improving
the performance and accuracy in the Block2 implementation
by introducing more aggressive parallelization and wider bit
widths.

5.3.3 Execution Time

Table 10 compares the execution time of each block for a
single data sample between our FPGA implementation and
its software counterpart (denoted as FPGA and CPU). The
mean and standard deviation of the execution time to infer
one image is calculated by inferring 100 images 30 times.
The execution time for each block in the FPGA is calcu-
lated from the number of cycles of the high-level synthesis
result. In the FPGA case, a DMA transfer between PS—PL
is additionally required, while the high-level synthesis re-
sult takes into account only for the PL part. Thus, there
is an execution time difference between the high-level syn-
thesis result and the actual on-board execution time that
takes into account the DMA transfer in the PS part, which
is denoted as DMA transfer (PS) in Table 10. Both the
ODEBIocks and downsampling blocks were accelerated by
3.1-82.0 times, which contributes to the overall speedup of
23.8 times and 30.6 times with and without considering the
DMA transfer (PS). If we focus on a single execution time
of each block, the downsampling blocks achieved better
speedups than ODEBIlocks, as they involve normal convolu-
tion, which is more compute-intensive than DSC. However,
ODEBIocks are repeatedly executed C times and thus their
impact is higher than those of Downsamplingl and Down-
sampling2, as shown in Table 10. Further performance im-

1196

provement of the FPGA can be expected by more aggressive
parallelization of multiply-add operations.

Please note that an advantage of our approach is that
dsODENet is a ResNet-like backbone architecture which
can be stored in small but high-throughput on-chip mem-
ories of FPGAs. It is thus orthogonal to other promis-
ing techniques, such as split-CNN technique [8] and ag-
gressive quantization including BNNs [11]. Another advan-
tage of our approach is that, by increasing C parameter of
ODENet/dsODENet, we can increase the number of itera-
tions of ODEBlocks/dsODEBlocks to improve the accuracy
without increasing the number of parameters.

6. Conclusion

In this paper, a combination of Neural ODE and DSC,
called dsODENet, is proposed and implemented for FPGAs.
dsODENet is applied to a distillation-based edge domain
adaptation as student models. All the dsODENet blocks
except the pre- and post-processing layers are implemented
on PL part of Xilinx ZCU104 FPGA board and the others
are executed on PS part. Importantly, all their parameter
and feature map arrays are stored in URAM and BRAM in-
stances of the FPGA without relying on external DRAMs. It
is evaluated in terms of domain adaptation accuracy, training
speed, FPGA resource utilization, and speedup rate com-
pared to a software execution. Regarding the domain adap-
tation accuracy, the student models of dsODENet are com-
parable to or better than that of ODENet and better than
some existing domain adaptation methods. The total param-
eter size of dsODENets without pre- and post-processing
layers is reduced by 54.2% to 79.8%. The FPGA implemen-
tation accelerates the prediction tasks by 23.8 times than a
software implementation running on PS part.

As a future work, we are optimizing our FPGA im-
plementations by introducing 16-bit fixed-point or bfloat16
representations to suppress the on-chip memory utilizations
and enable more aggressive parallel implementation.

References

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp.770-778, 2016.

[2] F. Chollet, “Xception: Deep learning with depthwise separable con-
volutions,” Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp.1800-1807, July 2017.

[3] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Effi-
cient convolutional neural networks for mobile vision applications,”
arXiv:1704.04861, 2017.

[4] A. Howard, M. Sandler, B. Chen, W. Wang, L.C. Chen, M. Tan,
G. Chu, V. Vasudevan, Y. Zhu, R. Pang, H. Adam, and Q.V. Le,
“Searching for MobileNetV3,” Proc. International Conference on
Computer Vision (ICCV’19), pp.1314-1324, Oct. 2019.

[5] R.T.Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neu-
ral ordinary differential equations,” Proc. Annual Conference on
Neural Information Processing Systems (NeuroIPS’18), pp.6572—
6583, Dec. 2018.

[6] H. Watanabe and H. Matsutani, “Accelerating ODE-based neural

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

IEICE TRANS. INF. & SYST., VOL.E106-D, NO.7 JULY 2023

networks on low-cost FPGAs,” Proc. IEEE International Parallel and
Distributed Processing Symposium (IPDPS’21) Workshops, pp.88—
95, March 2021.

K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of FPGA-
based neural network accelerator,” arXiv:1712.08934v3, Dec. 2018.
A. Jinguji, S. Sato, and H. Nakahara, “Weight sparseness for
a feature-map-split-cnn toward low-cost embedded fpgas,” IEICE
Trans. Inf. & Syst., vol.E104-D, no.12, pp.2040-2047, Dec. 2021.
J. Faraone, M. Kumm, M. Hardieck, P. Zipf, X. Liu, D. Boland, and
P.H. Leong, “AddNet: Deep neural networks using FPGA-optimized
multipliers,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol.28, no.1, pp.115-128, Jan. 2020.

L. Bai, Y. Zhao, and X. Huang, “A CNN accelerator on FPGA us-
ing depthwise separable convolution,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol.65, no.10, pp.1415-1419, Oct. 2018.

Y. Zhang, J. Pan, X. Liu, H. Chen, D. Chen, and Z. Zhang,
“FracBNN: Accurate and FPGA-efficient binary neural networks
with fractional activations,” Proc. International Symposium on Field
Programmable Gate Arrays, (FPGA21), pp.171-182, 2021.

Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proc. IEEE, vol.107, no.8, pp.1738-1762, Aug. 2019.
H. Kawakami, H. Watanabe, K. Sugiura, and H. Matsutani,
“dsODENet: Neural ODE and depthwise separable convolution
for domain adaptation on FPGAs,” Proc. Euromicro International
Conference on Parallel, Distributed and Network-based Processing
(PDP’22), pp.152-156, March 2022.

J. Yang, H. Zou, S. Cao, Z. Chen, and L. Xie, “MobileDA: To-
ward edge-domain adaptation,” IEEE Internet Things J., vol.7, no.8,
pp.6909-6918, Aug. 2020.

B. Sun and K. Saenko, “Deep CORAL: Correlation alignment for
deep domain adaptation,” arXiv:1607.01719, 2016.

K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual cate-
gory models to new domains,” Proc. European Conference on Com-
puter Vision (ECCV’10), vol.6314, pp.213-226, Sept. 2010.

Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation
by backpropagation,” Proc. International Conference on Machine
Learning (ICML’15), pp.1180-1189, July 2015.

J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The German
traffic sign recognition benchmark: A multi-class classification com-
petition,” Proc. International Joint Conference on Neural Networks
(IJCNN’11), pp.1453-1460, Aug. 2011.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng,
“Reading digits in natural images with unsupervised feature learn-
ing,” Proc. NIPS Workshop on Deep Learning and Unsupervised
Feature Learning, Dec. 2011.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol.86,
no.11, pp.2278-2324, Nov. 1998.

M. Long, Z. Cao, J. Wang, and M.I. Jordan, “Conditional adver-
sarial domain adaptation,” Proc. Annual Conference on Neural In-
formation Processing Systems (NeuroIPS’18), pp.1640-1650, Dec.
2018.

T. Xu, W. Chen, P. Wang, F. Wang, H. Li, and R. Jin, “CD-
Trans: Cross-domain transformer for unsupervised domain adapta-
tion,” Proc. 10th International Conference on Learning Representa-
tions, (ICLR’22), April 2022.

K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D.
Erhan, “Domain separation networks,” Proc. Annual Conference
on Neural Information Processing Systems (NeuroIPS’16), pp.343—
351, Dec. 2016.

J. Wang, J. Chen, J. Lin, L. Sigal, and C.W. de Silva, “Discrimi-
native feature alignment: Improving transferability of unsupervised
domain adaptation by gaussian-guided latent alignment,” Pattern
Recognit., vol.116, Article No. 107943, Aug. 2021.

E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial dis-
criminative domain adaptation,” Proc. IEEE Conference on Com-

http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2017.195
http://dx.doi.org/10.1109/CVPR.2017.195
http://dx.doi.org/10.1109/CVPR.2017.195
http://dx.doi.org/10.48550/arXiv.1704.04861
http://dx.doi.org/10.48550/arXiv.1704.04861
http://dx.doi.org/10.48550/arXiv.1704.04861
http://dx.doi.org/10.48550/arXiv.1704.04861
http://dx.doi.org/10.1109/ICCV.2019.00140
http://dx.doi.org/10.1109/ICCV.2019.00140
http://dx.doi.org/10.1109/ICCV.2019.00140
http://dx.doi.org/10.1109/ICCV.2019.00140
http://dx.doi.org/10.48550/arXiv.1806.07366
http://dx.doi.org/10.48550/arXiv.1806.07366
http://dx.doi.org/10.48550/arXiv.1806.07366
http://dx.doi.org/10.48550/arXiv.1806.07366
http://dx.doi.org/10.1109/IPDPSW52791.2021.00021
http://dx.doi.org/10.1109/IPDPSW52791.2021.00021
http://dx.doi.org/10.1109/IPDPSW52791.2021.00021
http://dx.doi.org/10.1109/IPDPSW52791.2021.00021
http://dx.doi.org/10.48550/arXiv.1712.08934
http://dx.doi.org/10.48550/arXiv.1712.08934
http://dx.doi.org/10.1587/transinf.2021PAP0011
http://dx.doi.org/10.1587/transinf.2021PAP0011
http://dx.doi.org/10.1587/transinf.2021PAP0011
http://dx.doi.org/10.1109/TVLSI.2019.2939429
http://dx.doi.org/10.1109/TVLSI.2019.2939429
http://dx.doi.org/10.1109/TVLSI.2019.2939429
http://dx.doi.org/10.1109/TVLSI.2019.2939429
http://dx.doi.org/10.1109/TCSII.2018.2865896
http://dx.doi.org/10.1109/TCSII.2018.2865896
http://dx.doi.org/10.1109/TCSII.2018.2865896
http://dx.doi.org/10.1145/3431920.3439296
http://dx.doi.org/10.1145/3431920.3439296
http://dx.doi.org/10.1145/3431920.3439296
http://dx.doi.org/10.1145/3431920.3439296
http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.1109/JPROC.2019.2918951
http://dx.doi.org/10.1109/PDP55904.2022.00031
http://dx.doi.org/10.1109/PDP55904.2022.00031
http://dx.doi.org/10.1109/PDP55904.2022.00031
http://dx.doi.org/10.1109/PDP55904.2022.00031
http://dx.doi.org/10.1109/PDP55904.2022.00031
http://dx.doi.org/10.1109/JIOT.2020.2976762
http://dx.doi.org/10.1109/JIOT.2020.2976762
http://dx.doi.org/10.1109/JIOT.2020.2976762
http://dx.doi.org/10.48550/arXiv.1607.01719
http://dx.doi.org/10.48550/arXiv.1607.01719
http://dx.doi.org/10.1007/978-3-642-15561-1_16
http://dx.doi.org/10.1007/978-3-642-15561-1_16
http://dx.doi.org/10.1007/978-3-642-15561-1_16
http://dx.doi.org/10.1109/IJCNN.2011.6033395
http://dx.doi.org/10.1109/IJCNN.2011.6033395
http://dx.doi.org/10.1109/IJCNN.2011.6033395
http://dx.doi.org/10.1109/IJCNN.2011.6033395
http://dx.doi.org/https://doi.org/10.1109/5.726791
http://dx.doi.org/https://doi.org/10.1109/5.726791
http://dx.doi.org/https://doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.patcog.2021.107943
http://dx.doi.org/10.1016/j.patcog.2021.107943
http://dx.doi.org/10.1016/j.patcog.2021.107943
http://dx.doi.org/10.1016/j.patcog.2021.107943
http://dx.doi.org/10.1109/CVPR.2017.316
http://dx.doi.org/10.1109/CVPR.2017.316

KAWAKAMI et al.: A LOW-COST NEURAL ODE WITH DEPTHWISE SEPARABLE CONVOLUTION FOR EDGE DOMAIN ADAPTATION ON FPGAS
1197

puter Vision and Pattern Recognition (CVPR’17), pp.2962-2971,
July 2017.

[26] G. French, M. Mackiewicz, and M. Fisher, “Self-ensembling for vi-
sual domain adaptation,” Proc. International Conference on Learn-
ing Representations (ICLR’18), 2018.

Hiroki Kawakami received the B.E. and
M.E. degree from Keio University in 2021 and
2023 respectively.
Hirohisa Watanabe received the B.E. and
M.E. degree from Keio University in 2020 and
2022 respectively.

Keisuke Sugiura received the B.E. and M.E.
degree from Keio University in 2020 and 2022
respectively. He is currently a doctor course stu-
dent in Keio University.

Hiroki Matsutani received the B.A., M.E.,
and Ph.D. degrees from Keio University in
2004, 2006, and 2008, respectively. He is cur-
rently a professor in the Department of Infor-
mation and Computer Science, Keio University.
His research interests include the areas of com-
puter architecture and interconnection networks.

http://dx.doi.org/10.1109/CVPR.2017.316
http://dx.doi.org/10.1109/CVPR.2017.316
http://dx.doi.org/10.1109/CVPR.2017.316

