
An Edge Attribute-wise Partitioning and
Distributed Processing of R-GCN using GPUs

Tokio Kibata�, Mineto Tsukada, and Hiroki Matsutani

Keio University, 3-14-1, Hiyoshi, Yokohama, Japan 223-8522
{tokio,tsukada,matutani}@arc.ics.keio.ac.jp

Abstract. R-GCN (Relational Graph Convolutional Network) is one of
GNNs (Graph Neural Networks). The model tries predicting latent infor-
mation by considering directions and types of edges in graph-structured
data, such as knowledge bases. The model builds weight matrices to
each edge attribute. Thus, the size of the neural network increases lin-
early with the number of edge types. Although GPUs can be used for
accelerating the R-GCN processing, there is a possibility that the size of
weight matrices exceeds GPU device memory. To address this issue, in
this paper, an edge attribute-wise partitioning is proposed for R-GCN.
The proposed partitioning divides the model and graph data so that R-
GCN can be accelerated by using multiple GPUs. Also, the proposed
approach can be applied to sequential execution on a single GPU. Both
the cases can accelerate the R-GCN processing with large graph data,
where the original model cannot be fit into a device memory of a sin-
gle GPU without partitioning. Experimental results demonstrate that
our partitioning method accelerates R-GCN by up to 3.28 times using
four GPUs compared to CPU execution for a dataset with more than
1.6 million nodes and 5 million edges. Also, the proposed approach can
accelerate the execution even with a single GPU by 1.55 times compared
to the CPU execution for a dataset with 0.8 million nodes and 2 million
edges.

Keywords: GPU · R-GCN · GNN · Graph data · Knowledge base

1 Introduction

In recent years, it is expected that the next step of deep learning would be
responding to the various structured data. Indeed, conventional deep learning
models typically use data represented in Euclidean space. Meanwhile, one of
new streams of deep learning is to use graph-structured data, which is repre-
sented in non-Euclidean space, such as GNNs (Graph Neural Networks) [7]. An
algorithm applying CNN (Convolutional Neural Networks) for graph-structured
data, called ConvGNNs (Convolutional GNNs), demonstrates practical results
[4, 3].
R-GCN (Relational-Graph Convolutional Network) [6] is a derivative model of
ConvGNNs and aims at filling in a lack of knowledge base. Missing data in a

2 T. Kibata et al.

knowledge base can be classified into two types. One is a lack of attributes of
nodes, and the other is a lack of links between nodes, called edges, on the graph.
The edges have relational types of two nodes in some cases. Considering the edge
types, R-GCN builds weight matrices for each type and direction (i.e., in and
out of node) of edges. When predicting latent node attributes or edges on GNNs,
the scalability problems always lie on. It is challenging to parallelize the model
or graph processing of R-GCN using multiple GPUs for accelerating the execu-
tion. Particularly, R-GCN has a specific issue of scalability, because the size of
weight matrices increases linearly with the number of edge types in addition to
the number of nodes when these features are defined as one-hot vectors. There
is a possibility that the size of weight matrices exceeds GPU device memory. To
address this issue, in this paper, we propose a method to partition the graph-
and-model simultaneously on R-GCN in order to accelerate the model training
using one or more GPUs for large graph-structured datasets. More specifically,
a node-wise partitioning was already used for [3, 10], in this paper we propose
an edge-wise partitioning method.
This paper is organized as follows. As related work, GNNs are overviewed, and
especially R-GCN is detailed in Section 2. Section 3 describes the proposed
method, and Section 4 shows its evaluation results. Conclusions and future work
are discussed in Section 5.

2 Related Work

In this section, the overview of ConvGNNs is presented. R-GCN model is then
described as a target of the proposed partitioning method.

2.1 ConvGNNs

GNNs are formulated by aggregation layer and combination layer [8]. The aggre-
gation layer defines how to aggregate adjacent nodes’ features. The combination
layer defines a method to concatenate the result of the aggregation layer and
a target node’s feature. The l-th aggregation layer’s output a

(l)
v , and the l-th

combination layer’s output h
(l)
v for the target node v are defined as follows:

a(l)v = AGGREGATE(l) ({h(l−1)
u : u ∈ N(v)}), (1)

h(l)
v = COMBINE(l) (h(l−1)

v , a(l)v), (2)

where N (v) is a set of adjacent nodes of node v, a(l)v is an aggregated feature
vector of adjacent nodes, and h

(l)
v is a feature vector of the node v at l-th layer.

In ConvGNNs, their weight matrices are updated with those multiplied by the
adjacent node’s feature vectors. For example, the l-th aggregation layer and the
l-th combination layer of GraphSage [5], one of ConvGNNs, are formulated as
follows:

a
(l)
v = MAX({W (l)

a · h(l−1)
u ,∀u ∈ N (v)}), (3)

h
(l)
v = W

(l)
h · [h(l−1)

v , a(l)v], (4)

Edge Attribute Partitioning and Distributed Processing of R-GCN on GPUs 3

Fig. 1. Example of relational graph.

where Wa and Wh are weight matrices for aggregation and combination layers,
respectively. MAX is an element-wise max-pooling and the combination layer
represents a linear mapping. Such approaches have a problem with the size of
graph-structured data. Especially when GPUs are used for the acceleration of
the model training, the graph-structured data are required to be partitioned
into smaller batches. In GraphSage, a node-wise partitioning is applied to solve
the problem. The technique to make batches is based on node sampling located
around the target nodes, for example, by random walk. As a result, the graph is
divided into batches so that each batch can be fit into a GPU device memory.
Pinsage [10], an extension of GraphSage, is an item recommendation system
for a web-scale graph-structured data, which is composed of three billion nodes
and 18 billion edges with data-parallel processing using multiple GPUs, where
these GPUs share the same parameters and operate different batches. The size
of batches is determined based on the sampling range. GIN [8] is another GNN
that has shown a stable and high prediction accuracy. Several ConvGNNs have
been extended to make predictions in relational graphs [9].

2.2 R-GCN

The R-GCN model aims to complete a lack of information on a knowledge base.
Figure 1 illustrates an example of a knowledge base, composed by a triplet
(subject, predicate, and object). In Figure 1, the graph data contains information
that “(Mark) (Play)s (Football).” Knowledge base requires two prediction tasks:
entity clustering and link prediction. The entity clustering task corresponds to
the prediction of Mark’s occupation, “Employee.” Completing the link “Live”
from “Mark” to “Yokohama” is one of the link predictions. Note that it needs to
consider edge directions and types. R-GCN introduces these edge attributes to
conventional GCNs.

R-GCN models have weight matrices Wr, which are corresponding to each
edge attribute r. A set of weight matrices takes edge types and directions into
account. Also, W0 is defined as self-loops’ weight matrix that is a feed-forward
from the previous layer. More specifically, a hidden vector hv of a node v on an
(l + 1)-th layer can be calculated as follows [6]:

h(l+1)
v = σ(

∑
r∈R

∑
u∈N r

v

1

cv,r
W (l)

r h(l)
u +W

(l)
0 h(l)

v), (5)

4 T. Kibata et al.

where N r
v is a set of adjacent nodes connected to node v with edge attribute

r. cv,r is a normalization factor for normalizing the difference of node degree,
and generally it is defined as cv,r = |N r

v |. We here define two sublayers: matrix-
operation layer and adding layer. The matrix-operation layer is in charge of the
computation of 1

cv,r
W

(l)
r h

(l)
u and W

(l)
0 h

(l)
v . The adding layer executes the other

operations. The loss function for a model training is defined as follow:

L = −
∑
i∈Y

K∑
k=1

tv,k lnh
(L)
v,k , (6)

where L is the number of hidden layers, tv,k is the k-th cluster’s label on node
v, and hv,k is the k-th entry of the network output for the node v. Y is a set
of nodes that have labels. For the model training, there are two regularization
methods to reduce the number of learnable parameters. With the regularization
of basis-decomposition [6], weight matrices Wr are defined as follows:

Wr =

B∑
b=1

a
(l)
r,bV

(l)
b . (7)

This regularization means that weight matrices are defined as a linear combina-
tion of basis transformations V

(l)
b ∈ Rd(l+1)×d(l)

with coefficients ar,b dependent
on each edge attribute r. Also, weight matrices consume the memory only when
the operation is executed on a layer that is related to the weight matrices. How-
ever, the size of weight matrices, used at the same time, increases proportionally
to the number of edge attributes. Thus, the model has a scalability issue, espe-
cially under the condition where initial node features are set as one-hot vectors.
As a result, it needs to partition both a graph and a model for acceleration with
GPUs, as well as typical deep learning models.

3 Proposed Method

In this section, we introduce our edge attribute-wise graph partitioning method
and a graph-and-model simultaneous parallel execution on R-GCN.

3.1 Edge Attribute-wise Partitioning

In Section 2.2, we mentioned that the partitioning of both the graph and model
is required to use GPUs for accelerating R-GCN execution with a large graph-
structured data, because GPU device memory size is strictly limited. Generally,
for executing deep learning on a GPU, the total size of a model and training
data necessarily fits into the GPU device memory size. However, in the case of
R-GCN model, the weight matrices Wr are required for each edge attribute r,
which means that the model size increases proportionally to the number of edge
attributes. This is an inherent scalability issue of R-GCN, which is different from

Edge Attribute Partitioning and Distributed Processing of R-GCN on GPUs 5

other ConvGNNs. There are two ways of partitioning for fitting data and model
sizes into GPU device memory: node-wise partitioning and edge attribute-wise
partitioning. The node-wise graph partitioning is one of the existing solutions [3,
10] to resolve the scalability problem on GNN models, making some batches by
sampling adjacent nodes around target nodes. In this paper, on the other hand,
we propose an edge attribute-wise partitioning to give a solution for the size of
graph data as well as the size of the model. The benefit of the edge attribute-wise
partitioning over the node-wise partitioning is as follows. Although the node-wise
partitioning mainly aims at data-parallel computing, the partitioning results in
an overlapping of weight matrices between submodels on R-GCN. In the worst
case, the submodels’ size is not reduced, and thus the scalability problem on R-
GCN model would not always be solved. Meanwhile, the proposed edge attribute-
wise partitioning aims at dividing a graph into some subgraphs in such a way that
each edge attribute is exclusively divided. Here, each submodel should only have
a weight matrix corresponding to the edge type that each subgraph has. Thus
the size of the submodels is always scaled down. The memory space complexities
of their weight matrices for input, hidden, and output layers are O(|Ri||Vi||H|),
O(|Ri||H||H|), and O(|Ri||H||O|), respectively, where |Ri| is the number of edge
attributes on the i-th subgraph, |Vi| is the number of nodes on the i-th subgraph,
|H| is the number of hidden units, and |O| is the dimension of output. We notice
that there is no difference in the learning outcome between the division and the
non-division implementations.

Figure 2 illustrates the concept of the graph partitioning, which is executed
for a graph with four edge attributes. At first, a parent graph, i.e., the original
graph data, is partitioned into portions, each having exactly one edge attribute.
Subgraphs are finally constructed by assembling any of the portions. We propose
two methods for grouping the portions into subgraphs. The first method that
considers the number of edges in each subgraph and the second method that
considers the number of edge attributes in each subgraph. In the first method,
portions are distributed into subgraphs, minimizing the difference in the number
of edges in subgraphs. In the second method, we sort portions in descending
order by the number of edges. The sorted portions are assigned to one of the
subgraphs in ascending order (subgraphs 1 to N) and then those in descending
order (subgraphs N to 1) repeatedly. Here, we regard the portion including self-
loops as a subgraph in distinction from others to reduce the size of submodels.
The size of weight matrices depends on the number of nodes when initial node
features are defined as one-hot vectors of local node IDs in each subgraph. Since
the self-loop exists in all the nodes, the number of nodes in a self-loop subgraph
is equal to that of the parent graph. A subgraph, including self-loops, increases
the number of nodes in the subgraph, resulting in a larger submodel. To avoid
this, we distinguish the self-loops from the others.

3.2 Graph-and-model Simultaneous Partitioning

In this section, we propose the implementation of R-GCN using multiple GPUs.
We note here that R-GCN has huge weight matrices when training a large graph

6 T. Kibata et al.

Fig. 2. Example of edge attribute-wise partitioning for graph with four edge attributes,
making two subgraphs.

Fig. 3. Execution flow on a matrix-operation layer before an adding layer.

data, especially on the input layer, because the scale grows proportionally with
the numbers of nodes and the edge attributes. The edge attribute-wise parti-
tioning can reduce not only batch sizes in the graph but also the size of weight
matrices in each submodel. We introduce the following parallel and sequential
implementations:

1. CPU+MultiGPUs setting: parallel execution using multiple GPUs, and
2. CPU+1GPU setting: time-multiplexed sequential execution using a single

GPU.

Figure 3 shows an execution flow on a matrix-operation layer of R-GCN under
the CPU+MultiGPUs setting. In the execution, at first, subgraphs are gener-
ated by the edge attribute-wise partitioning. Then, the features of subgraphs
are transferred to GPUs. In each GPU, weight matrices corresponding to the
subgraph’s edge attributes are set by computation of basis-decomposition reg-
ularization, and then the results are returned to a host CPU. In addition, the
subgraph with only self-loops is operated on one of the GPUs by sharing this
GPU with another subgraph. After that, the results are copied to the parent
graph before executing. Then, the adding layer is executed for the parent graph.

Edge Attribute Partitioning and Distributed Processing of R-GCN on GPUs 7

Fig. 4. Creating submodels on a matrix-operation layer under the basis-decomposition
regularization condition, and distributing subgraphs on each GPU.

Table 1. Execution environment.

OS Ubuntu 16.04.6 LTS
CPU Intel Core i7-6800K (6C) 3.40GHz
GPU NVIDIA GeForce GTX 1080Ti (11GB GDDR5X)
DRAM 32GB

Figure 4 illustrates the execution to create weight matrices in each submodel.
By the basis-decomposition regularization, the base matrices V should be shared
with all the GPUs to make each set of weight matrices. That is a reason why basis
transformations V is replicated to the other GPUs. Then, each GPU prepares the
set of weight matrices corresponding to a transferred subgraph, by computing a
replica of V and edge attribute coefficients ar. CPU+1GPU is also based on the
edge attribute-wise partitioning. With this setting, each subgraph is transferred
into a single GPU, and the submodel is executed on the GPU sequentially.
We evaluate the execution time for the two implementations: CPU+MultiGPUs
setting and CPU+1GPU sequential execution setting.

4 Evaluations

In this section, we evaluate the effectiveness of our proposal, the graph-and-
model simultaneous partitioning on R-GCN. The evaluation environment is
shown in Table 1.

4.1 Baseline

Implementation We evaluate the execution time for model training by com-
paring three implementations with one or more GPUs to CPU only setting.
Three implementations are as follows:

1. GPUonly where all the parameters and graph data are allocated on a single
GPU without CPU,

8 T. Kibata et al.

Table 2. Datasets: BGS, AM, and random graph.

BGS AM Random
Graph

of nodes 333,845 1,666,764 800,000
of edge attributes 103 120 100
of edges 916,199 5,196,085 2,399,998
of labeled nodes 146 1,000 400
of classes 2 11 8

2. CPU+MultiGPUs setting using 2-4 GPUs based on the model and graph
simultaneous partitioning, and

3. CPU+1GPU setting using a single GPU sequentially based on the model-
and-graph simultaneous partitioning.

The second and third settings were introduced in Section 3.2. We use Pytorch
as a deep learning framework. Also, DGL (Deep Graph library) [1] is used for
operations on the graph-structured data, such as an aggregation of node infor-
mation. As a baseline, we use a DGL’s tutorial code for the implementations of
CPU setting and GPUonly setting. In this paper, R-GCN model has two layers
with 16 hidden units for BGS and 10 hidden units for AM and a random graph.
Also, we set the number of basis transformations as 40, and we use SGD as the
optimizer.

Datasets We use three datasets: BGS, AM, and a random graph. BGS and
AM are provided in Resource Description Framework format [5], and the ran-
dom graph is generated with the Barabasi-Albert model [2]. Table 2 lists their
parameters: the numbers of nodes, edge attributes, edges, labeled nodes, and
classes. The datasets are preprocessed to fit DGL graph format and R-GCN
model. Firstly, self-loops are added to graph data. In addition, the edges of the
graph data are duplicated by considering edge directions. The number of edge
attributes on the graph data becomes twice the original dataset by this prepro-
cessing. In the graph, distant nodes which are more than three-hop away from
the target node are pruned, because we assume a 2-layer model in which the
three-hop away nodes do not affect outputs of the target nodes. We delete edges
whose edge attributes are applied for less than 150 edges in the case of AM.

4.2 Result of Graph Partitioning

The proposed graph partitioning method is used to generate the subgraphs.
Here, the number of nodes is related to the scale of the submodels in the input
layer under the condition where the initial node features are defined as one-
hot vectors. The number of edges determines the computation cost, and the
number of edge attributes is proportional to the scale of the submodel. In this
paper, we partition graphs and models into subgraphs in two ways as proposed

Edge Attribute Partitioning and Distributed Processing of R-GCN on GPUs 9

Table 3. Parameters of subgraphs when applying edge attribute-wise partitioning,
considering the number of edges in each subgraph.

(a) BGS

Sub-0 Sub-1 Sub-2 Sub-3 Sub-self
of nodes 205,111 279,072 171,265 84,573 333,017
of edges 457,470 457,467 457,407 457,534 333,017

of edge attributes 34 35 85 40 1

(b) AM

Sub-0 Sub-1 Sub-2 Sub-3 Sub-self
of nodes 1,013,531 1,073,744 1,118,582 915,739 1,203,676
of edges 2,598,224 2,598,221 2,598,263 2,598,414 1,203,676

of edge attributes 26 40 102 72 1

(c) Random Graph

Sub-0 Sub-1 Sub-2 Sub-3 Sub-self
of nodes 656,908 651,308 656,959 663,528 800,000
of edges 798,697 785,283 798,684 817,332 800,000

of edge attributes 50 49 50 51 1

in Section 3.1. In Section 4.3, the execution time of R-GCN is evaluated with
GPUs while changing the number of subgraphs. Tables 3 and 4 show the results
of partitioning each graph-structured data into four subgraphs and a subgraph
that has only self-loops. We found that the way considering the number of edge
attributes in each subgraph can minimize the size of weight matrices on each
GPU. Thus, this approach is used in the following experiments.

4.3 Execution Time

Table 5 shows a summary of the execution time. Although the datasets were also
executed with GPUonly setting, the out of GPU memory occurred in the cases
of AM and random graph. Especially for AM, the size of weight matrices on the
input layer was over 17GB, which explicitly demonstrates the necessity of the
proposed model partitioning on R-GCN model with a large graph data. This mo-
tivates us the graph-and-model partitioning. Also, we remark that CPU+4GPUs
setting can accelerate the model training for all the datasets compared to CPU
setting: 3.88 times for BGS, 3.28 times for AM, and 2.60 times for the ran-
dom graph. We notice that in the backward phase for updating the parameters,
CPU+4GPUs setting is advantageous. On the other hand, in the forward phase,
its advantage is not as much as in the backward phase, because the data transfer
overhead becomes significant. Please note that, if a target graph data is small
enough to execute GPUonly setting, this setting is the best choice.

Figure 5 shows the results of CPU+MultiGPUs setting and CPU+1GPU
setting while changing the number of GPUs and the number of graph divisions,

10 T. Kibata et al.

Table 4. Parameters of subgraphs when applying the edge-attributes partitioning,
considering the number of edge attributes in each subgraph.

(a) BGS

Sub-0 Sub-1 Sub-2 Sub-3 Sub-self
of nodes 177,298 145,554 258,285 286,893 333,017
of edges 460,080 460,080 454,859 454,859 333,017

of edge attributes 49 49 48 48 1

(b) AM

Sub-0 Sub-1 Sub-2 Sub-3 Sub-self
of nodes 986,425 986,250 1,035,928 1,035,928 1,203,676
of edges 2,901,669 2901,669 2,294,892 2,294,892 1,203,676

of edge attributes 60 60 60 60 1

(c) Random Graph

Sub-0 Sub-1 Sub-2 Sub-3 Sub-self
of nodes 657,309 644,850 650,788 657,179 800,000
of edges 799,962 799,962 800,036 800,036 800,000

of edge attributes 50 50 50 50 1

Table 5. Mean training times (Forward, Backward, and Full) per epoch [sec] for exe-
cutions on CPU, GPUonly, and CPU+4GPU settings.

BGS AM Random
Graph

CPU 1.26 4.86 1.94
GPUonly 0.049 N/A N/AForward
CPU+4GPU 0.80 3.68 1.34
CPU 7.78 37.07 9.92
GPUonly 0.003 N/A N/ABackward
CPU+4GPU 1.53 9.11 3.21
CPU 9.06 41.92 11.86
GPUonly 0.052 N/A N/AFull
CPU+4GPU 2.33 12.78 4.55

Edge Attribute Partitioning and Distributed Processing of R-GCN on GPUs 11

(a) BGS

(b) Random Graph

Fig. 5. Execution time per epoch [sec] of BGS and random graph for CPU+MultiGPUs
settings with 2-4 GPUs and CPU+1GPU settings with 3-6 divisions. The number of
divisions is defined as the number of subgraphs except for their self-loop subgraph, and
*N/A indicates the out of memory occurred during execution.

respectively. Note that the out of memory occurred in the case of AM. We found
firstly that the growth in the number of GPUs improves the performance. For
BGS, the acceleration rate increases from 3.42 (CPU+2GPUs) to 3.88 times
(CPU+4GPUs) compared to CPU setting. For the random graph, the accel-
eration rate increases from 2.48 (CPU+3GPUs) to 2.60 times (CPU+4GPUs)
compared to CPU setting. The reason for the small increase in speed by increas-
ing the number of GPUs is due to the processing of the aggregation layer on
CPU and feature exchange between the parent graph and subgraphs. Although
the performance of the CPU+1GPU is inferior to CPU+MultiGPUs setting, this
setting accelerates the execution time by up to 2.38 and 1.55 times for BGS and
the random graph, respectively, compared to CPU setting. We remark that our
proposal can accelerate R-GCN even with a single GPU for training R-GCN
model for a large graph. We also found here that the number of divisions is
related to the performance, and minimizing the number of divisions can improve
the performance. In the forward phase, the computation results are accumulated
on a GPU and consume the memory capacity. As a result, CPU+1GPU setting
with three divisions for the random graph introduces the out of memory even
though the execution on CPU+3GPUs setting has been successfully done.

12 T. Kibata et al.

5 Conclusions

In this paper, we presented an edge attribute-wise graph partitioning and the
graph-and-model simultaneous partitioning method on R-GCN to accelerate us-
ing one or more GPUs with large graph-structured data. Experimental results
with CPU+MultiGPUs setting show that it can accelerate the model training of
R-GCN with AM dataset with over 1.6 million nodes, 5 million edges, and 120
edge attributes. Besides, the CPU+1GPU setting outperforms CPU setting by
1.55 times for a dataset with 0.8 million nodes, 2 million edges, and 100 edge
attributes even with a single GPU. The result opens up possibilities to acceler-
ate training R-GCN by using one or multiple GPUs, each having limited device
memory capacity. As future work, we need to consider smaller batches with fine-
grained mini-batch execution scheduling to release the memory allocation more
frequently to utilize the GPU device memory more efficiently.

Acknowledgements This work was partially supported by JSPS KAKENHI
Grant Number JP19H04117.

References

1. Deep Graph Library. https://www.dgl.ai/pages/about.html
2. Albert, R., Barabasi, A.L.: Statistical Mechanics of Complex Networks. Reviews

of Modern Physics (Jan 2002)
3. Hamilton, W., Ying, Z., Leskovec, J.: Inductive Representation Learning on

LargeGraphs. In: Proceedings of the Neural Information Processing Systems
(NeurIPS’17). pp. 1024–1034 (2017)

4. Kipf, T.N., Welling, M.: Semi-Supervised Classification with Graph Convolutional
Networks. In: Proceedings of the International Conference on Learning Represen-
tations (ICLR’17) (2017)

5. Ristoski, P., de Vries, G.K.D., Paulheim, H.: A Collection of Benchmark Datasets
for Systematic Evaluations of Machine Learning on the Semantic Web. In: Pro-
ceedings of the International Semantic Web Conference (ISWC’16). pp. 186–194
(2016)

6. Schlichtkrull, M., Kipf, T.N., Bloem, P., Berg, R.v.d., Titov, I., Welling, M.:
Modeling Relational Data with Graph Convolutinal Networks . arXiv preprint
arXiv:1703.06103v4 (Oct 2017)

7. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A Comprehensive Survey
on Graph Neural Networks. arXive:1901.00596v2 (Mar 2019)

8. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How Powerful Are Graph Neural Net-
works. In: Proceedings of the International Conference on Learning Representa-
tions (ICLR’19) (2019)

9. Ye, R., Yujie Fang, H.Z., Wang, M.: A Vectorized Relational Graph Convolutional
Network for Multi-Relational Network Alignment. In: Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’19). pp. 4135–4141 (2019)

10. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
Convolutional Neural Networks for Web-Scale Recommender Systems. In: Pro-
ceedings of the International Conference on Knowledge Discovery & Data Mining
(KDD’18). pp. 974–983 (Aug 2018)

