Layout-conscious Random Topologies for HPC Off-chip Interconnects

- Michihiro Koibuchi Ikki Fujiwara Hiroki Matsutani
- Henri Casanova

National Institute of Informatics, JP

National Institute of Informatics, JP

Kojo University I

Keio University, JP

University of Hawaii at Manoa, US

The 19th International Symposium on High-Performance Computer Architecture (HPCA), Feb. 2013

Introduction

- Motivation
- Layout-conscious random topologies
 - (method A) link permutation
 - (method B) constrained random shortcutting
- Comparison of both methods
- Conclusions

Good Point of Random Topology

- Goal: to make a low-latency topology for HPC networks
 - low diameter and low average path hops
- Random topology is best [Koibuchi et al, ISCA2012]

Bad Point of Random Topology

• Random topology leads to lowest latency [Koibuchi et al, ISCA2012] but causes longer cables

- Idea: to design a layout-friendly quasi-random topologies
 - shorter cable length (near to tori & hypercube)
 - low path hops (near to fully random)

- Introduction
- Motivation
- Layout-conscious random topologies
 - (method A) link permutation
 - (method B) constrained random shortcutting
- Comparison of both methods
- Conclusions

Why Should We Care about Topology Now?

	2011		2015		2019	
System Size Sockets Peak PF TF/Socket	32,768 32 1.0		32,768 200 6.1		32,768 800 25.0	
	Expect	Want	Expect	Want	Expect	Want
NIC B/W (B/F)	0.01 - 0.1	1.0	0.005 - 0.03	1.0	0.025 - 0.25	1.0
Link B/W (B/F)	0.01 - 0.1	1.0	0.005 - 0.03	1.0	0.025 - 0.25	1.0
MPI Latency (ns)	750 - 1500	500	500 - 1000	400	400 - 750	300
MPI Throughput (M Msg/s)	20	50	80	300	300	1200
Load/Store (M Msg/s)	75	400	150	1,600	300	6400
Load/Store Latency (ns)	300	100	300	100	300	100

1µs system-across latency is desired [Henmmert, 2008]

[Tomkins, 2008]

Switch delay>100ns, Link delay=5ns/m

Randomness Makes Graphs Smaller

- Small-world phenomenon
 - Social network
 - P2P network
 - Airline network

Vertex = Person/Computer/Airport

- Its use for HPC interconnects
 - Relatively high radix
 - More uniform degree
 - Considering rack layout

Random Topology Minimizes Latency

Non-random topology (tori, fat-tree, etc.) in current HPC & DC networks

Random shortcut topology (ring + random shortcuts)

But, Cabling is Enormous

• Even for non-random topology...

Earth Simulator, 1st gen. (crossbar)

83,200 cables 2,400 km 140 tons K Computer (6-D mesh/torus)

200,000 cables **1,000** km

Our layout-conscious random topology provides **Shorter Cable Length** in addition to lower latency

- Motivation
- Layout-conscious random topologies
 - (method A) link permutation– (method B) constrained random shortcutting
- Comparison of both methods
- Conclusions

Two Approaches to Quasi-randomness

- Method A makes a non-random topology random
- Method B makes a random topology layout-friendly

- Motivation
- Layout-conscious random topologies
 - (method A) link permutation
 - (method B) constrained random shortcutting
- Comparison of both methods
- Conclusions

Method A: Link Permutation

- Typical non-random topologies have great layout
- Randomly swap the ends of cables on its layout
 Maintaining the great layout and the lengths of cables

Path Hops vs. Network Size

Permuted random topology provides better path hops - Permuted_tori, and Permuted_Hypercube also do

14

14

Network Simulation

Switch & network parameters

Topology & Routing

محديلهم

Packet length	33 flits (1 flit = 256 bit)	Mesh/Hyp
Switching technique	Virtual-cut through	Torus
Traffic Pattern	Uni, Matrix-t, Bit-rev	Ring + Rai
Number of VCs	2	
Switch delay	>100 ns	
Link delay	20 ns	

Mesh/Hypercube	Dualo		
Torus	DOR		
Ring + Random	Irregular		

Applying Deadlockfree Routing theory

Durata

Adaptive channel Escape channel

Latency vs. Throughput

- Up to 20% reduced latency: close to full-random
- Similar results found with other traffic patterns and with other baseline topologies (e.g. fat tree)

- Motivation
- Layout-conscious random topologies
 - (method A) link permutation
 (method B) constrained random shortcutting
- Comparison of both methods
- Conclusions

Method B: Constrained Shortcutting

• Optimize layout after randomizing topology

- Constrain the number of bypassed nodes when each random link is added to a ring
 - Virtually maintaining the diameter and the average shortest path hops of a fully random topology

Way to Constrain the Shortcuts

- N nodes, m degree, distribution θ
- Add m-2 shortcuts randomly to a ring (m=2)
- So that each shortcut bypasses up to θ/2n nodes along the ring
 - If θ = 100% then it is identical to a fully random topology

Cable Length vs. Network Size

• Constrained shortcutting successfully reduced the cable length by up to 26%

Floorplan follows [ANSI/TIA/EIA-942] and [J.Kim, ISCA2007] 20

- Motivation
- Layout-conscious random topologies
 - (method A) link permutation
 - (method B) constrained random shortcutting
- Comparison of both methods
- Conclusions

Permutation vs. Constrained Shortcuts

- Link permutation is usually recommended
- Constrained shortcutting (θ=50%) is better in low-radix networks

Conclusions

- Two randomizing methods for practical quasirandom topology in off-chip networks
 - Link permutation randomizes links after layout is fixed
 - Constrained shortcutting optimizes layout after randomizing topology

- A resulting quasi-random topology has
 - Shorter cable length (≒tori/hypercube)
 - Low path hops
 - (≒ fully random)

Link permutation Constrained shortcutting

Thank you!

Routing Computation Cost

- Address and routing-table size at switch
 - InfiniBand LID: 48k
 - General issue regardless of topology
- Computational cost of path search
 - Topology-agnostic deadlock-free routing [Flich, TPDS2012]
 - O ((N+E) logN) priority-queue Dijkstra algo.

