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ABSTRACT

This paper proposes Skip2-LoRA as a lightweight fine-tuning method

for deep neural networks to address the gap between pre-trained

and deployed models. In our approach, trainable LoRA (low-rank

adaptation) adapters are inserted between the last layer and every

other layer to enhance the network expressive power while keep-

ing the backward computation cost low. This architecture is well-

suited to cache intermediate computation results of the forward

pass and then can skip the forward computation of seen samples

as training epochs progress. We implemented the combination of

the proposed architecture and cache, denoted as Skip2-LoRA, and

tested it on a $15 single board computer. Our results show that

Skip2-LoRA reduces the fine-tuning time by 90.0% on average com-

pared to the counterpart that has the same number of trainable pa-

rameters while preserving the accuracy, while taking only a few

seconds on the microcontroller board.
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1 INTRODUCTION

On-device learning is an emerging research direction in edge AI

aiming to reduce the gap between pre-trained and deployed mod-

els. Since the available compute resources are limited in edge en-

vironments, full retraining of deep models is hardly feasible; thus,
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lightweight retraining methods of neural networks have been stud-

ied recently [8, 11, 15].

Such on-device learning methods can be broadly classified into

1) ELM (extreme learning machine) based retraining and 2) fine-

tuning of some specific layers using a backpropagation algorithm.

In the ELM-based on-device learning [11, 12], the OS-ELM (online

sequential ELM) algorithm [7] is used for training the weight pa-

rameters of neural networks that have a single hidden layer. Thus,

the ELM-based approach cannot be applied to DNNs (deep neu-

ral networks) that have multiple or many hidden layers; instead,

the backpropagation-based approach can be used for such DNNs.

A well-known method based on backpropagation fine-tunes the

last layer of DNNs [9]; in this case, the backward compute cost

is very small compared to the full training, but the network ex-

pressive power remains limited since only the last-layer weights

can be updated. Another method freezes the weight parameters

while only updating the bias modules [2]. TinyTL introduces the

lite residual module as a generalized bias module to be fine-tuned

[2]. All these methods update parts of the pre-train model. In addi-

tion, fine-tuning methods have been widely studied in the context

of LLMs (large language models). A popular approach in LLMs is to

add trainable adapters to pre-trained networks. Trainable adapter

layers can be inserted in series to pre-trained networks [4], or at-

tached to pre-trained weight matrixes in parallel [5]. LoRA (low-

rank adaptation) [5] employs the latter approach; that is, trainable

rank decomposition matrixes are attached to each layer of a Trans-

former architecture [13]. This approach is portable, meaning that

only the adapters are updated while the original weights are un-

touched.

In this paper, we extend the LoRA-based fine-tuning methods

for resource-limited edge devices. Starting from adding LoRA adapters

to each layer of DNNs, we propose a lightweight fine-tuning ap-

proach called Skip2-LoRA. Our contributions are summarized as

follows:

• We propose a new architecture where trainable LoRA adapters

are inserted between the last layer and every other layer to

enhance the network expressive power while keeping the

backward compute cost low.

• This new architecture enables us to cache the intermediate

compute results during the forward pass and thus skip the

forward computation of seen samples as training epochs

progress.
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• Our experimental results show that Skip2-LoRA reduces the

fine-tuning time by 89.0% to 92.0% compared to the baseline

while achieving comparable accuracies, while taking only a

few seconds on a $15 single board computer.

This paper is organized as follows. Sections 2 and 3 review pre-

liminaries and basic knowledge of fine-tuning methods. Section 4

proposes Skip2-LoRA, and Section 5 evaluates it in terms of accu-

racy, execution time, and power consumption. Section 6 summa-

rizes our contributions.

2 PRELIMINARIES

Let N and M be the input and output dimensions of an FC (fully-

connected) layer, respectively, in a DNN. A forward pass of the FC

layer is computed as follows:

y = G(x ·W + b), (1)

where x ∈ RB×N
, y ∈ RB×M

,W ∈ R
N×M

, b ∈ RM
, and B repre-

sent the input feature map, output feature map, weight parameters,

bias parameters, and batch size, respectively.

A backward pass of the FC layer is computed as follows:

дW = x� · дy (2)

дb =

B∑
дy (3)

дx = дy ·W�, (4)

where дx ∈ RB×N
, дy ∈ RB×M

, дW ∈ R
N×M

, and дb ∈ RM

represent the gradients of x , y,W , and b, respectively.

W and b are updated as follows:

W ← W − η · дW (5)

b ← b − η · дb, (6)

where η represents a learning rate.

A forward pass of a LoRA adapter of rank R for the FC layer is

computed as follows:

yA = x ·WA (7)

yB = yA ·WB (8)

y ← y +yB , (9)

where yA ∈ R
B×R

and yB ∈ R
B×M

are intermediate outputs to

updatey.WA ∈ R
N×R

andWB ∈ R
R×M

are the weight parameters

of the adapter.

A backward pass of the LoRA adapter is computed as follows:

дWB = y�A · дy (10)

дxB = дy ·W�B (11)

дWA = x� · дxB (12)

дxA = дxB ·W
�
A (13)

дx ← дx + дxA, (14)

where дxB ∈ R
B×R

and дxA ∈ R
B×N

are intermediate gradients.

дWB ∈ R
R×M

and дWA ∈ R
N×R

represent the gradients of WB
andWA, respectively.

WA andWB are updated as follows:

WA ← WA − η · дWA (15)

WB ← WB − η · дWB . (16)

Table 1: Compute types of FC layers and LoRA adapters.

FCy Compute y
FCywbx Compute y, дW , дb, and дx
FCywb Compute y, дW , and дb
FCybx Compute y, дb, and дx
FCyb Compute y and дb
FCyx Compute y and дx
LoRAywx Compute yA, yB , дWB , дWA, дxB , and дxA
LoRAyw Compute yA, yB , дWB , дWA, and дxB

3 BASELINE FINE-TUNING METHODS

A forward pass of an FC layer computes y, while the backward

pass computes дW , дb, and дx . In fine-tuning scenarios, not all are

necessary; for example, дW and дb of an FC layer are not neces-

sary when weight and bias parameters of the layer are not updated.

Compute types of FC layers are classified as listed in the upper half

of Table 1. The number of floating-point operations and memory

size can be modeled for each compute type, but they are omitted

due to the page limitation.

As basic fine-tuning methods, in this paper, FT-All, FT-Last, and

FT-Bias are defined as follows:

• FT-All: Weight and bias parameters of all layers are updated.

• FT-Last: Weight and bias parameters of the last layer are

updated.

• FT-Bias: Bias parameters of all layers are updated.

Figures 1(a), 1(b), and 1(c) illustrate FT-All, FT-Last, and FT-Bias

methods, respectively, for DNNs consisting of three layers. In these

figures, the parameters to be updated are colored in red. The com-

pute types of the first, second, and third FC layers in FT-All are

{FCywb , FCywbx , FCywbx }. Those in FT-Last are {FCy , FCy , FCywb },

and those in FT-Bias are {FCyb , FCybx , FCybx }. In the first layer,

дx is not propagated any more and thus can be omitted.

A forward pass of a LoRA adapter computes yA and yB , while

the backward pass computes дWB , дWA, дxB , and дxA. Compute

types of LoRA adapters are classified as listed in the lower half of

Table 1. The compute and memory cost model for each compute

type is omitted in this paper.

As fine-tuning methods of LoRA, LoRA-All and LoRA-Last are

defined as follows:

• LoRA-All: LoRA adapters are added to all layers.

• LoRA-Last: A LoRA adapter is added to the last layer.

Figures 1(d) and 1(e) illustrate LoRA-All and LoRA-Last methods,

respectively, for DNNs consisting of three layers, where the param-

eters to be updated are colored in red. The compute types of the

first, second, and third LoRA adapters in LoRA-All are {LoRAyw ,

LoRAywx , LoRAywx }, and those of the FC layers are {FCy , FCyx ,

FCyx }. Similarly, the compute types of the first, second, and third

LoRA adapters in LoRA-Last are {ϕ, ϕ, LoRAyw }, and those of the

FC layers are {FCy , FCy , FCy }. The backward compute cost of LoRA-

Last is thus much smaller than that of LoRA-All. On the other hand,

LoRA-All introduces LoRA adapters to all the layers, while LoRA-

Last introduces only a single LoRA adapter to the last layer; thus,

LoRA-All has a higher expressive power than LoRA-Last.
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(a) FT-All (b) FT-Last (c) FT-Bias (d) LoRA-All (e) LoRA-Last (f) Skip-LoRA

Figure 1: Fine-tuning methods of DNNs consisting of n FC layers, where n = 3.W k
and bk

denote weights and biases for k-th

layer. In LoRA-All and LoRA-Last,W k−1,k
denotes weights for k-th LoRA adapter, where rank R = 1. Parameters to be updated

are colored in red.

Table 2: Execution times breakdown of FT-All-LoRA on two

datasets.

Forward Fan HAR Backward Fan HAR

FC1 71.80 88.58 FC3 1.28 1.22

LoRA1 2.75 1.72 LoRA3 1.93 1.05

BN1 2.22 0.81 Act2 0.29 0.16

Act1 0.30 0.11 BN2 2.81 1.55

FC2 17.52 6.63 FC2 34.03 18.29

LoRA2 1.69 0.61 LoRA2 3.30 1.78

BN2 2.23 0.81 Act1 0.29 0.15

Act2 0.30 0.11 BN1 2.84 1.53

FC3 0.50 0.36 FC1 49.47 70.46

LoRA3 0.68 0.25 LoRA1 3.76 3.80

Total (%) 100.00 100.00 Total (%) 100.00 100.00

3.1 Performance Analysis

In this section, the compute costs of fine-tuning methods are ana-

lyzed. To analyze the compute costs, “FT-All-LoRA” is defined as

a full fine-tuning method that combines FT-All and LoRA-All. We

assume a simple 3-layer DNN that consists of FC layer (FC1), LoRA

adapter (LoRA1), batch normalization [6] (BN1), ReLU (Act1), FC2,

LoRA2, BN2, Act2, FC3, LoRA3, and cross entropy loss (CEL) func-

tion. Table 2 shows the execution times breakdown of the forward

and backward passes without CEL. Two datasets, Fan and HAR

which will be explained in Section 5.1, are examined. As shown, the

first and second FC layers consume most of the compute costs. To

reduce these compute costs, Skip-LoRA and Skip2-LoRA are pro-

posed in the next section.

4 DESIGN AND IMPLEMENTATION OF

SKIP2-LORA

4.1 Proposed Architecture: Skip-LoRA

Our first proposal is “Skip-LoRA” which aims to achieve a compara-

ble expressive power to LoRA-All, yet with a comparable backward

compute cost to LoRA-Last. Skip-LoRA is defined as follows:

• Skip-LoRA: LoRA adapters are added between output nodes

of the last layer and input nodes of the other layers.

As shown in Figures 1(d) and 1(e), weight parameters of a LoRA

adapter for the k-th layer are denoted asW k−1,k
. For a DNN con-

sisting of n layers, additional weight parameters of LoRA-Last and

LoRA-All are denoted asW n−1,n
and

∑
n

k=1
W k−1,k

, respectively.

On the other hand, those of Skip-LoRA are denoted as
∑

n

k=1
W k−1,n

.

In this case, the forward pass of all the FC layers is computed nor-

mally with Equation 1. Then, the forward pass of n LoRA adapters

is computed, and the results are added to the output feature map

of the n-th FC layer as follows:

yn
← yn +

n∑

k=1

xk
·W k−1,n

A
·W k−1,n

B
, (17)

where xk
andyk

are the input and output feature maps of the k-th

FC layer.

The compute types of the first, second, and third LoRA adapters

in Skip-LoRA are {LoRAyw , LoRAyw , LoRAyw }, and those of the

FC layers are {FCy , FCy , FCy }. The compute types of FC layers

of Skip-LoRA are identical to those of LoRA-Last, while the com-

pute types of LoRA adapters are more complicated in Skip-LoRA.

Please note that a LoRA adapter is a low-rank approximation of an

FC layer; thus, we can expect R << N ,M . In this case, the compu-

tation cost of the FC layers is dominant compared to that of LoRA

adapters, as demonstrated in Table 2. We can thus expect that the

backward compute cost of Skip-LoRA is close to that of LoRA-Last

while Skip-LoRA has n LoRA adapters to enhance the expressive

power compared to LoRA-Last.

4.2 Proposed Cache: Skip-Cache

Skip-LoRA can reduce the backward compute cost, as well as LoRA-

Last. The next bottleneck is the forward compute cost. Here, we

aim to reduce the forward compute cost by reusing the forward

compute results which have been already computed.

Let E be the number of fine-tuning epochs. In the stochastic gra-

dient descent, it is expected that the same training sample appears

E times on average during a fine-tuning process. Assume we have

a set of training samples T for the fine-tuning. Let xk
i ∈ R

N
and

yk
i ∈ R

M
be the input and output feature maps of the k-th FC

layer for the i-th training sample, where 0 ≤ i < |T |. yk
i is com-

puted and the result is cached as ck
i when the i-th sample appears
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Algorithm 1 Fine-tuning with Skip2-LoRA

1: function ft_skip2_lora

2: Csk ip ← ϕ � Initialize Csk ip

3: for e = 0 to E − 1 do

4: for b = 0 to |T |/B − 1 do

5: load_train_batch(B)

6: forward_fc(Csk ip ) � Forward with Csk ip

7: add_cache(Csk ip ) � Add results to Csk ip

8: forward_lora()

9: backward_lora()

10: update_lora_weight()

at the first time, while ck
i is reused when the i-th sample appears

again during the fine-tuning process. This approach is denoted as

“Skip-Cache” in this paper.

Skip-Cache works well if the cached result ck
i is valid through-

out the fine-tuning process over E epochs. Conversely, Skip-Cache

does not work well for FT-All, FT-Bias, and LoRA-All as illustrated

below:

• FT-All: W k
and bk

are updated every fine-tuning batch,

where 1 ≤ k ≤ n, obsoleting the cached results frequently.

• FT-Bias: bk
are updated every fine-tuning batch, where 1 ≤

k ≤ n.

• LoRA-All:W k−1,k
A

andW k−1,k
B

are updated every fine-tuning

batch, where 1 ≤ k ≤ n.

Obviously, Skip-Cache works well for FT-Last, LoRA-Last, and

Skip-LoRA, except for the last FC layer because:

(1) Their output feature maps except for the last layer can be

computed normally with Equation 1, and

(2) Their parameters (e.g.,W k
andbk

) are not changed through-

out the fine-tuning process over E epochs, where 1 ≤ k < n.

Please note that a special treatment is needed only for the last layer

(i.e., k = n) as illustrated below:

• FT-Last: The output feature map of the last layer (i.e., yn
i )

cannot be reused because W n
and bn

are updated every

fine-tuning batch.

• LoRA-Last: The result of G(xn
i ·W

n +bn
) can be reused as

cn
i ; then,yn

i ← cn
i +xn

i ·W
n−1,n
A

·W n−1,n
B

is recomputed be-

cause W n−1,n
A

and W n−1,n
B

are updated every fine-tuning

batch.

• Skip-LoRA: cn
i can be reused as well as LoRA-Last; then,

yn
i ← cn

i +
∑

n

k=1
xk

i ·W
k−1,n
A

·W k−1,n
B

is recomputed

because weight parameters of all the n LoRA adapters (i.e.,

∀k,W k−1,n
A

and∀k,W k−1,n
B

where 1 ≤ k ≤ n) are updated

every fine-tuning batch.

In this paper, the combination of Skip-LoRA and Skip-Cache is de-

noted as “Skip2-LoRA”.

4.3 Implementation of Skip2-LoRA

Skip2-LoRA is implemented with the C language without any ex-

ternal libraries except for libm (“-lm” option). Algorithm 1 shows

the fine-tuning with Skip2-LoRA algorithm.T , |T |, E, and B are the

training samples for fine-tuning, the number of training samples,

the number of epochs, and the batch size, respectively.

Algorithm 2 FC forward with Skip-Cache

1: function forward_single_fc(Csk ip )

2: for i = 0 to B − 1 do

3: if xi ∈ Csk ip then � If result yi is cached

4: continue

5: for m = 0 to M − 1 do

6: yi ,m ← bm

7: for n = 0 to N − 1 do

8: yi ,m ← yi ,m + xi ,n ·Wn,m � Scalar MAC

9: return y

In line 2, Skip-Cache Cskip is initialized. In line 5, a batch of

training samples is randomly selected from T . In line 6, the for-

ward pass of all the FC layers is computed for the batch. During

this computation, Cskip is examined and unnecessary computa-

tion is skipped. Algorithm 2 shows the forward pass of a single

FC layer with Cskip . This is a typical matrix multiplication algo-

rithm that computes Equation 1 except that Cskip is introduced.

Let xi ∈ R
N

be a training sample in the batch. If its compute re-

sultyi ∈ R
M

has been cached inCskip , the computation is skipped

so that we can reduce the compute cost of the forward pass (lines

3-4 of Algorithm 2). After completing the forward pass of all the

FC layers, newly computed results are added toCskip as shown in

line 7 of Algorithm 1. In line 8, Equation 17 is computed. In lines

9-10, weight parameters of n LoRA adapters are updated.

As shown in Algorithm 1, Cskip is initialized at the beginning

of the fine-tuning (line 2), and then the compute results are contin-

uously added toCskip (line 7) throughout the fine-tuning process

over E epochs. Since each training sample appears E times on av-

erage during a fine-tuning process, it is expected that the forward

compute cost is reduced to 1/E.

Data structure of Cskip affects the cache hit rate, cache manip-

ulation overhead, and storage size. The forward computation for

the i-th training sample can be skipped when the compute results

∀k,yk
i where 1 ≤ k ≤ n are cached in Cskip

1
. In the Fan dataset

which will be explained in Section 5.1, for example, the number of

fine-tuning samples is 470, each containing 256 features in float32;

in this case, the fine-tuning data size is 470KiB. Assuming a DNN

consisting of three layers (e.g., 256-96-96-3), the size of Cskip to

store ∀i∀k,yk
i where 1 ≤ k ≤ n is only 358KiB, which is smaller

than the input data storage. Thus, in this paper, ∀i∀k,yk
i is fully

stored in Cskip . Since ∀k,yk
i is stored exclusively in the i-th ele-

ment of Cskip , the time complexity to find the cached results of

the i-th training sample isO(1). Alternatively, if the storage size is

strictly limited, a key-value cache with a limited number of cache

entries can be used. In any cases, there is a trade-off between the

cache size and performance.

1
In reality, the activation function and batch normalization are typically executed

after each layer as in Table 2. In this case, the outputs after these functions should

be cached except for the last layer (i.e., the outputs just after the FC layer should be

cached in the case of the last layer).
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Figure 2: Evaluation environment consisting of Raspberry

Pi Zero 2 W.

Table 3: Accuracy of before and after data drift on 3-layer

DNN (%).

Before After

Damage1 60.61±13.73 98.99±2.81

Damage2 51.86±8.04 90.88±5.65

HAR 79.97±5.62 86.09±4.40

5 EVALUATIONS

The proposed Skip2-LoRA is compared with the counterparts in

terms of accuracy and execution time using drifted datasets. It is

also compared with the state-of-the-art method.

5.1 Evaluation Setup

FT-All, FT-Last, FT-Bias, FT-All-LoRA, LoRA-All, LoRA-Last, Skip-

LoRA, and Skip2-LoRA are executed on a Raspberry Pi Zero 2 W

board [1], which is known as a $15 computer (Figure 2). The clock

frequency is fixed at 1GHz to measure the execution time stably.

Skip2-LoRA and its counterparts (except for TinyTL [2]) are imple-

mented with the C language and compiled with gcc version 8.3.0

with “-O3” option on the platform. They are further optimized with

SIMD (Neon) instructions with “-mfpu=neon -ffast-math” option.

To evaluate the fine-tuning methods, we use three datasets each

containing pre-train samples, fine-tune samples, and test samples

as follows:

• Damage1 is a 3-class classification task of vibration patterns

of cooling fans (i.e., stop, normal fan, and damaged fan with

holes on a blade). Both the normal and damaged fans rotate

at 1,500, 2,000, and 2,500 rpm. The numbers of input features

and output classes are 256 and 3. The original dataset [11]

contains vibration patterns in a silent office and those near

a ventilation fan (they are denoted as “silent dataset” and

“noisy dataset”). The model is pre-trained with the silent

dataset. We assume the model is deployed in a “real” noisy

environment. Thus, the model is fine-tuned with a half of

the noisy dataset and then tested with the remaining half of

the noisy dataset. The numbers of pre-train, fine-tune, and

test samples are 470, 470, and 470.

• Damage2 is similar to the Damage1 dataset, but using a dam-

aged fan with a chipped blade.

• HAR is a 6-class classification task of human activity recog-

nition (i.e., walking, walking upstairs, walking downstairs,

sitting, standing, and laying). The numbers of input features

and output classes are 561 and 6. The original dataset [10]

contains sensor data from 30 human subjects. We manually

removed those of subjects 9, 14, 16, 19, and 25 from the origi-

nal dataset and saved as “initial dataset”. Those of subjects 9,

14, 16, 19, and 25 were saved as “drifted dataset”. The model

is pre-trained with the initial dataset. We assume the model

is used for a group of different subjects. Thus, the model is

fine-tuned with a half of the drifted dataset and then tested

with the remaining half of the drifted dataset. The numbers

of pre-train, fine-tune, and test samples are 5,894, 1,050, and

694.

We use a simple 3-layer DNN shown in Figure 1. The numbers

of input and output nodes are 256 and 3 for the Damage1 and Dam-

age2 datasets. They are 561 and 6 for the HAR dataset. The number

of hidden nodes is 96 in all the hidden layers. The LoRA rank is set

to 4. Batch normalization and ReLU are also executed as in Table

2.

5.2 Accuracy

Table 3 shows the baseline accuracy of the three datasets without

fine-tuning on the 3-layer DNNs. In the “Before” case, the model

is trained with the pre-train dataset and then tested with the test

dataset. In the “After” case, the model is trained only with the fine-

tune dataset and then tested with the test dataset. In each case,

the number of training epochs is set to a large enough value (i.e.,

E = 400 and 900 for the Damage1/Damage2 and HAR datasets).

Table 3 shows mean accuracy values over 20 trials. The accuracy

is quite low in the Before case while it is significantly better in

the After case. There is a significant accuracy gap between before

and after the data drift; in this case, we can fill out the gap by the

on-device fine-tuning as demonstrated below.

Table 4 shows the accuracies of FT-All, FT-Last, FT-Bias, FT-All-

LoRA, LoRA-All, Skip-LoRA, and Skip2-LoRA on the 3-layer DNNs.

The test is conducted with the following three steps. In each case,

the number of training epochs is set to a large enough value.

(1) The model is trained with the pre-train samples (E = 100

and 300 for the Damage1/Damage2 and HAR datasets).

(2) The model is fine-tuned with the fine-tune samples (E = 300

and 600 for the Damage1/Damage2 and HAR datasets).

(3) The model is tested with the test samples.

Mean accuracies over 20 trials are reported in this table. In all

cases, Skip2-LoRA shows almost the same accuracy as Skip-LoRA.

Note the difference between FT-All and the “After” case in Table

3 is that FT-All is trained with both the pre-train and fine-tune

datasets. For the Damage1 dataset, Skip2-LoRA achieves a higher

accuracy than FT-Last, FT-Bias, and LoRA-Last, demonstrating a

higher expressive power than these counterparts. However, its ac-

curacy is lower than FT-All, FT-All-LoRA, and LoRA-All. For the

Damage2 dataset, on the other hand, Skip2-LoRA shows a higher

accuracy than FT-All, FT-All-LoRA, and LoRA-All. We expect that

these counterparts cause overfitting to the “after drift” fine-tune

dataset and thus they show a lower accuracy than Skip2-LoRA.

For the HAR dataset, Skip-LoRA and Skip2-LoRA show the highest

accuracies followed by LoRA-All, FT-All, FT-All-LoRA, LoRA-Last,

FT-Last, and FT-Bias.
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Table 4: Accuracy of proposed and counterpart fine-tuning methods on 3-layer DNN (%).

FT-All FT-Last FT-Bias FT-All-LoRA LoRA-All LoRA-Last Skip-LoRA Skip2-LoRA

Damage1 98.73±2.11 94.19±2.24 79.42±7.50 98.63±2.14 98.26±1.32 94.67±2.92 96.07±2.14 96.19±2.29

Damage2 88.12±6.13 92.43±3.67 79.56±6.47 88.88±5.73 86.45±4.90 93.55±3.50 93.24±3.86 93.46±3.21

HAR 90.99±1.86 89.31±1.06 82.21±1.27 90.40±2.49 91.09±1.26 89.79±1.46 92.10±1.05 91.99±1.00

Table 5: Accuracy of state-of-the-art fine-tuning methods [2]

on ProxylessNAS [3] (%).

TinyTL (GN) TinyTL (BN)

Damage1 98.66±0.76 99.49±0.32

Damage2 92.09±3.17 96.01±2.74

HAR 88.76±0.91 89.27±1.13

Table 5 shows the accuracies of TinyTL [2] as a state-of-the-art

fine-tuning method, where “GN” and “BN” mean the group normal-

ization [14] and batch normalization. TinyTL uses GN [2], while its

BN version is also tested. The number of trials is 20 in each case.

The accuracy of Skip2-LoRA is not higher than that of TinyTL in

the Damage1 dataset, while Skip2-LoRA outperforms TinyTL in

the HAR dataset. Please note that the backbone network of TinyTL

is ProxylessNAS [3] while ours use much simpler 3-layer DNNs.

5.3 Execution Time

Tables 6 and 7 show the execution times of FT-All, FT-Last, FT-Bias,

FT-All-LoRA, LoRA-All, LoRA-Last, Skip-LoRA, and Skip2-LoRA

on a Raspberry Pi Zero 2 W with Neon instructions. The results

on the Damage1 and Damage2 datasets are the same and thus re-

ported as “Fan” dataset in Table 6. The training batch size B is set

to 20.

As shown in these tables, the training time of a batch consists

of the forward pass, backward pass, and weight update. The exe-

cution times are mean values over the entire fine-tuning process,

where the number of epochs E is the same as that in Section 5.2.

Although Skip-LoRA and LoRA-All have the same number of train-

able parameters, Skip-LoRA reduces the execution time of back-

ward pass by 82.5% to 88.3% compared to LoRA-All, demonstrat-

ing benefits of the proposed Skip-LoRA architecture. In addition,

Skip2-LoRA reduces the execution time of forward pass by 89.0%

to 93.5% compared to Skip-LoRA, demonstrating benefits of the

proposed Skip-Cache. As a result, Skip2-LoRA reduces the training

time by 89.0% to 92.0% (90.0% on average) compared to LoRA-All

that has the same number of trainable parameters. The training

times are only 0.450msec and 0.595msec per batch in the Fan and

HAR datasets, respectively.

In Skip2-LoRA, the training time is affected the number of epochs

E, because a larger E can skip more forward pass computations.

As mentioned in Section 5.2, E was set to a large enough value.

Here, we estimate actual training time based on practical E. Figure

3 shows the training curves of Skip2-LoRA with the three datasets.

X-axis shows the number of trained epochs, and Y-axis shows the

test accuracy. Mean accuracies over 10 trials are reported in these

graphs. Here, the number of required epochs in which the test ac-

curacy first reaches within a 1% range of the reported accuracies

in Table 4 is denoted as “required epochs”. The required number of

epochs are 100, 60, and 200 in the Damage1, Damage2, and HAR

datasets, respectively. The number of their fine-tuning samples are

470, 470, and 1050; thus, the total fine-tuning times of Skip2-LoRA

on a Raspberry Pi Zero 2 W are only 1.06sec, 0.64sec, and 2.79sec

in the Damage1, Damage2, and HAR datasets, respectively.

5.4 Power Consumption

Skip2-LoRA with the HAR dataset (E = 200) is executed on a Rasp-

berry Pi Zero 2 W and the power consumption is measured with a

current sensor INA219 (Figure 2). Figure 4 shows the variation of

power consumption and temperature, where the fine-tuning starts

at 9sec. Once the fine-tuning starts, the clock frequency increases

from 600MHz to 1GHz and the power consumption increases. Al-

though the net compute time for the forward and backward passes

is 2.79sec as mentioned above, the results in Figure 4 include over-

heads for reading the dataset and loading the pre-trained weight

parameters. The power consumption is at most 1,455mW for a

short duration and the temperature does not exceed 44.5 deg C.

6 SUMMARY

In this paper, we extended LoRA adapters as a new lightweight on-

device fine-tuning mehtod for resource-limited edge devices. The

proposed Skip2-LoRA synergistically combines Skip-LoRA archi-

tecture to reduce the backward compute cost and Skip-Cache to

reduce the forward compute cost. Experimental results using three

drifted datasets demonstrated that Skip2-LoRA reduces the fine-

tuning time by 90.0% on average compared to LoRA-All that has the

same number of trainable parameters while achieving comparable

accuracies to the state-of-the-art method. The order of magnitude

reduction of the compute cost enables a few seconds “quick” fine-

tuning of DNNs on a Raspberry Pi Zero 2 W board with modest

power and temperature.
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