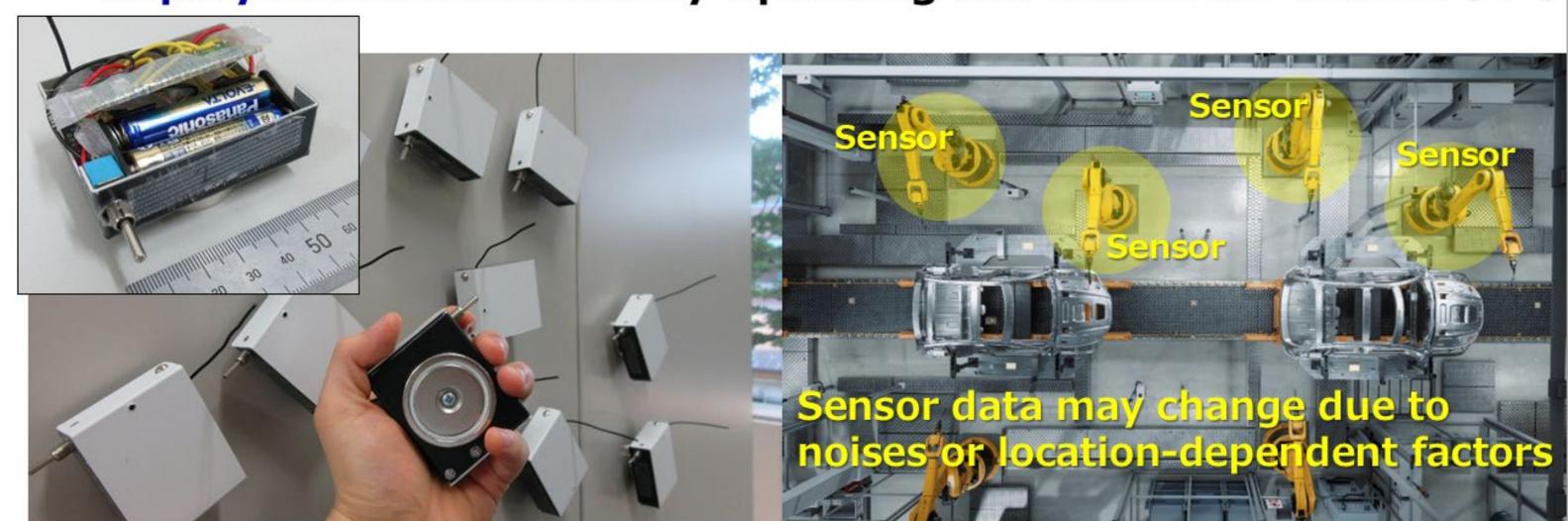
A Lightweight On-device CNN Finetuning using Skip2-LoRA and Quantized Cache

Hiroki Matsutani, Keisuke Sugiura, Masaaki Kondo (Keio Univ), Radu Marculescu (UT Austin)

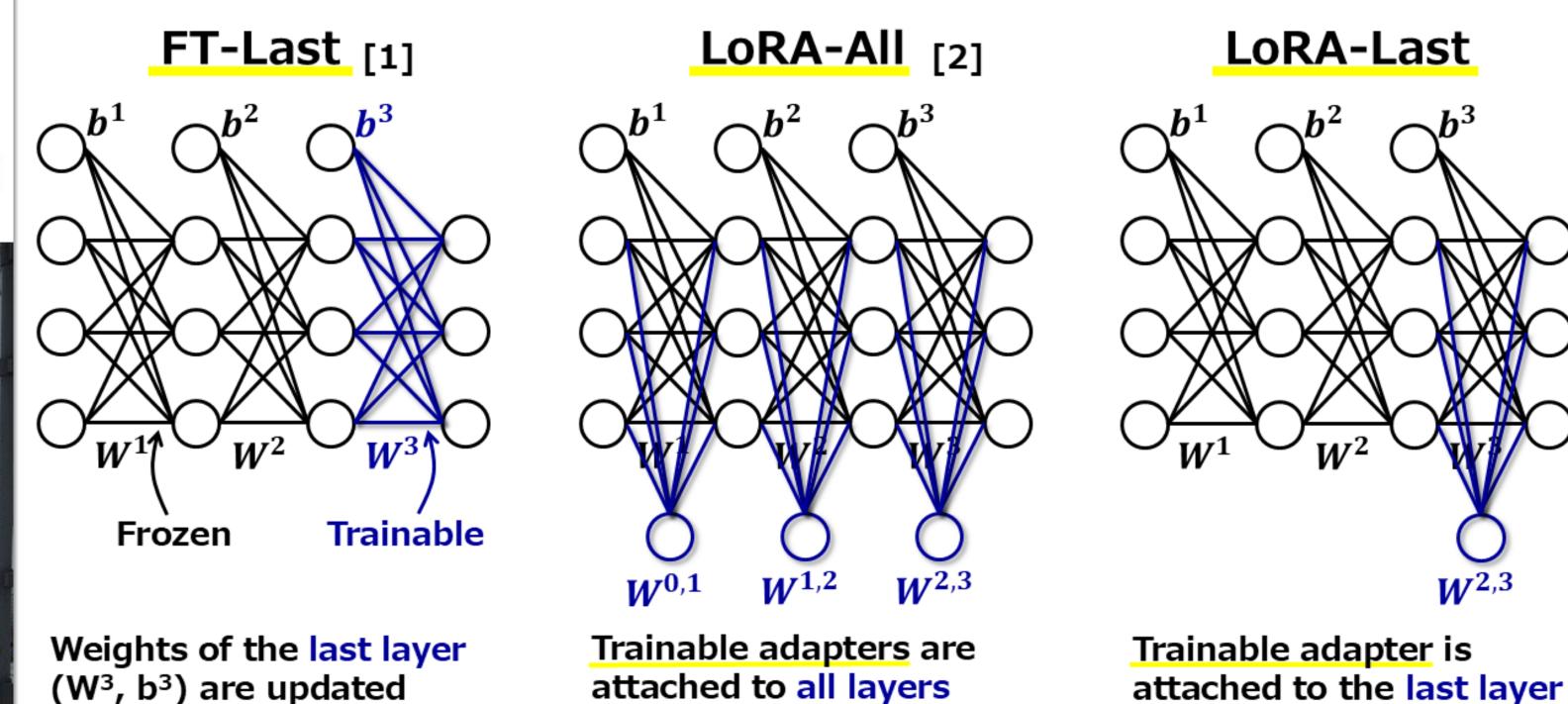
On-device finetuning for IoT devices

 Motivation for neural network training at edge side Addressing the gap between pretrained model and deployed environment by updating the model on-device [1,2]



[1] Mineto Tsukada et al., "A Neural Network-Based On-device Learning Anomaly Detector for Edge Devices", IEEE Trans. on Computers (2020). [2] Kazuki Sunaga et al., "Addressing Gap between Training Data and Deployed Environment by On-Device Learning", IEEE Micro (2023).

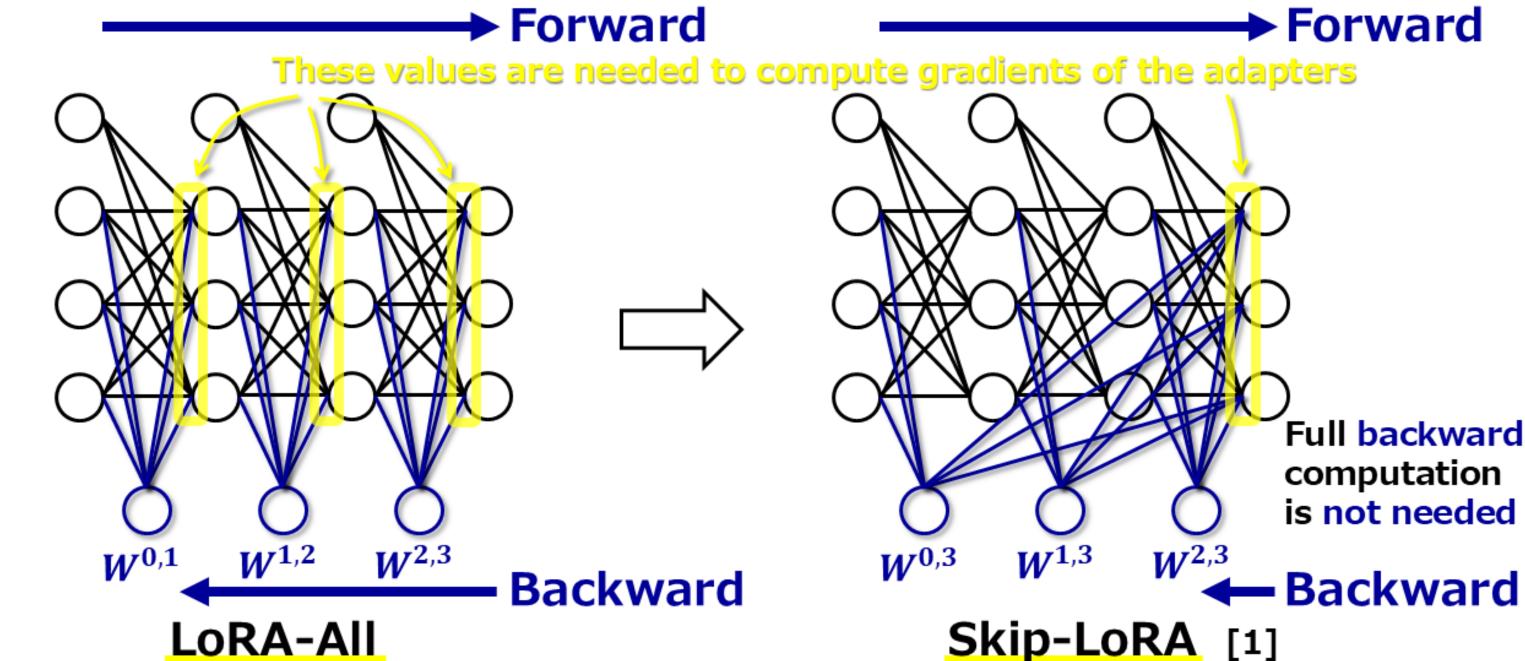
Baseline finetuning methods



[1] Haoyu Ren et al., "TinyOL: TinyML with Online-Learning onMicrocontrollers", IJCNN'21. [2] Edward J. Hu et al., "LoRA: Low-Rank Adaptation of Large LanguageModels", arXiv:2106.09685 (2021).

Our proposed approach: Skip-LoRA

Skip-LoRA can reduce the backward computation



[1] Hiroki Matsutani et al., "Skip2-LoRA: A Lightweight On-device DNN Fine-tuning Method for Low-cost Edge Devices", ASP-DAC'25.

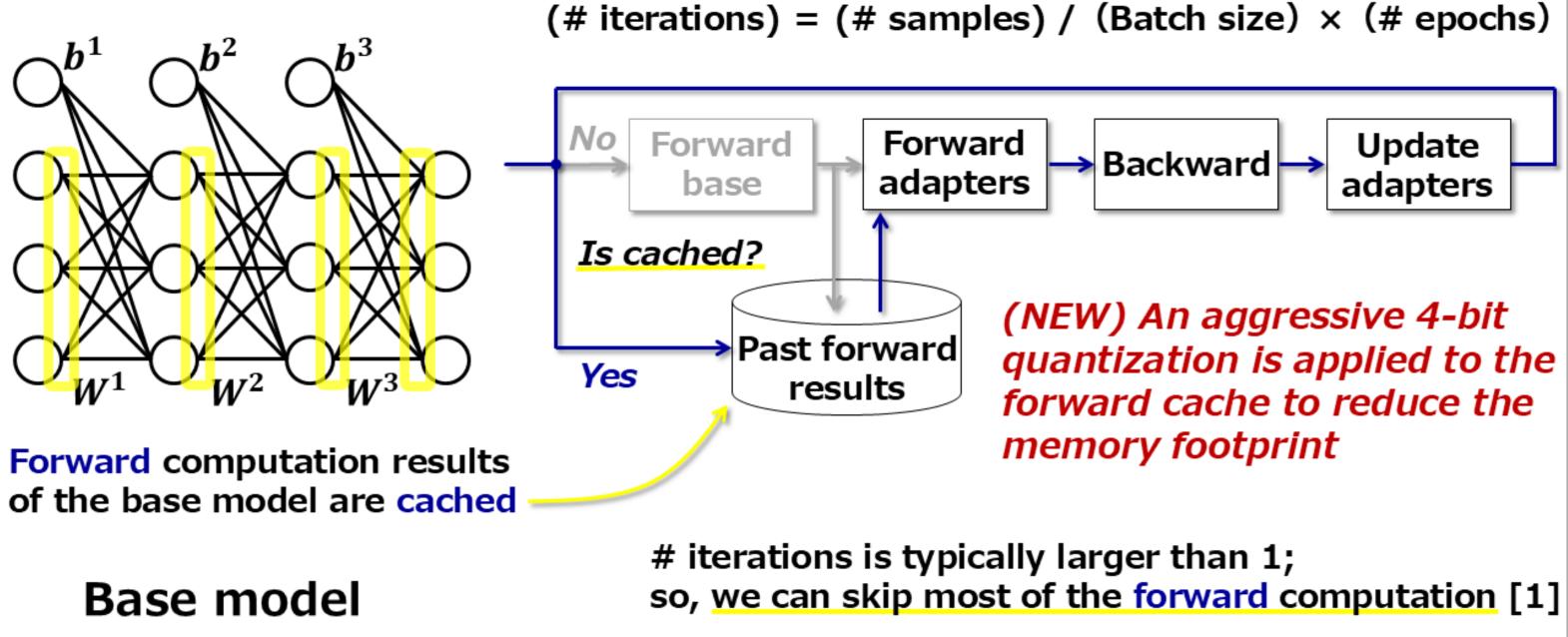
Backward

These values are needed to compute gradients of the adapters

Skip-LoRA [1]

Our proposed approach: Skip2-LoRA

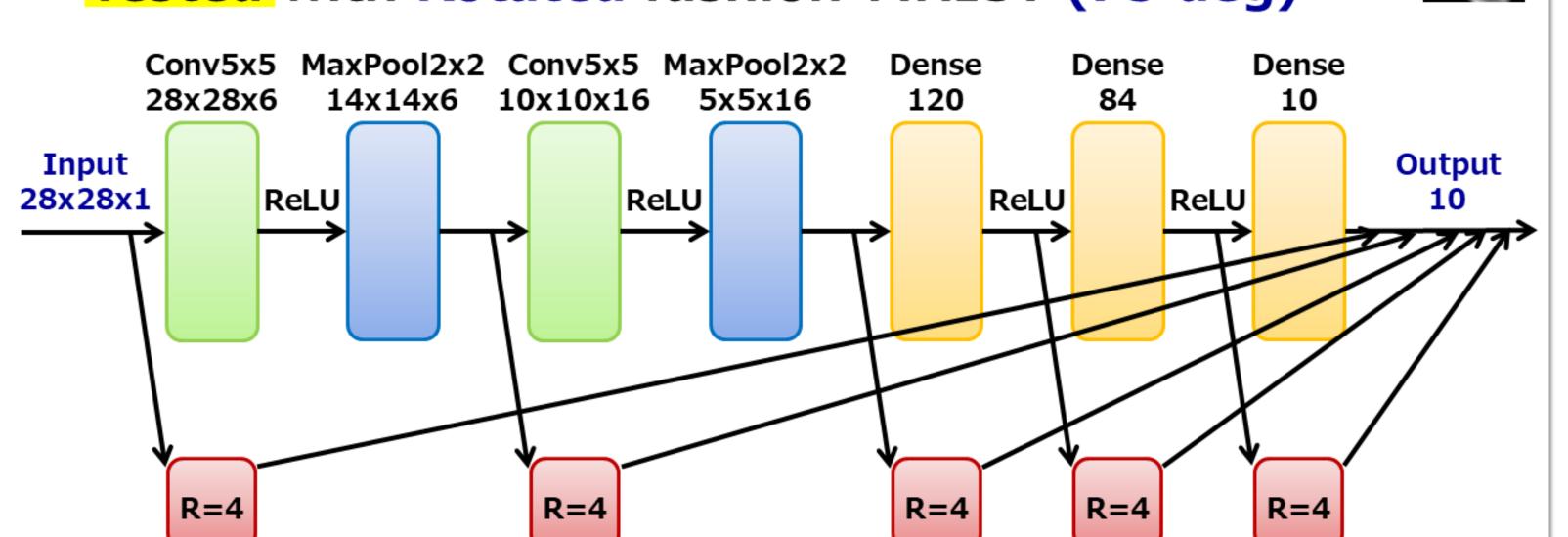
Skip2-LoRA can reuse forward computation results

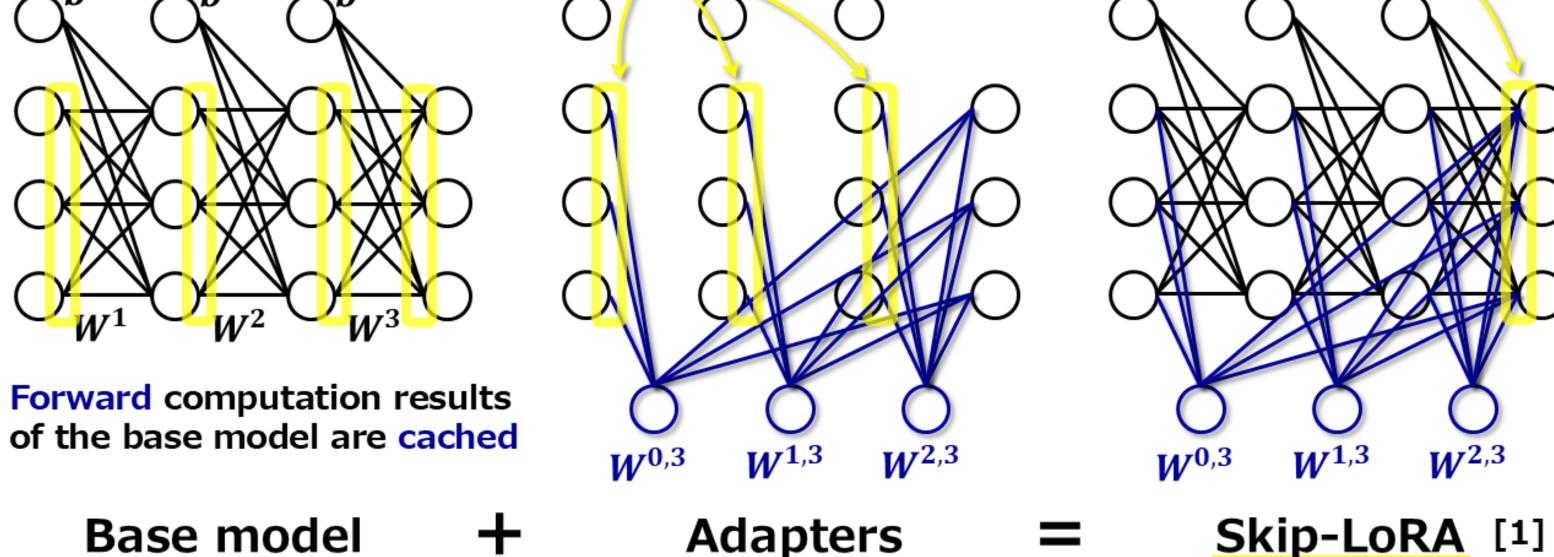


Skip2-LoRA for CNNs: Model

[1] Hiroki Matsutani et al., "Skip2-LoRA: A Lightweight On-device DNN Fine-tuning Method for Low-cost Edge Devices", ASP-DAC'25.

- Pretrained with fashion-MNIST
- Finetuned with Rotated fashion-MNIST (75 deg)
- Tested with Rotated fashion-MNIST (75 deg)



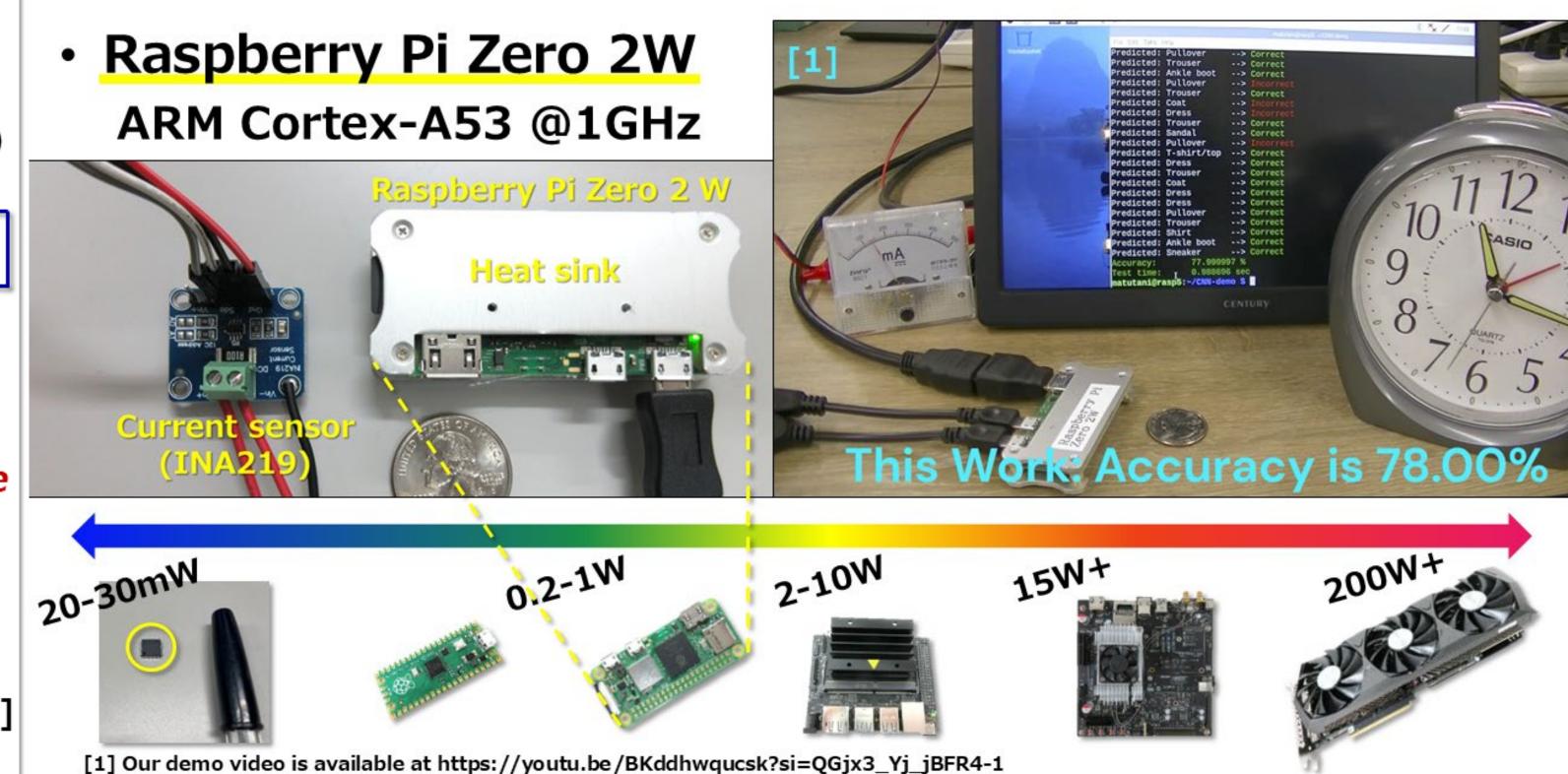


Our proposed approach: Skip2-LoRA

Skip2-LoRA can reuse forward computation results

[1] Hiroki Matsutani et al., "Skip2-LoRA: A Lightweight On-device DNN Fine-tuning Method for Low-cost Edge Devices", ASP-DAC'25.

Skip2-LoRA for CNNs: Platform



Skip2-LoRA for CNNs: Results

- In this work, Skip2-LoRA [1] is applied to CNNs
- An aggressive 4-bit quantization is applied to the forward cache to reduce the memory footprint

Model	Accuracy	FT time @RPZ2	Cache size
No Finetuning (FT)	9.18 %		III II
FT-Last	60.94 %	18.09 sec	L. H. L.
LoRA-Last	53.81 %	18.09 sec	33 6 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
LoRA-All	_/ 75.59 %	,114.15 sec	Raspberry Pi Zero 2W (aka \$15 computer)
Skip-LoRA	73.54 %	19.84 sec	(
Skip2-LoRA	73.54 %	3.90 sec	∕∕7,336 kB
Quant Skip2-LoRA	74.02 %	4.27 sec	√1,036 kB

*Number of FT samples: 1024, Number of epochs for FT: 10 [1] Hiroki Matsutani et al., "Skip2-LoRA: A Lightweight On-device DNN Fine-tuning Method for Low-cost Edge Devices", ASP-DAC'25.