

Skip2-LoRA: A Lightweight On-device DNN Fine-tuning Method for Low-cost Edge Devices

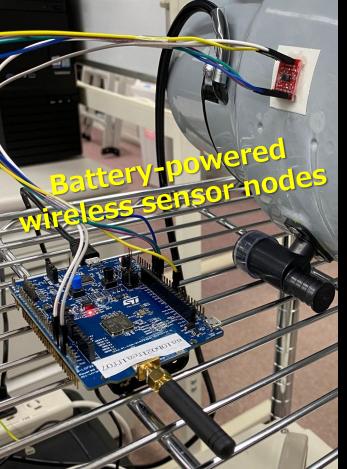
Hiroki Matsutani, Masaaki Kondo, Kazuki Sunaga (Keio Univ), Radu Marculescu (UT Austin)

TinyML: Applications

• Machine learning tasks in real environments Factory, building, robot, mobility, security, surveillance, ...

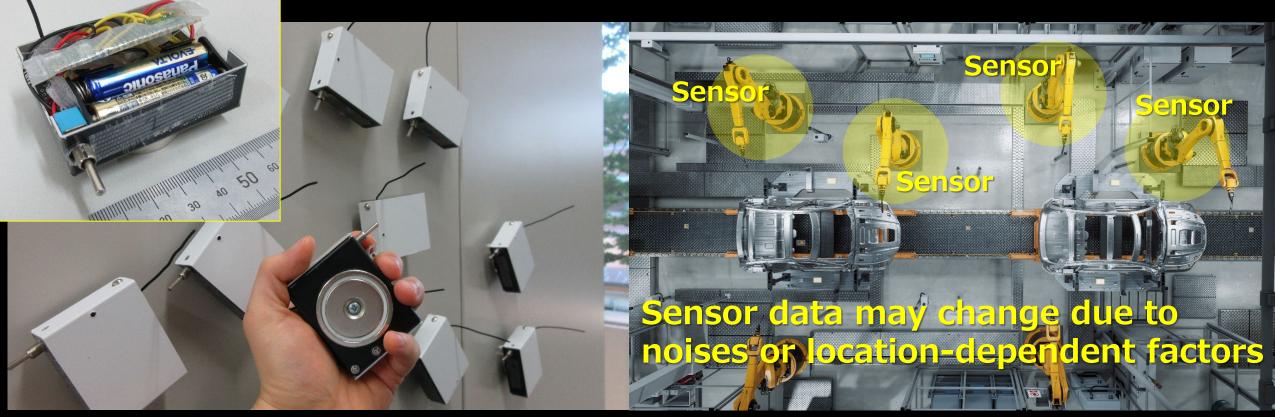
An example: Equipment monitoring

Anomaly detection on air-conditioning systems
 Anomaly detection results are transmitted to a cloud server
 and then visualized at the cloud side



On-device finetuning for IoT devices

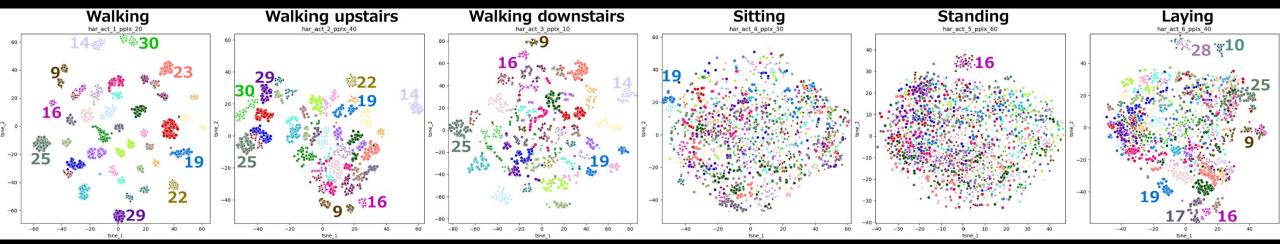
 Motivation for neural network training at edge side Addressing the gap between pretrained model and deployed environment by updating the model on-device [1,2]



[1] Mineto Tsukada et al., "A Neural Network-Based On-device Learning Anomaly Detector for Edge Devices", IEEE Trans. on Computers (2020).[2] Kazuki Sunaga et al., "Addressing Gap between Training Data and Deployed Environment by On-Device Learning", IEEE Micro (2023).

On-device finetuning for IoT devices

 2D visualization results of 6-class human activity recognition dataset (30 human subjects) [1]



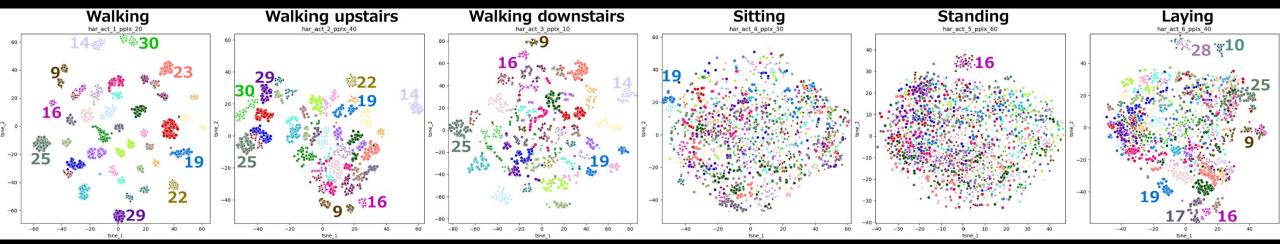
Samples obtained from the same human subject are plotted with the same color [2]

Samples from the same human subject form <u>clusters</u> (e.g., Walking, Walking upstairs, Walking downstairs, Laying)

[1] Jorge Reyes-Ortiz et al., "Human Activity Recognition Using Smartphones", UCI Machine Learning Repository (2012).[2] Hiroki Matsutani et al., "A Tiny Supervised ODL Core with Auto Data Pruning for Human Activity Recognition", IEEE BSN'24.

On-device finetuning for IoT devices

 2D visualization results of 6-class human activity recognition dataset (30 human subjects) [1]

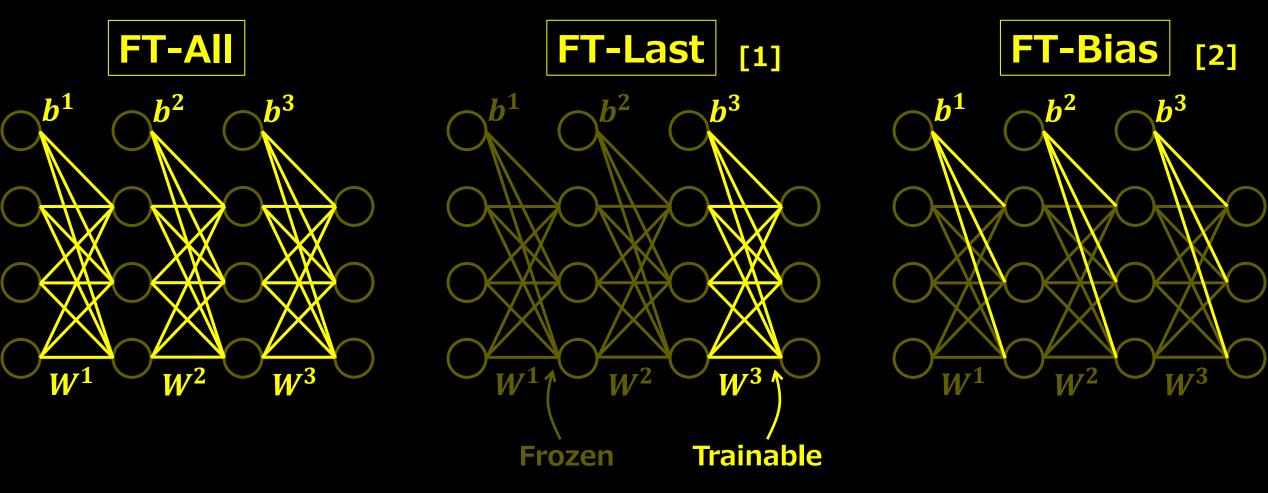


<u>Problem</u>: A pre-trained model that has been optimized for a specific human subject <u>may not work well</u> for different human subjects that have not been considered yet [2]

→ On-device finetuning to adjust the model at the edge

[1] Jorge Reyes-Ortiz et al., "Human Activity Recognition Using Smartphones", UCI Machine Learning Repository (2012).[2] Hiroki Matsutani et al., "A Tiny Supervised ODL Core with Auto Data Pruning for Human Activity Recognition", IEEE BSN'24.

Baseline finetuning methods (1/3)



All weights (W¹, W², W³, b¹, b², b³) are updated

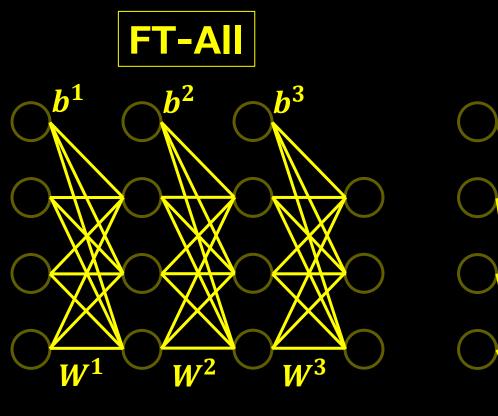
Weights of the last layer (W³, b³) are updated

Bias parameters (b¹, b², b³) are updated

[1] Haoyu Ren et al., "TinyOL: TinyML with Online-Learning onMicrocontrollers", IJCNN'21. [2] Han Cai et al., "TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning", NeurIPS'20.

Baseline finetuning methods (2/3)

LORA-All [1]

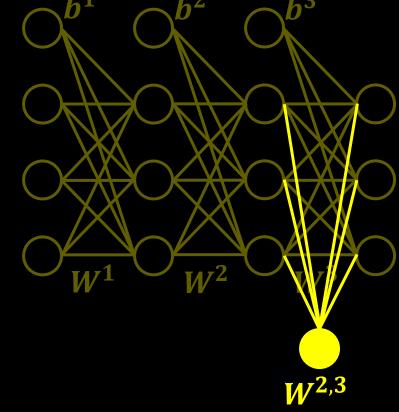


All weights (W¹, W², W³, b¹, b², b³) are updated

Trainable adapters are attached to all layers

W1,2

 $W^{2,3}$



LoRA-Last

Trainable adapter is attached to the last layer

[1] Edward J. Hu et al., "LoRA: Low-Rank Adaptation of Large Language Models", arXiv:2106.09685 (2021).

W0,1

Baseline finetuning methods (3/3)

Forward & backward are needed to update adapters

Forward

 $W^{2,3}$

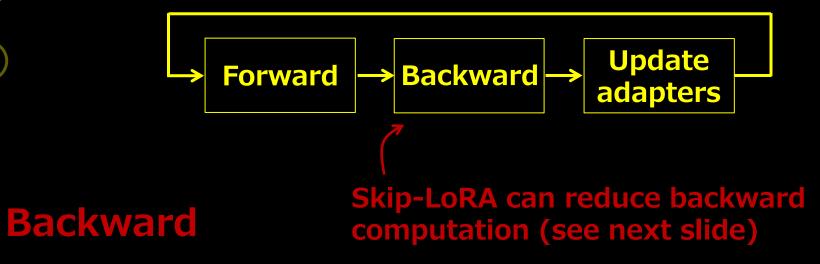
W1,2

LoRA-All

W^{0,1}

These values are needed to compute gradients of the adapters

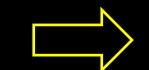
(# iterations) =
 (# samples) / (Batch size) × (# epochs)



Our proposal: Skip-LoRA

Skip-LoRA can reduce the backward computation

Forward
Forward
These values are needed to compute gradients of the adapters



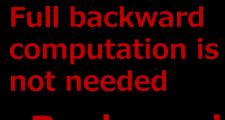
Backward

W^{1,2}

LoRA-All

W0,1

 $W^{2,3}$



W^{2,3} Backward

10

W1,3

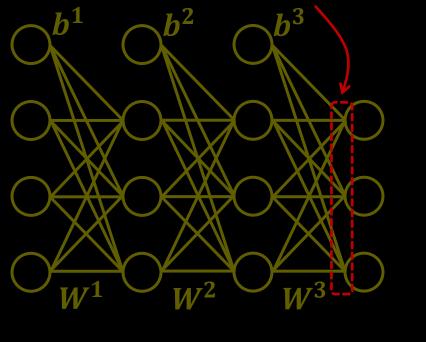
Skip-LoRA

 $W^{0,3}$

Our proposal: Skip2-LoRA (1/3)

Skip2-LoRA can reuse forward computation results

W1, W2, and W3 are notW0,3, W1,3, and W2,3These values arechanged during FTare changed during FTneeded for backward



Forward computation results of the base model are cached

Base model

W1,3 **1//0,3** $W^{2,3}$

Adapters

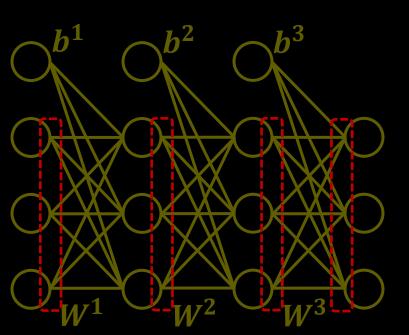
W0,3 **W**1,3 $W^{2,3}$ Skip-LoRA 11

Our proposal: Skip2-LoRA (2/3)

Skip2-LoRA can reuse forward computation results

These values are also needed to update W^{0,3}, W^{1,3}, and W^{2,3}

These values are needed for backward

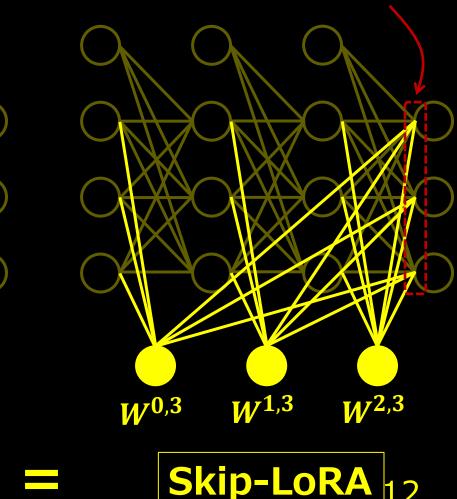


Forward computation results of the base model are cached

__<mark>_</mark>_

Base model

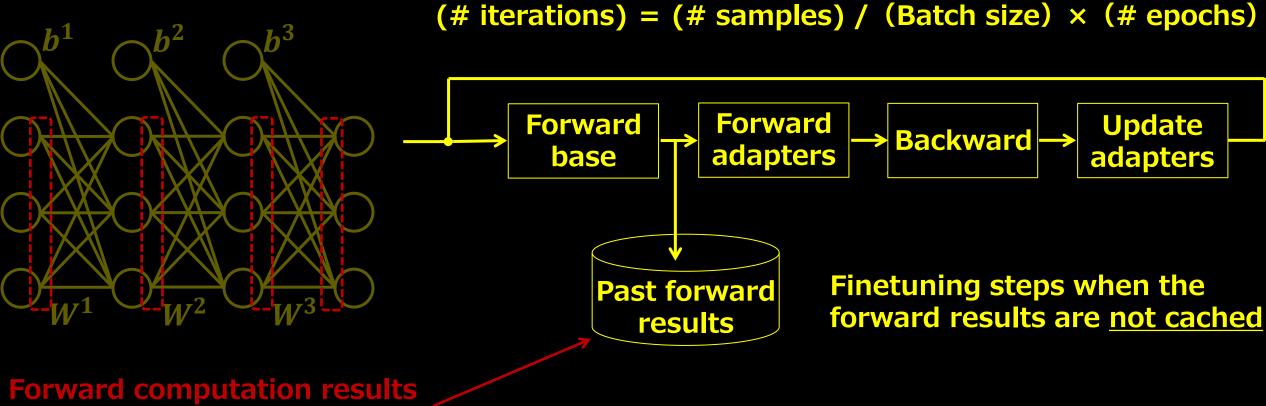
W1,3 **1/**/0,3 $W^{2,3}$



Adapters

Our proposal: Skip2-LoRA (3/3)

Skip2-LoRA can reuse forward computation results

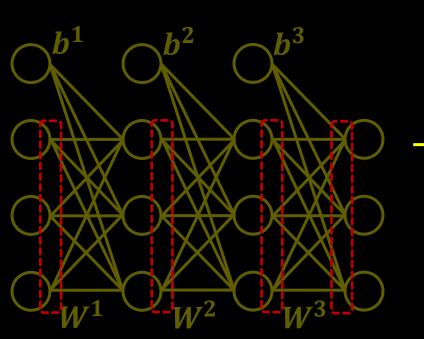


of the base model are cached

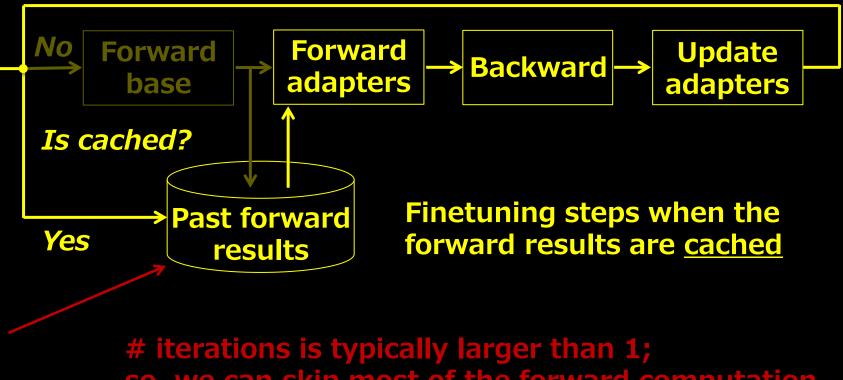
Base model

Our proposal: Skip2-LoRA (3/3)

Skip2-LoRA can reuse forward computation results



(# iterations) = (# samples) / (Batch size) × (# epochs)



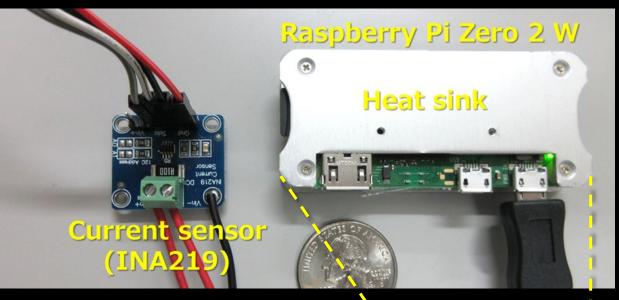
Forward computation results of the base model are cached

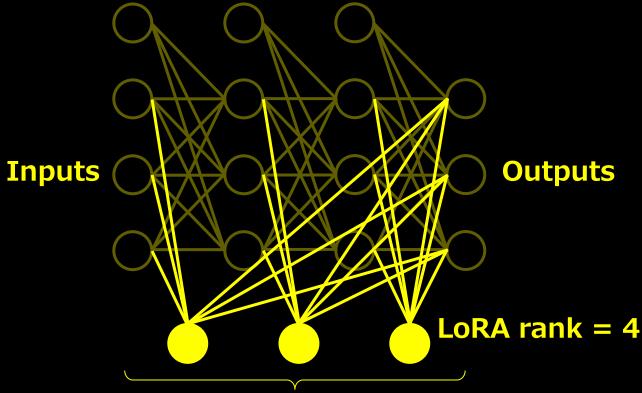
Base model

so, we can skip most of the forward computation

Evaluations: Platform & model

Raspberry Pi Zero 2W [1] ARM Cortex-A53 @1GHz



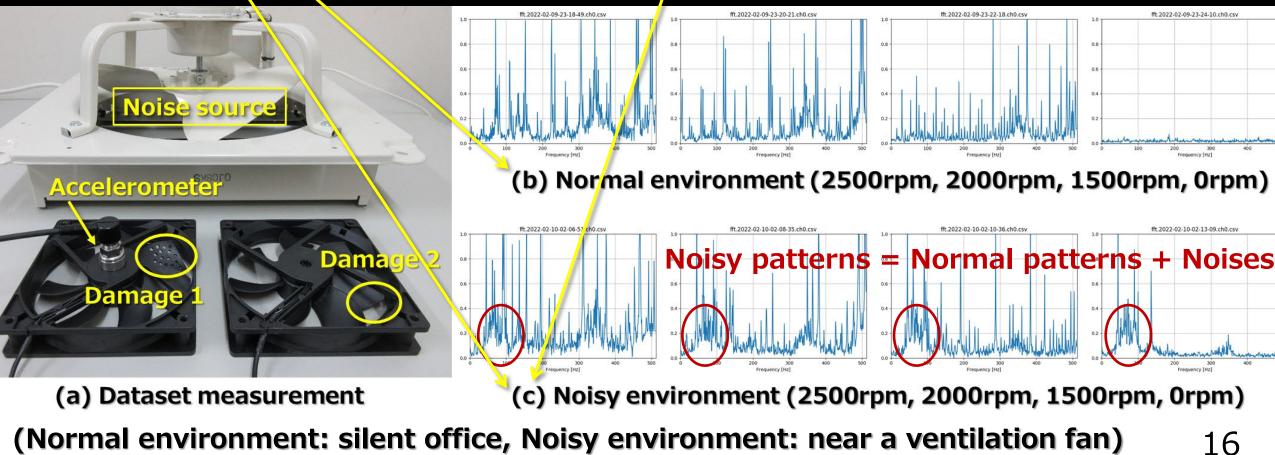


3-layer MLP with batch norm

[1] "Raspberry Pi Zero 2 W", https://www.raspberrypi.com/products/raspberry-pi-zero-2-w.

Evaluations: Three datasets (1/2)

Fan datasets (Damage1 & Damage2)
 <u>Pretrained</u> at silent office but <u>tested</u> near a ventilation fan
 <u>Finetuned</u> at the noisy environment for better test accuracy



Evaluations: Three datasets (2/2)

HAR (human activity recognition) dataset
 <u>Pretrained</u> with human subjects in Group1 but tested with
 those in Group2
 <u>Finetuned</u> with those in Group2 for better test accuracy

Group 2: Human subjects 9, 14, 16, 19, and 25 Group 1: The other 25 human subjects

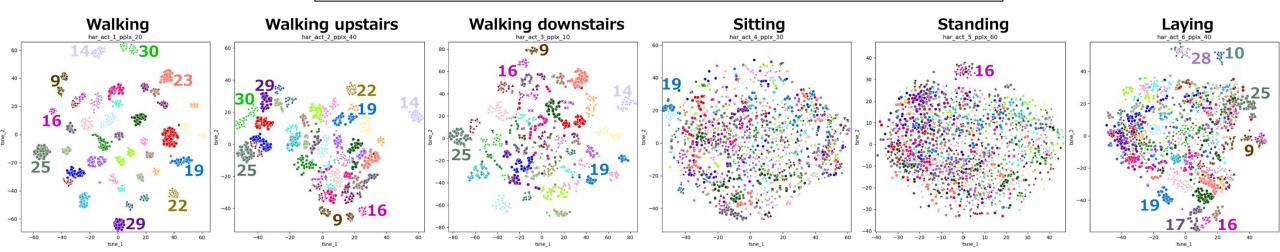
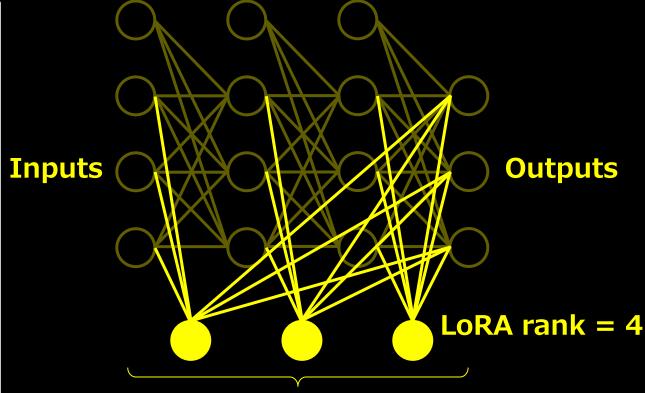


Figure: 2D visualization results of 6-class HAR dataset with 30 human subjects (Samples from the same human subject form clusters such as Walking, Walking upstairs, …) 17

Evaluations: Platform & model

Table: Model and dataset parameters

	Fan dataset	HAR dataset
# of input nodes	256	561
# of output nodes	3	6
# hidden nodes	96	96
# samples for pretrain	470	5,894
# samples for finetune	470	1,050
# samples for test	470	694
# epochs for pretrain	100	300
# epochs for finetune	300	600



3-layer MLP with batch norm

18

[1] "Raspberry Pi Zero 2 W", https://www.raspberrypi.com/products/raspberry-pi-zero-2-w.

Evaluations: Test accuracy after FT

- Pretrained with pretrain dataset
- Finetuned with finetune dataset
 Tested with test dataset (see Table 2)
 Skip2-LoRA is compared with SOTA [1] (see Table 3)

··· Silent office

··· Near ventilation fan

··· Near ventilation fan

19

Table 1: Accuracy after full retraining

	Before	After
Damage1	60.61 ± 13.73	98.99 ± 2.81
Damage2	51.86 ± 8.04	90.88 ± 5.65
HAR	79.97 ± 5.62	86.09 ± 4.40

Table 3: Accuracy after finetuning (SOTA)

	TinyTL (GN)	TinyTL (BN)
Damage1	98.66 ± 0.76	99.49 ± 0.32
Damage2	92.09 ± 3.17	96.01 ± 2.74
HAR	88.76 ± 0.91	89.27±1.13

Table 2: Accuracy after finetuning (Baseline models & This work)

	FT-All	FT-Last	FT-Bias	FT-All-LoRA	LoRA-All	LoRA-Last	Skip-LoRA	Skip2-LoRA
Damage 1	98.73±2.11	94.19±2.24	79.42 ± 7.50	98.63±2.14	98.26±1.32	94.67 ± 2.92	96.07 ± 2.14	96.19±2.29
Damage2	88.12 ± 6.13	92.43±3.67	79.56 ± 6.47	88.88 ± 5.73	86.45 ± 4.90	93.55 ± 3.50	93.24 ± 3.86	93.46 ± 3.21
HAR	90.99 ± 1.86	89.31 ± 1.06	82.21 ± 1.27	90.40 ± 2.49	91.09 ± 1.26	89.79 ± 1.46	92.10 ± 1.05	91.99 ± 1.00

→ Skip2-LoRA is better than FT-Last & LoRA-Last; it is comparable to LoRA-All

[1] Han Cai et al., "TinyTL: Reduce Memory, Not Parameters for Efficient On-Device Learning", NeurIPS'20.

Evaluations: Execution time of FT

Execution time @ Raspberry Pi Zero 2W
 Skip-LoRA reduces the backward computation
 Skip2-LoRA reduces both forward & backward computation

Table 1: Execution time (train & predict) of Fan (Damage1 & Damage2) dataset [msec]

	FT-All	FT-Last	FT-Bias	FT-All-LoRA	LoRA-All	LoRA-Last	Skip-LoRA	Skip2-LoRA
Train@batch	5.864	2.633	3.721	6.053	4.113	2.642	2.952	0.450
forward	2.812	2.601	2.832	2.868	2.942	2.613	<u>2.807</u> –	<u>0.309</u>
backward	2.866	0.030	0.885	2.993	<u>1.157</u>		> <u>0.136</u>	0.131
weight update	0.186	0.002	0.003	0.192	0.014	0.002	0.010	0.010
Predict@sample	0.142	0.144	0.148	0.150	0.155	0.143	0.151	0.154

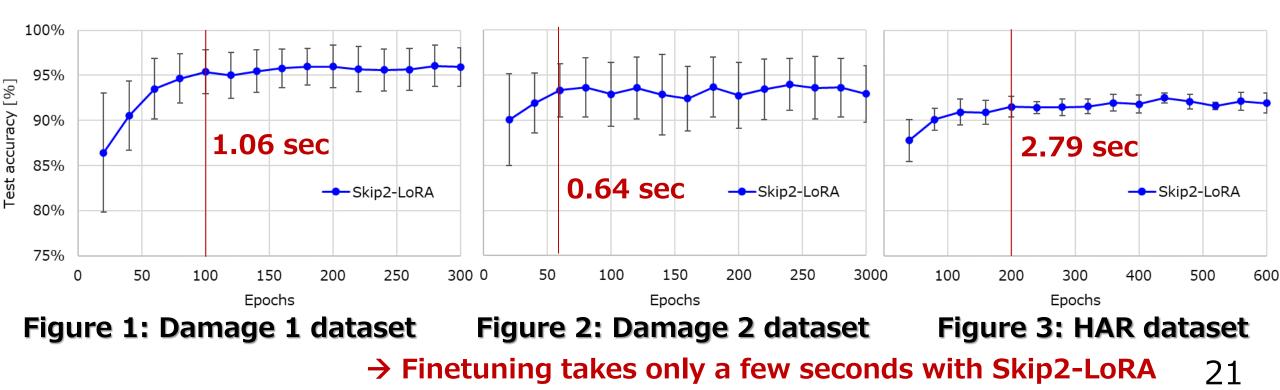
Table 2: Execution time (train & predict) of HAR dataset [msec]

	FT-All	FT-Last	FT-Bias	FT-All-LoRA	LoRA-All	LoRA-Last	Skip-LoRA	Skip2-LoRA
Train@batch	11.323	6.179	6.795	11.577	7.459	6.031	6.328	0.595
forward	6.569	6.129	6.050	6.660	6.390	6.005	<u>6.130</u> –	<u>0.396</u>
backward	4.373	0.047	0.742	4.480	1.052		$\longrightarrow 0.184$	0.185
weight update	0.381	0.003	0.003	0.437	0.017	0.002	0.014	0.014
Predict@sample	0.308	0.307	0.304	0.317	0.314	0.309	0.314	0.317

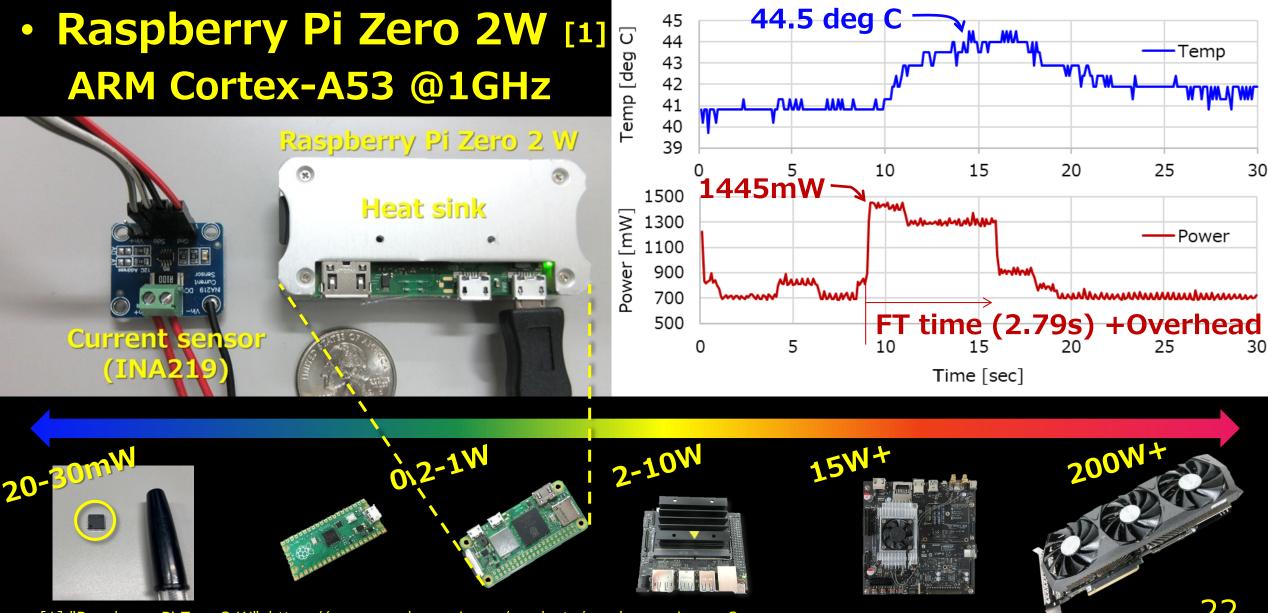
Evaluations: Training curves & time

- So far, numbers of epochs were set to enough values
- Here we estimate actual finetuning times of three datasets on Raspberry Pi Zero 2W

Based on training curves of Skip2-LoRA with 10 trials



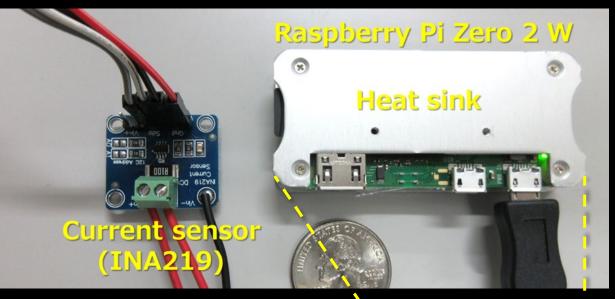
Evaluations: Power consumption of FT



[1] "Raspberry Pi Zero 2 W", https://www.raspberrypi.com/products/raspberry-pi-zero-2-w.

Summary: Skip2-LoRA for on-device FT

 Reduce both forward & backward computations



- Compared to LoRA-All, 90% reduction in FT time Comparable accuracy
- Run on \$15 computer FT within a few seconds At most 1.445W (44.5 degC)
 See you at WiP poster! [1]

