Keio University

Wireless NoC as Interconnection Backbone for Multicore Chips: Promises, Challenges, and Recent Developments

Part IV: 3D WiNoC Architectures

Hiroki Matsutani Keio University, Japan

Mar 24th, 2014

Hiroki Matsutani, "3D WiNoC Architectures", Tutorial at DATE'14

Outline: 3D WiNoC Architectures

So far we focused on 2D WiNoC architecture and its physical link design. This part explores 3D WiNoC architectures, especially inductive-coupling 3D option.

• 3D IC technologies: Wired vs. Wireless [5min]

- Prototype systems: Cube-0 & Cube-1 [15min]
- Wireless 3D NoC architectures [15min]
 - Ring-based 3D WiNoC
 - Irregular 3D WiNoC

• Experiment results and Summary [10min]

Mar 24th, 2014

Hiroki Matsutani, "3D WiNoC Architectures", Tutorial at DATE'14

Design cost of LSI is increasing

- System-on-Chip (SoC)
 - Required components are integrated on a single chip
 - Different LSI must be developed for each application
- System-in-Package (SiP) or 3D IC
 - Required components are stacked for each application

By changing the chips in a package, we can provide a wider range of chip family with modest design cost

Next slides show techniques for stacking multiple chips

3D IC technology for going vertical

Inductive coupling link for 3D ICs

Stacking after chip fabrication Only know-good-dies selected

More than 3 chips \int

Bonding wires for power supply

We have developed some prototype systems of wireless 3D ICs using the inductive coupling

Inductor for transceiver Implemented as a square coil with metal in common CMOS

Footprint of inductor

Not a serious problem. Only metal layers are occupied

Note: This part focuses on inter-chip wireless, not the intra-chip wireless introduced in Parts II and III. Mar 24th, 2014 Hiroki Matsutani, "3D WiNoC Architectures", Tutorial at DATE'14 5

Outline: 3D WiNoC Architectures

So far we focused on 2D WiNoC architecture and its physical link design. This part explores 3D WiNoC architectures, especially inductive-coupling 3D option.

- 3D IC technologies: Wired vs. Wireless [5min]
- Prototype systems: Cube-0 & Cube-1 [15min]
- Wireless 3D NoC architectures [15min]
 - Ring-based 3D WiNoC
 - Irregular 3D WiNoC
- Experiment results and Summary [10min]

Mar 24th, 2014

Hiroki Matsutani, "3D WiNoC Architectures", Tutorial at DATE'14

An example: MuCCRA-Cube (2008)

4 MuCCRA chips are stacked on a PCB board

Technology: 90nm Mar 20thipathickness: 85um, Glue: 10um

[Saito, FPL'09]

Stacking method: Staircase stacking

- Inductive-coupling link
 - Local clock @ 4GHz
 - Serial data

System clock for NoC: 200MHz

 \rightarrow 35-bit transfer for each clock

- Test chip for vertical communication schemes
 - Vertical point-to-point link between adjacent chips
 - Vertical shared bus (broadcast) [Matsutani, NOCS'11]
- Each chip has
 - 2 cores (packet counter)
 - 2 routers
 - Inductors (P2P ring)
 - Inductors (vertical bus)

Process: Fujitsu 65nm (CS202SZ) Voltage: 1.2V System clock: 200MHz

Mar 24th, 2014

Hiroki Matsutani, "3D WiNoC A

- Test chip for vertical communication schemes
 - Vertical point-to-point link between adjacent chips
- Vertical shared bus (broadcast) 2.1mm x 2.1mm [Matsutani, NOCS'11] đ G Inductors (P2P) TΧ RX **Core 0 &** Stacking for **Ring network** Router 0 & 1 Inductors (bus) Slide & stac Mar 24th, 2 ani, "3D WiNoC A

- Test chip for vertical communication schemes
 - Vertical point-to-point link between adjacent chips

- Test chips for building-block 3D systems
 - Two chip types: Host CPU chip & Accelerator chip
 - We can customize number & types of chips in SiP

[Miura, IEEE Micro 13]

- Cube-1 Host CPU chip
 - Two 3D wireless routers
 - MIPS-like CPU
- Cube-1 Accelerator chip
 Two 3D wireless routers
 - Processing element array

Mar 24th, 2014

• Microphotographs of test chips

[Miura, IEEE Micro 13]

15

Inductive-coupling ThruChip Interface (TCI)

Mar 24th, 2014

Mar 24

Mar 24th, 2014 Hiroki Matsuta

Outline: 3D WiNoC Architectures

So far we focused on 2D WiNoC architecture and its physical link design. This part explores 3D WiNoC architectures, especially inductive-coupling 3D option.

- 3D IC technologies: Wired vs. Wireless [5min]
- Prototype systems: Cube-0 & Cube-1 [15min]

• Wireless 3D NoC architectures [15min]

- Ring-based 3D WiNoC
- Irregular 3D WiNoC

• Experiment results and Summary [10min]

Mar 24th, 2014

Hiroki Matsutani, "3D WiNoC Architectures", Tutorial at DATE'14

Big picture: Wireless 3D NoC

- Arbitrary chips are stacked after fabrication
 - Each chip has vertical links at pre-specified locations, but we do not know internal topology of each chip
 - Wireless 3D NoC required to stack unknown topologies

GPU chip from B

from A

CPU chip from C Mar 24th, 2014

Note: We can add long-range links to induce small-world effects [See Part I]

Required chips are stacked for each application

An example (4 chips) Architectures"

Two approaches: Wireless 3D NoC arch

Chips should be added, removed, swapped for each app.

- Ring-based approach
 Good Easy to add & remove
 Bad- Inefficient hop count
- **Bad- No scalability** [Matsutani, NOCS'11]

- Irregular approach
 - We can use any links
 - Irregular routing needed
 - Plug-and-play protocol [Matsutani, ASPDAC'13]

Ring-based 3D wireless NoC

• Chips are connected via unidirectional rings

Ring approach: Deadlock problem

• Ring inherently includes a cyclic dependency

Ring approach: Deadlock problem

• Ring inherently includes a cyclic dependency

Ring approach: Deadlock problem

Any packets cannot advance \rightarrow Deadlock avoidance is needed

Cyclic dependency is formed

- Adding extra VCs
 - Conventional way
 - Duplicating buffers
 - 2 VCs for each message class
- Bubble flow control
 - Buffer space of a single packet must be always reserved in each router
 - All message classes share the same buffers [Puente,ICPP'99]

Hiroki Matsutani, "3D WiNoC Architectures", Tutorial at DATE

- Adding extra VCs
 - Conventional way
 - Duplicating buffers
 - 2 VCs for each message class
- Bubble flow control
 - Buffer space of a single packet must be always reserved in each router
 - All message classes share the same buffers

2 VCs required for a message class; Multi-core uses multiple classes

We employ Bubble flow for CMP with multiple message classes

Outline: 3D WiNoC Architectures

So far we focused on 2D WiNoC architecture and its physical link design. This part explores 3D WiNoC architectures, especially inductive-coupling 3D option.

- 3D IC technologies: Wired vs. Wireless [5min]
- Prototype systems: Cube-0 & Cube-1 [15min]
- Wireless 3D NoC architectures [15min] — Ring-based 3D WiNoC

– Irregular 3D WiNoC

• Experiment results and Summary [10min]

Mar 24th, 2014

Hiroki Matsutani, "3D WiNoC Architectures", Tutorial at DATE'14

Two approaches: Wireless 3D NoC arch

Chips should be added, removed, swapped for each app.

- Ring-based approach
 Good Easy to add & remove
 Bad- Inefficient hop count
- **Bad** No scalability [Matsutani, NOCS'11]

Irregular approach
 Good We can use any links
 Irregular routing needed

– Plug-and-play protocol [Matsutani, ASPDAC'13]

- Wireless 3D CMPs
 - Various chips are stacked, depending on the application
- Each chip
 - Must have vertical links
 - May not have horizontal links
 - May have VCs for horizontal
- Ad-hoc wireless 3D NoC
- We cannot expect the network topology, number of VCs, and Mar 24th, 2013 bandwidth before stacking Mar 24th, 2013 bandwidth before stacking Tutorial at

- Wireless 3D CMPs
 - Various chips are stacked, depending on the application
- Each chip
 - Must have vertical links
 - May not have horizontal links
 - May have VCs for horizontal
- Ad-hoc wireless 3D NoC
- We cannot expect the network topology, number of VCs, and Chip 0 Mar 24th, 2013 bandwidth before stacking Mar 24th, 2013 bandwidth before stacking

- Wireless 3D CMPs
 - Various chips are stacked, depending on the application
- Each chip
 - Must have vertical links
 - May not have horizontal links
 - May have VCs for horizontal
- Ad-hoc wireless 3D NoC
- We cannot expect the network topology, number of VCs, and Mar 24th, 2014 bandwidth before stacking Mar 24th, 2014 bandwidth before stacking

- Up*/down* (UD) routing [Schroeder, JSAC'91]
 - Irregular network routing
 - A root node is selected
 - Packets go up and then go down

Note: Please refer to Part II for routing strategy for irregular WiNoCs.

- An example
 - 4x4 2D mesh

- A root node is selected

Mar 24th, 2014

- Up*/down* (UD) routing [Schroeder, JSAC'91]
 - Irregular network routing
 - A root node is selected
 - Packets go up and then go down
- An example
 - 4x4 2D mesh
 - Direction (up or down) is determined

Mar 24th, 2014

Root

OK

8

5

3

Up direction

NG

15

- Up*/down* (UD) routing [Schroeder, JSAC'91]
 - Irregular network routing
 - A root node is selected
 - Packets go up and then go down
- An example
 - 4x4 2D mesh
 - Routing path is generated
 - Down-up turn is prohibited
 - It generates imbalanced

Mar 24th, 2019ths

- Up*/down* (UD) routing
 - Irregular network routing
 - A root node is selected
 - Packets go up and then go down
- Another example

- 3D NoC with 4 chips

[Schroeder, JSAC'91]

WiNoC Architectures", Tutorial at DATE'14

- Up*/down* (UD) routing
 - Irregular network routing
 - A root node is selected
 - Packets go up and then go down
- Another example

- 3D NoC with 4 chips

[Schroeder, JSAC'91]

-WiNoC Architectures", Tutorial at DATE'14

- Up*/down* (UD) routing Irregular network routing A root node is selected - Packets go up and then go down Another example

[Schroeder, JSAC'91]

The best spanning tree root is selected by exhaustive or heuristic using communication traces (9sec for 64-tile)

Irregular approach: UD with VCs

• UD routing with multiple VCs

[Koibuchi, ICPP'03] [Lysne, TPDS'06]

- Each layer (VC) has its own spanning tree
- Packets can transit multiple layers in descent order

Outline: 3D WiNoC Architectures

So far we focused on 2D WiNoC architecture and its physical link design. This part explores 3D WiNoC architectures, especially inductive-coupling 3D option.

- 3D IC technologies: Wired vs. Wireless [5min]
- Prototype systems: Cube-0 & Cube-1 [15min]
- Wireless 3D NoC architectures [15min]
 - Ring-based 3D WiNoC
 - Irregular 3D WiNoC

Experiment results and Summary [10min]

Mar 24th, 2014

Hiroki Matsutani, "3D WiNoC Architectures", Tutorial at DATE'14

Full-system CMP simulations

Application performance of two approaches is evaluated

- Ring-based approach
 Irregular approach Good We can use any links Good Easy to add & remove **Bad** Inefficient hop count - Irregular routing needed
- Bad- No scalability [Matsutani, NOCS'11]

- Plug-and-play protocol

Network topology: Irregular

- The following iteration is performed 1,000 times
 - Each tile has router and core (e.g., processor or caches)
 - Each horizontal link appears with 50%
- We examined three cases: 16, 32, and 64 tiles

Network topology: Irregular

• The following iteration is performed 1,000 times

Loop tile has rout

Among 1,000 random topologies, one with the most typical hop

count value is selected for the full-system evaluation

Parallel programs are running on it

GEMS/Simics is used for full-system simulations

- Ring-based approach
 Irregular approach Good We can use any links Good Easy to add & remove Bad-Inefficient hop count Irregular routing needed
- Bad-No scalability [Matsutani, NOCS'11]

- Plug-and-play protocol [Matsutani, ASPDAC'13]

Parallel programs are running on it

GEMS/Simics is used for full-system simulations

Serial Console on Serengeti Console (stopped) (uni) _ 0 × memory-controller7 at ssm0: Node 0 Safari id 7 0x3c00000 ... mc-us37 is /ssm00,0/memory-controller07,400000 PCI-device: bootbus-controller04, sgsbbc0 sgsbbc0 is /ssm00,0/pci018,700000/bootbus-controller04 Hardware watchdog enabled cpu0: UltraSPARC-III+ (portid 0 impl 0x15 ver 0x55 clock 75 MHz) cpu1: UltraSPARC-III+ (portid 1 impl 0x15 ver 0x55 clock 75 MHz) cpu2: UltraSPARC-III+ (portid 2 impl 0x15 ver 0x55 clock 75 MHz) cpu3: UltraSPARC-III+ (portid 3 impl 0x15 ver 0x55 clock 75 MHz) cpu4: UltraSPARC-III+ (portid 4 impl 0x15 ver 0x55 clock 75 MHz) cpu5: UltraSPARC-III+ (portid 5 impl 0x15 ver 0x55 clock 75 MHz) cpu6: UltraSPARC-III+ (portid 6 impl 0x15 ver 0x55 clock 75 MHz) cpu7: UltraSPARC-III+ (portid 7 impl 0x15 ver 0x55 clock 75 MHz) wrsm0 at root: SAFARI 0xffff 0x0 wrsm0 is /wrsm@ffff,0 pseudo-device: wrsu100 wrsm100 is /pseud pseudo-device: wrsu01 aris 9 is running on wrsm101 is /pseudo/wrsm@101 pseudo-device: ursm102 ursm102 is /pseudo/ursm102 pseudo-device: ursm1010 Core UltraSPARC wrsm103 is /pseudo/wrsm0103 lpseudo-device: wrsm104

Table 1: Topologies to be examined

	Routers	CPUs	L2\$banks	MCs
16-tile	16	4	32	4
32-tile	32	8	64	8
64-tile	64	8	128	16

Table 2: Simulation parameters

L1\$ size & latency	64K / 1cycle	
L2\$ size & latency	256K / 6cycle	
Memory size & latency	4G / 160cycle	
Router latency	[RC/VSA] [ST] [LT]	
Router buffer size	5-flit per VC	
Protocol	MOESI directory	

Table 3: Application programs

3D WHERE AFENITECTURES , THIGIALER, DAVE 44, SP, BT, FT)48

Application exec time: 16-tile

- Ring-based approach (VC flow & Bubble flow controls)
 - Irregular approach
- Irregular approach outperforms Ring-based one by 10.8% in 16-tile case.

Application exec time: 64-tile

- Ring-based approach (VC flow & Bubble flow controls)
 - Irregular approach
- Irregular approach outperforms Ring-based one by 46.0% in 64-tile case.

Application exec time: 16-tile

İS

3D mesh (all horizontal links are implemented)

 Performance of Irregular approach Irr3(min) closed to that of 3D mesh

Application exec time: 64-tile

Irregular (50% of horizontal links are implemented)

İS

- 3D mesh (all horizontal links are implemented)
- Performance of Irregular approach Irr3(min) closed to that of 3D mesh

Experiment results: Cube-1 (2012)

Mar 24th, 2014 Hiroki Matsuta

Experiment results: Cube-1 (2012)

	Process	Technology	65nm CMOS (12-Metal)	
		Chip Area	2.1mm x 4.2mm	
		Core Area	1.5mm x 3.6mm	
	Host CPU	CPU Core	MIPS R3000 Compatible	
		Cache	4KB 2Way Instruction Cache	
			4KB 2Way Data Cache	
			16-Entry Shared TLB	
		I/O	3Gb/s TCI, 100Mb/s 32bit External I/O	
		Supply Voltage	Core+TCI: 1.2V	
			External I/O: 3.3V	
	Accelerator	PE Array	64 (8x8) Array	
		Micro-Controller	1Cycle Non-Pipelined	
		Memory	25bit 2KB 2Bank Data Memory	
			14bit 128depth Instruction Memory	
		I/O	3Gb/s TCI x 2Channels for Up/Downlinks	
		Supply Voltage	PE Array: 0.5~1.2V DVS	
			Other Core+TCI: 1.2V	
	3D Processor	System Clock	50~100MHz	
		Chip Stack	Staircase Stacking	
			Host CPU+Accelerator x1 Stack	
			Host CPU+Accelerator x3 Stack	
Mar 24		Chip Thickness	40μm (Bottom Chip: 300μm)	

56

Experiment results: Cube-1 (2012)

Summary: 3D WiNoC Architectures

- Inductive-coupling 3D SiP
 - A low cost alternative to build low-volume custom systems by stacking off-the-shelf known-good-dies
 - No special process technology is required; inductors are implemented with metal layers
- Cube-1: A practical 3D WiNoC system
 - Two types: Host CPU chip & Accelerator chips
 - We can customize number & types of chips in SiP

Future plans: 3D WiNoC Architectures

Future plans: 3D WiNoC Architectures

Mar 24th, 2014

References (1/2)

- Cube-0: The first real 3D WiNoC
 - H. Matsutani, et.al., "A Vertical Bubble Flow Network using Inductive-Coupling for 3-D CMPs", NOCS 2011.
 - Y. Take, et.al., "3D NoC with Inductive-Coupling Links for Building-Block SiPs", IEEE Trans on Computers (2014).
- Cube-1: The heterogeneous 3D WiNoC
 - N. Miura, et.al., "A Scalable 3D Heterogeneous Multicore with an Inductive ThruChip Interface", IEEE Micro (2013).
- MuCCRA-Cube: Dynamically reconfigurable processor
 - Saito, et.al., "MuCCRA-Cube: a 3D Dynamically Reconfigurable Processor with Inductive-Coupling Link", FPL 2009.

Mar 24th, 2014

References (2/2)

- Vertical bubble flow control on Cube-0
 - H. Matsutani, et.al., "A Vertical Bubble Flow Network using Inductive-Coupling for 3-D CMPs", NOCS 2011.
 - Y. Take, et.al., "3D NoC with Inductive-Coupling Links for Building-Block SiPs", IEEE Trans on Computers (2014).
- Spanning trees optimization for 3D WiNoCs
 - H. Matsutani, et.al., "A Case for Wireless 3D NoCs for CMPs", ASP-DAC 2013 (Best Paper Award).