
Prediction Router:
Yet Another Low Latency On-Chip Router Architecture ∗

Hiroki Matsutani1, Michihiro Koibuchi2, Hideharu Amano1, and Tsutomu Yoshinaga3

1Keio University 2National Institute of Informatics
3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo,

JAPAN 223-8522 JAPAN 101-8430
{matutani,hunga}@am.ics.keio.ac.jp koibuchi@nii.ac.jp

3The University of Electro-Communications
1-5-1, Chofugaoka, Chofu-shi, Tokyo, JAPAN 182-8585

yosinaga@is.uec.ac.jp

Abstract

Network-on-Chips (NoCs) are quite latency sensitive,
since their communication latency strongly affects the ap-
plication performance on recent many-core architectures.
To reduce the communication latency, we propose a low-
latency router architecture that predicts an output chan-
nel being used by the next packet transfer and specula-
tively completes the switch arbitration. In the prediction
routers, incoming packets are transferred without waiting
the routing computation and switch arbitration if the pre-
diction hits. Thus, the primary concern for reducing the
communication latency is the hit rates of prediction algo-
rithms, which vary from the network environments, such as
the network topology, routing algorithm, and traffic pattern.
Although typical low-latency routers that speculatively skip
one or more pipeline stages use a bypass datapath for spe-
cific packet transfers (e.g., packets moving on the same di-
mension), our prediction router predictively forwards pack-
ets based on a prediction algorithm selected from several
candidates in response to the network environments. In
this paper, we analyze the prediction hit rates of six pre-
diction algorithms on meshes, tori, and fat trees. Then we
provide three case studies, each of which assumes differ-
ent many-core architecture. We have implemented a predic-
tion router for each case study by using a 65nm CMOS pro-
cess, and evaluated them in terms of the prediction hit rate,
zero load latency, hardware amount, and energy consump-
tion. The results show that although the area and energy
are increased by 6.4-15.9% and 8.0-9.5% respectively, up
to 89.8% of the prediction hit rate is achieved in real ap-
plications, which provide favorable trade-offs between the
modest hardware/energy overheads and the latency saving.

∗This work is supported by VLSI Design and Education Center
(VDEC), the University of Tokyo in collaboration with STARC, e-Shuttle,
Inc., and Fujitsu Ltd.

1 Introduction

As semiconductor technology improves, the number of
processing cores integrated on a single chip has continu-
ally increased. More recently, commercial or prototype
chips that have 64 or more processing cores have already
been produced [5, 19, 21]. To connect such many cores,
Network-on-Chips (NoCs) [6, 2, 3] that introduce a packet-
switched network structure have been widely employed in-
stead of traditional bus-based on-chip interconnects.

NoCs are quite latency sensitive, since their communica-
tion latency determines the application performance on the
many-core architectures, and it is becoming more dominant
factor when the number of cores on a chip increases. Un-
fortunately, the communication latency in packet-switched
networks tends to be large compared with that in bus-based
systems, since packets are forwarded via many routers, each
of which performs complex operations including the rout-
ing computation, switch allocation, and switch traversal for
every packet or flit, as shown in Figure 1.

To reduce the communication latency on interconnec-
tion networks, various router architectures have been re-
cently developed. A speculative router speculatively per-
forms different pipeline stages of a packet transfer in paral-
lel [18, 7, 11]. The look-ahead routing technique removes
the control dependency between the routing computation
and switch allocation in order to perform them in parallel
[7, 15, 16]. In addition, aggressive low-latency router archi-
tectures that bypass one or more pipeline stages for specific
packet transfers have been proposed [13, 8, 14, 17, 12].

As yet another low-latency router architecture, we pro-
pose the prediction router that predicts an output channel
being used by the next packet transfer and speculatively
completes the switch arbitration. In the prediction routers,
incoming packets are transferred without waiting the rout-
ing computation and switch arbitration if the prediction hits.
Otherwise, they are transferred through the original pipeline
stages without any additional latency overheads. Thus, the



primary concern for reducing the communication latency
is the hit rates of prediction algorithms, which vary from
the network environments, such as the network topology,
routing algorithm, and traffic pattern. For example, a pre-
dictor that exploits the path regularity of dimension-order
routing on meshes or tori [8] would work well for packet
transfers that span multiple hops, but it rarely hit when a
given traffic pattern contains a lot of neighboring commu-
nications. Although existing low-latency routers that spec-
ulatively skip one or more pipeline stages use a bypass dat-
apath for specific packet transfers [13, 8, 14, 17, 12], our
prediction router predictively forwards packets based on a
prediction algorithm selected from several candidates in re-
sponse to the network environments.

Although only the concept of predictive switching was
proposed in [22] and [23] for interconnection networks of
massively parallel computers, they neither showed their on-
chip router architecture nor evaluated its performance with
various prediction algorithms, cost, and energy consump-
tion based on the detailed router design. In this paper, first,
we propose the prediction router architecture that can select
a prediction algorithm from several candidates in response
to the network environments. Second, we present formulas
that estimate the prediction hit rates of various algorithms
on meshes, tori, and fat trees. Third, we provide three case
studies, each of which assumes different many-core archi-
tecture. We have implemented a prediction router for each
case study by using a 65nm CMOS process, and evaluated
them in terms of the prediction hit rate, zero load latency,
hardware amount, and energy consumption. Our claim is
that the low-latency routers should support multiple predic-
tion algorithms (not a single algorithm!) in order to deal
with various traffic patterns, and this paper would be a first
guide to find which prediction algorithms should be sup-
ported for a given network topology, routing algorithm, and
traffic pattern.

The rest of this paper is organized as follows. Section
2 introduces typical low-latency router architectures. Sec-
tion 3 explains the prediction router architecture. Section
4 analyzes the hit rates of various prediction algorithms on
meshes, tori, and fat trees. Then, Section 5 evaluates the
prediction router through the three case studies. Section 6
concludes this paper.

2 Related Work

We first show a pipeline structure of a baseline router,
and introduce two conventional low-latency techniques,
called the speculative and look-ahead transfers, to shorten
the router pipeline stages. Then we describe the other ag-
gressive low-latency router architectures that speculatively
skip one or more pipeline stages.

2.1 Conventional Router

A 4-cycle router quoted from [7] is assumed as a base-
line router in this paper. In the router, a header flit is trans-
ferred through four pipeline stages that consist of the rout-
ing computation (RC) stage, virtual channel allocation (VA)

RC VSA ST

ST

ST

ST

RC VSA ST

ST

ST

ST

RC VSA ST

ST

ST

ST

1 2 3 4 5 6 7 8 9 10 11 12

HEAD

DATA_0

DATA_1

DATA_2

ELAPSED TIME [CYCLE]

ROUTER A ROUTER B ROUTER C

SA

SA

SA

SA

SA

SA

SA

SA

SA

Figure 1. Router pipeline structure (3-cycle)

ST

1 2 3 4 5 6 7 8

HEAD

DATA_0

DATA_1

ELAPSED TIME [CYCLE]

ROUTER A ROUTER B ROUTER C

NRC
VSA ST ST

ST ST ST

ST ST ST

9

NRC
VSA

NRC
VSA

SA

SA

SA

SA

SA

SA

Figure 2. Router pipeline structure (2-cycle)

stage for output channels, switch allocation (SA) stage for
allocating the time-slot of the crossbar switch to the output
channel, and switch traversal (ST) stage for transferring flits
through the crossbar.

2.2 Speculative Router

A well-known technique to reduce the number of
pipeline stages in a router is the speculative transfer that per-
forms different pipeline stages in parallel [18, 7, 11]. Figure
1 shows an example of the speculative router that performs
the VA and SA in parallel. These operations are merged
into a single stage, called the virtual channel and switch al-
location (VSA) stage. Notice that when the VA operation
in the VSA stage cannot be completed due to the conflicts
with other packets, the SA operation also fails regardless of
its result and must be re-executed. For further reducing the
pipeline stages, the double speculation that performs RC,
VA, and SA operations in parallel is possible, but it would
degrade the performance due to the frequent miss specula-
tions and retries.

2.3 Look-Ahead Router

The look-ahead routing technique removes the control
dependency between the routing computation and switch
allocation in order to perform them in parallel, by selecting
the output channel of the i-th hop router in the (i − 1)-th
hop router [7]. That is, each router performs the routing
computation for the next hop (denoted as NRC), as shown
in Figure 2. Since the computational result at the NRC stage
of the (i−1)-th hop router is used in the i-th hop router, the
result does not affect the following VA and SA operations
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Figure 3. Prediction router architecture

in the (i − 1)-th hop router; therefore the NRC and VSA
operations can be performed in parallel (Figure 2).

However, the NRC stage should be completed before the
ST stage in the same router, because the hint bits in a packet
header, which are the results of the NRC, must be updated
for the NRC/VSA stage of the next router before the packet
header is sent out. Thus, the control dependency between
the NRC and ST stages in a router still remains difficulty
for shortening to a single cycle router without harming the
frequency, although some aggressive attempts using this ap-
proach have been done [7, 15, 16].

2.4 Bypassing Router

This section introduces existing aggressive low-latency
router architectures that bypass one or more pipeline stages
for the specific packet transfers, such as paths frequently
used so far [17], packets continually moving along the same
dimension [8], and paths pre-specified [14, 12].

Express virtual channels (VCs) have been proposed to
reduce the communication latency by bypassing pipeline
stages in intermediate routers between non-adjacent nodes
[13]. This method is efficient for reducing the communi-
cation latency of long-haul packet transfers that span mul-
tiple intermediate routers; however, it does not work well
for communications between neighboring routers. Dynamic
fast path architecture also reduces the communication la-
tency of frequently used paths by sending a switch arbitra-
tion request to the next node before flits in the fast path ac-
tually enter the next node [17].

Mad-postman switching exploits the path regularity of
dimension-order routing on meshes for reducing the com-
munication latency on off-chip networks that use bit-serial
physical channels [8]. In Mad-postman switching, a router
forwards an incoming packet to the output channel in the
same dimension as soon as it receives the packet. Thus, it
also has a problem with neighboring communications that
do not go straight.

Preferred path employs a bypass datapath that connects
input and output channels without using the crossbar switch
in a router, in addition to the original datapath that goes
through the crossbar [14]. The bypass datapath can be
customized so as to reduce the communication latency be-
tween the specific source-destination pairs; however, it can-
not adaptively select the bypass (or original) datapath for
each packet in response to the recent traffic pattern. Also,
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Figure 4. Prediction router pipeline

Default-backup path (DBP) mechanism provides a low-
latency unicursal ring network that spans all routers on a
chip, though it has been originally proposed for on-chip
fault-tolerance [12]. Only the packets that move along the
DBP can be transferred in a single cycle.

All techniques listed above can bypass some pipeline
stages only for the specific packet transfers. However, the
network environments (e.g., routing algorithm and traffic
pattern) will be easily changed, since multiple applications
are usually running on an NoC. A technique that acceler-
ates only a specific traffic may not work well for another
one. The low-latency routers should thus support multiple
prediction algorithms in order to deal with more than one
application. In addition, we do need a guide to find which
prediction algorithms should be supported for a given net-
work topology, routing algorithm, and traffic pattern.

3 Prediction Router

In this section, we propose the prediction router archi-
tecture, which predictively forwards packets without wait-
ing the RC, VA, and SA operations, based on the prediction
algorithm selected from several candidates in response to
the network environments, such as the network topology,
routing algorithm, and traffic pattern.

The prediction router architecture and its pipeline struc-
ture are described in Section 3.1 and Section 3.2, respec-
tively. Six prediction algorithms designed for the prediction
router are introduced in Section 3.4.

3.1 Router Components

For purposes of illustration, we first introduce the base-
line router architecture, and then we show the changes re-
quired for the prediction router.

As a baseline router, we assume a dimension-ordered
wormhole router that has five physical channels, each of
which has two virtual channels. It thus has five input chan-
nels, five output channels, a 5 × 5 crossbar switch, and an
arbitration unit, as shown in Figure 3. When an input chan-
nel receives a packet, it computes an output channel to be
used based on the destination address stored in the header
flit. It asserts the request signal to the arbiter in order to
allocate a time-slot of the crossbar for the requested output
channel. The channel access is granted by the arbiter when
the request wins the arbitration. Then it will be released
after the corresponding tailer flit goes through the crossbar.
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Algorithm 1 State transitions of an input channel
(idata: an input flit, odata: an output flit)

1: if current state == RC && idata is a packet header then
2: port ← routing computation(idata); current state ← VSA;
3: if predicted port is free then
4: odata ← idata; {predictive switch traversal (PST)}
5: if predicted port == port then
6: current state ← ST; {the prediction hits}
7: else
8: kill ← predicted port; {remove the mis-routed flit

at the output channel}
9: end if

10: end if
11: else if current state == VSA then
12: normal VSA operation;
13: else if current state == ST then
14: normal ST operation;
15: else if current state == RC && no packet arrives then
16: predicted port ← prediction(); {an output channel likely

to be used is selected and reserved}
17: end if

Figure 3 illustrates the prediction router architecture
changed from the original one mentioned above. The
changes required for the prediction router are as follows: 1)
adding a predictor for each input channel, 2) changing the
arbitration unit so that it can handle the tentative reserva-
tions from predictors, and 3) adding the kill signal for each
output channel in order to remove mis-routed flits when the
prediction fails.

The predictor in an input channel forecasts which out-
put channel will be used by the next packet transfer while
the input channel is idle. Then it asserts the reserve signal
to the arbiter in order to tentatively reserve a time-slot of
the crossbar for the predicted output channel, as shown in
Figure 3. The details about the prediction algorithms are
described in Section 3.4.

The arbiter handles the request and reserve signals from
each input channel (Figure 3). Obviously, the former has
higher priority than the latter; thus an output channel that
has been reserved by an input channel will be preempted by
another input channel that requests the output channel in the
next cycle.

Although the predictive switching drastically reduces the
packet delay at a router if the prediction hits, it generates
mis-routed flits (or dead flits) if the prediction fails. To re-
move such dead flits inside a router, the input channel as-
serts the kill signal to the mis-predicted output channel if it
predictively forwards a packet to the wrong output channel.
The output channel masks all incoming data if the kill sig-
nal for it is asserted; thus the dead flits never propagate to
the outside of the router.

3.2 Pipeline Structure

Figure 4 shows a timing diagram of a packet transfer
from router (a) to router (c) in the cases of the 3-cycle spec-
ulative router (denoted as original) and the prediction router.
In the prediction router, the prediction hits in router (b) and

router (c), while it fails in router (a).
Since the prediction router completes the RC, VA, and

SA operations prior to packet arrivals, it performs the pre-
dictive switch traversal (PST) as soon as a new packet ar-
rives; thus the header flit transfer is completed in a single
cycle without waiting the RC and VSA stages if the predic-
tion hits. Otherwise, although dead flit(s) are forwarded to
the wrong output channel, their propagation is stopped in-
side a router and their copy is forwarded to the correct out-
put channel through the original pipeline stages (i.e., RC,
VSA, and ST stages) without any additional latency over-
heads. Such state transitions of an input channel in the pre-
diction router are summarized in Algorithm 1.

Notice that the predictive switching can be applied to
various router architectures, such as the look-ahead 2-cycle
router mentioned in the previous section. We will apply this
concept to three case studies in Section 5.

3.3 Predictor Selection

Each input channel can select a single prediction algo-
rithm from all algorithms supported in the channel. The re-
configuration of the predictor is classified into two schemes:
static and adaptive. A single algorithm is statically selected
at the beginning of each application in the static scheme,
while it is dynamically switched in the adaptive scheme. In
this paper, we assume the static scheme, since it is efficient
for many on-chip applications whose traffic pattern can be
pre-analyzed at the design time by system-level simulations.

For unknown applications, here we introduce the adap-
tive scheme. Assume that an input channel supports n al-
gorithms. All n algorithms predict their preferred output
channel when the input channel receives a packet. Each
algorithm increments its own counter when its prediction
hits. For every m packet transfers, a prediction algorithm
with the largest counter value is selected as the next algo-
rithm. The value m determines the frequency of the recon-
figurations. The adaptive scheme consumes more energy,
since every algorithm predicts for each packet, though it can
adaptively adjust the predictor even with unknown traffics.

3.4 Prediction Algorithms

Since some pipeline stages are skipped only when the
prediction hits, the primary concern for reducing the com-
munication latency is the prediction algorithm to be used.
Fortunately, sophisticated value predictors have been devel-
oped for the speculative execution in microprocessors [4]
and the universal information theory [9]. The prediction
router can use some of them. Here we briefly describe the
ones applicable to our lightweight prediction routers.

• Random: The simplest prediction algorithm is Ran-
dom, which randomly predicts an output channel that
will be used by the next incoming packet. In the case of
dimension-order routing on 3-D torus, for example, a
packet in an input channel on the y-dimension is trans-
ferred to an output channel on the y- or z-dimension,
or local core. Thus, it randomly selects one of them.
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Figure 5. Target network topologies

Since it exploits neither the topological regularity nor
the traffic locality, its prediction hit rate tends to be
quite low.

• Static Straight (SS): A simple and practical predic-
tion algorithm optimized for dimension-order routing
on meshes or tori is SS, which assumes that all in-
coming packets are continuing along the same dimen-
sion, as in Mad-postman switching [8]. In the case
of dimension-order routing on 2-D mesh, for example,
the SS predictor fails at most two times per a flight,
since a packet may turn from the x-dimension to y-
dimension in addition to the destination core. There-
fore, packets that travel a long distance increase the
prediction hit rate, whereas the communication local-
ity negatively affects the SS predictor. It does not re-
quire any history tables (i.e., it is stateless); hence its
implementation cost is low.

• Custom: The Custom strategy allows users to define
which output channel each input channel should pre-
dict, as in Preferred path [14]. In the case of a router
with five physical channels, for example, a 3-bit regis-
ter to store the preferred output channel is required for
each input channel.

• Latest Port Matching (LP): The LP strategy predicts
that the next incoming packet will be forwarded to the
same output channel as that of the previous packet.
The LP predictor requires only a single history record
in each input channel. The killer applications of LP
are the traffic patterns that have strong access regular-
ity, such as the straight-after-straight communications,
and the repeated communications between two neigh-
boring nodes.

• Finite Context Method (FCM): The nth-order FCM
strategy predicts the most frequently used value af-
ter the last n-context sequence [4]. As n increases,
the two-dimensional history table consisting of the n-
context sequence and next value frequency gets bigger,
while the prediction accuracy improves. For the sake
of simplicity, in this paper, we have implemented and
evaluated the 0th-order FCM predictor, which just se-
lects the most frequently used output channel.

• Sampled Pattern Matching (SPM): The SPM algo-
rithm was originally proposed as a universal predictor

[9]. It selects a value which has the highest probability
after a suffix sequence, called a marker, in a given data.
The predicted value is calculated by applying a major-
ity rule to all values appearing at positions just after
the markers in the data. We can use it to predict an
output-channel number by finding a value of the most
frequently occurring number after the (longest) suffix
sequence of communication history.

A preferred output channel is statically fixed in SS and
Custom, while the other algorithms dynamically predict it
according to the traffic pattern or their history table. Each
algorithm requires different predictor circuit and provides
different hit rate for a given traffic pattern. The follow-
ing sections illustrate these trade-offs. In the next section,
we analyze the prediction hit rates of these algorithms on
meshes, tori, and fat trees. Their area and energy overheads
are evaluated in Section 5 through three case studies.

4 Hit Rate Analysis

The reliable analytical model is essential to expect the
prediction hit rate and communication latency of various
prediction algorithms on a given network environment (e.g.,
topology, routing, and traffic). In this section, we present
formulas that estimate the prediction hit rates of the pro-
posed prediction algorithms on tori, meshes, and fat trees,
respectively (see Figure 5). Using the analytical model, we
can select or dynamically update the prediction algorithm
in response to the environment.

The accuracy of the model will be confirmed through the
simulations of three case studies in Section 5. Such confir-
mation is also important to guarantee the value and reliabil-
ity of the analytical model.

4.1 Torus (k-ary n-cube)

To analyze the prediction hit rate on uniform traffic, we
first count the number of paths passing through each chan-
nel on a given k-ary n-cube, assuming that the dimension-
order routing is used on it. Then we derive the formulas that
calculate the prediction hit rates of SS, FCM, LP, SPM, and
Random algorithms.
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4.1.1 Number of Paths

Here we assume that each node consists of a processing core
and a router. In a k-ary 1-cube, the number of paths that go
through a channel between neighboring two nodes, T1d, and
the number of paths that go straight at the next node, T1dss ,
are calculated as follows (see Figure 6).

T1d = 1 + 2 + . . . + (
k
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− 1

2
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We extend them to k-ary n-cubes, since most NoCs have
employed two-dimensional topologies, and more recently,
three-dimensional NoCs are also studied [10]. Assuming
that k is an odd number, the number of paths on a channel,
T , and the number of paths that go straight at the next node,
Tss, are calculated as follows.

T = kn−1

k
2−

1
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If k is an even number, on the other hand, there are two
ways to reach a destination k

2 hops away in a dimension:
one uses the wrap-around channel and the other does not.
Assuming that both paths are equally used, the number of
paths that go through a channel can be estimated as follows.

T = kn−1
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In the case of dimension-order routing, a packet at
an i-dimensional input channel is transferred to a j-
dimensional output channel when it completes its move-
ments on 1, 2, . . . , (j − 1) dimensional channels, where
i < j. The number of paths from an i-dimensional input
channel to a j-dimensional output channel, T (j), and the
number of paths from an i-dimensional input channel to a
local processing core, TPE(i), are calculated as follows.

T (j) = (
k

2
− 1

2
)
2

kn+i−j−1 (7)

TPE(i) = (
k

2
− 1

2
)ki−1 (8)

4.1.2 Prediction Hit Rate
The prediction hit rate of SS algorithm is calculated as a
percentage of the number of paths from the input channel
to the predicted output channel, in the total number of paths
that go through the input channel. Using the T and Tss, the
prediction hit rate of SS algorithm at an i-dimensional input
channel is calculated as follows.

Pss =
Tss

T
(9)

The SS predictor is equivalent to the 0th-order FCM pre-
dictor in the case of uniform traffic, because, for each input
channel, the straight output channel in the same dimension
is the most frequently used one; thus Pss = Pfcm.

The LP predictor succeeds when two consecutive pack-
ets are transferred between the same pair of input and output
channels in a router. Thus, the prediction hit rate of LP al-
gorithm at an i-dimensional input channel is calculated as
follows.

Plp = (
Tss

T
)2 + (

TPE(i)
T

)2 + 2
n∑

j=i+1

(
T (j)
T

)2 (10)

The SPM predictor uses a history table that records the
output channels used by packets. In the case of uniform
traffic, since each core independently injects packets to a
random destination, the hit rate of the SPM predictor is the
same as that of the LP predictor; thus Plp = Pspm.
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For the purpose of comparison, we calculate the hit rate
of the Random predictor. In this case, a packet at an i-
dimensional channel is transferred to one of j-dimensional
channels or a local processing core, where i ≤ j. Thus, the
hit rate of the Random predictor at an i-dimensional input
channel is calculated as follows.

Prandom =
1
n

n∑
j=i

1
2(n − j + 1)

(11)

Finally, the prediction hit rate of each algorithm at a local
input channel is calculated as follows.

PssP E
= PfcmP E

=
TPE(n)
kn − 1

(12)

PlpP E
= PspmP E

=
2

∑n
j=1 TPE(j)2

(kn − 1)2
(13)

Based on the formulas listed above, we have estimated
the prediction hit rates of the SS, FCM, LP, SPM, and Ran-
dom predictors on k-ary 2-cubes, where 4 ≤ k ≤ 17. As
shown in Figure 7, the hit rates of SS, FCM, LP, and SPM
increase as the number of nodes (i.e., k) increases, while
that of Random is constant. We have also confirmed these
results by using a cycle-accurate network simulator.

4.2 Mesh (k-ary n-mesh)

We derive the formulas that estimate the prediction hit
rate of mesh by using the similar approach to the torus. The
hit rate of each predictor at an i-dimensional input channel
on a k-ary n-mesh is calculated as follows.

T = kn−1
k−1∑
j=1

j(k − j) (14)

Pss = Pfcm =
kn−1

∑k−1
j=1 j(k − j − 1)

T
(15)

Plp = Pspm = P 2
ss +

k2(n−1)
∑k

j=1 j

T 2
+ (16)

n∑
d=i

k∑
j=1

k2(n+i−d−1)((k − j)2 + (j − 1)2)
T 2

We here omit the formulas that estimate the prediction
hit rate at a local input channel on mesh, since they are quite
similar to those on torus.

Figure 9 shows the prediction hit rates of the prediction
algorithms on k-ary 2-meshes, where 4 ≤ k ≤ 17. Since
edge or corner nodes on mesh have fewer links than the
others, the prediction hit rate of a mesh tends to be higher
than that of the same-sized torus. We have confirmed these
results in Section 5.1.3.

4.3 Fat Tree (p, q, r)

A fat tree is expressed with a triple (p, q, r), where p is
the number of upward links, q is the number of downward
links, and r is the number of ranks in the fat tree (see Figure
5). A router located in i-hop distance from a core is called
a rank-i router, and a core is regarded as a rank-0 router, for
the sake of convenience.

The adaptive up*/down* routing algorithm is employed
in fat trees. That is, a fat tree provides multiple upward
paths from a source core to the least common ancestor
(LCA) of the source and destination cores, while it provides
only a single deterministic path from the LCA to the desti-
nation core. In the upper transfers, the prediction succeeds
if one of output channels towards the root has been selected
as a predicted output channel; thus the prediction frequently
hits in lower input channels, while it is difficult to predict a
correct output channel in upper input channels, especially
for uniform random traffic.

As in the cases of the torus and mesh, the prediction hit
rate of each algorithm on fat tree is calculated based on the
path distribution. Figure 10 illustrates the number of paths
from a single source to several destinations. The number of
paths at an upper output channel in a rank-i router, Tup(i),
is calculated as follows.

Tup(i) = (
q

p
)i(qr − qi) =

qi+r − q2i

pi
(17)

In a rank-i router, the number of paths from a lower input
channel to a lower output channel, Tlo(i), is calculated by
using the regularity of fat tree.

Tlo(i) =
qi−1

pi−1
(18)
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The prediction hit rate of a lower input channel in a rank-
i router is calculated as follows.

Pss = Pfcm =
pTup(i)

Tup(i − 1)
(19)

Plp = Pspm = P 2
ss + (q − 1)(

Tlo(i)
Tup(i − 1)

)2 (20)

Again, in the upper transfers, the prediction succeeds if
one of output channels towards the root has been selected
as a predicted output channel. Notice that the SS predic-
tor is equivalent to the 0th-order FCM predictor in uniform
traffic, because the lower input channels frequently forward
incoming packets to the upper output channels.

The prediction hit rate of an upper input channel is 1
q ,

and that of a lower input channel at a rank-r router is 1
q−1 ,

since the traffic is uniformly distributed to lower channels.
Figure 11 shows the prediction hit rates of SS, FCM, LP,

SPM, and Random(p) on fat trees (p, 4, r), where 2 ≤ r ≤
4. One of case studies in the next section uses a fat tree to
confirm these results (see Section 5.3).

5 Evaluations

In this section, we apply the prediction router architec-
ture discussed in the previous sections to three case studies

listed in Table 1. For each case study, we design a predic-
tion router and compare it with an original router in terms of
the prediction hit rate, zero load latency, hardware amount,
and energy consumption.

5.1 Case Study 1: 256-Core Fine-Grained
Operand Network

The first case study assumes a fine-grained operand mesh
network that connects 256 ALUs with simple routers.

5.1.1 Router Architecture

Original Router The dimension-order routing and
wormhole switching with no virtual channel are employed
as the low-cost routing and switching techniques for the
fine-grained operand mesh network. The router has a 4-flit
input buffer for each channel. It has three pipeline stages
that consist of the RC, SA, and ST stages, as shown in Fig-
ure 4. The distance between neighboring cores is typically
short in fine-grained ALU networks; thus the link traversal
(LT) is lumped into the ST stage in this case study.

Prediction Router We selected SS as a simple and prac-
tical predictor for the dimension-ordered routers on mesh.
All channels except a local input channel in the router em-
ploy the SS predictor, while the local channel uses the LP
predictor since SS does not work well in the injection chan-
nel. The prediction router transfers a header flit in a single
cycle when the prediction hits. Otherwise, it takes at least
three cycles depending on the packet conflicts. Dead flits
are removed safely inside the router by the kill mechanism.

5.1.2 Simulated Throughput

First, we show the performance impact of the router delay
in order to illustrate the advantages of low-latency routers.
We used a cycle-accurate flit-level network simulator to
measure the throughputs of five networks, each of which
employs the 4-cycle, 3-cycle, 2-cycle, 1-cycle routers, and
the SS-based prediction router (Pred(SS)), respectively. The
other simulation parameters are listed in Table 1.

Figure 12(a) shows the simulation results. The Pred(SS)
router network achieves 30.4% higher throughput compared
with the 4-cycle network. The prediction router is regarded
as a 1.4 cycle router when the prediction hit rate is 80%. In
this case, its throughput is between the 1-cycle and 2-cycle.

5.1.3 Prediction Hit Rate

We estimated the prediction hit rate of the SS-based predic-
tion router by using the cycle-accurate network simulator
in order to confirm the accuracy of our formulas derived in
Section 4. Figure 12(b) shows the simulation results. The
curve of SS(sim) in the graph is very similar to that in the
analysis results (Figure 9).

For reference, we estimated the simulated hit rates of the
FCM and LP predictors. We also confirmed that their values
are similar to those in Figure 9, though the FCM(sim) gives
higher hit rates in small networks.
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Table 1. Network specification of three case studies
Case study 1 Case study 2 Case study 3

Topology 2-D mesh 2-D mesh Fat tree (4,4,4)
# of cores 16×16 cores 8×8 cores 256 cores
Core distance 0.75mm 1.50mm 0.75mm
Traffic Uniform 7 NPB programs + Uniform

4 synthetic patterns
Routing Dimension-order Dimension-order up*/down*

(deterministic) (deterministic) (adaptive)
Switching Wormhole; no VC Wormhole; 2 VCs Wormhole; no VC
Piplie structure [RC][SA][ST] [RC][VSA][ST][LT] [RC][SA][ST]
Packet size 4-flit (1-flit=64-bit) 4-flit (1-flit=64-bit) 4-flit (1-flit=64-bit)
Input buffer 4-flit FIFO 4-flit FIFO 4-flit FIFO
Predictor(s) SS SS + LP + FCM SS(LRU) + LP

5.1.4 Zero Load Latency
The zero load latency is the flight time of a single packet
from source to destination with no packet conflicts. Based
on the prediction hit rates obtained previously, we compare
the original router and the prediction router in terms of their
zero load latency.

Assuming a packet that consists of L flits including a
single header flit goes through h wormhole routers, its zero
load latency is calculated as follows.

T orig
0 = Tlt(h−1)+(Trc +Tvsa +Tst)h+L/BW, (21)

where Trc, Tvsa, Tst, and Tlt are the latencies for the RC,
VSA, ST, and LT stages, respectively.

The prediction router can skip the RC and VSA stages
only when the prediction hits; thus its zero load latency is
calculated as follows.

T pred
0 = Tlt(h − 1) + (Tpst)hPhit + (22)

(Trc + Tvsa + Tst)h(1 − Phit) + L/BW,

where Tpst is the latency for the predictive switch traversal
(PST), and Phit is the prediction hit rate.

Figure 12(c) shows the zero load latencies of the origi-
nal router (Orig), the SS-based prediction router (Pred(SS)),
and that with perfect (or oracle) prediction (Ideal). The pre-
diction router reduces 48.2% zero load latency compared
with the original one, in the case of the 256-core mesh.

5.1.5 Hardware Amount
To estimate the gate counts of the original and the SS-based
prediction routers, we synthesized their RTL designs with
a 65nm standard cell library by using the Synopsys De-
sign Compiler version Y-2006.06-SP2. The behavior of the
synthesized NoC designs was confirmed through gate-level
simulations at an operating frequency of 500MHz.

Figure 12(d) shows the gate counts of the original router
(Orig) and the prediction router (Pred(SS)). Although the
prediction router requires the predictors, kill signals, and a
modified arbiter, its area overhead is only 10.1% compared
with the original one that requires at least three cycles to
forward a header flit.

5.1.6 Router Critical Path

Figure 12(e) shows the maximum delay of each pipeline
stage of the original and prediction routers. As shown, the
critical paths of both routers are on their VSA stage, and
their differences are quite small (i.e., 6.2%). Note that the
prediction router forwards a flit from its RC stage if the pre-
diction hits (see line 4 of Algorithm 1). This is the reason
why the delay of RC stage in the prediction router is much
larger than that in the original one.

5.1.7 Energy Consumption

The average energy consumption to transmit a single flit
from source to destination can be estimated as [20]

Eflit = wHave(Esw + Elink), (23)

where w is the flit-width, Have is the average hop count,
Esw is the average energy to switch the 1-bit data inside
a router, and Elink is the 1-bit energy consumed in a link.
Here we compare the prediction router with the original one
in respect to Esw, since their Elink values are the same.

We used the Synopsys Power Compiler in order to ex-
tract the Esw of these routers. They were synthesized,
placed, and routed with the 65nm standard cell library. The
switching activities of the running routers were captured
through the gate-level simulations operating at 500MHz
with a 1.2V core voltage.

Figure 12(f) shows the flit switching energy Esw [pJ/bit]
extracted from the switching activities. Pred(hit) and
Pred(miss) show the energy of the prediction router when
the prediction hits and misses, respectively. Regardless of
hit or miss, the prediction router requires slightly more en-
ergy due to the prediction. In addition, more energy is con-
sumed when the prediction misses, since the dead flits are
removed and a copy of them is transferred to the correct
output channel as well as the original router. Pred(hit) and
Pred(miss) respectively require 6.4% and 13.6% more en-
ergy compared with the original value. Although the energy
overhead of Pred(miss) is costly, approximately 80% of the
predictions hit in a 16 × 16 mesh, as mentioned in Section
5.1.3. Thus, the expected Esw assuming that the 80% of the
predictions hit (denoted as Pred(80)) is close to Pred(hit),
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Figure 12. Evaluation results of case study 1

and its overhead is only 8.0%. Note since both routers con-
sume the same Elink for each flit, the total energy overhead
for transmitting a flit is less than 8.0%, depending on the
link length.

Throughout this case study, the evaluation results of the
prediction router showed that although the area and energy
are increased by 10.1% and 8.0% respectively, the commu-
nication latency is reduced by 48.2%; thus the prediction
router presents favorable trade-offs between these modest
overheads and the latency saving.

5.2 Case Study 2: 64-Core Chip Multi-
processor Network

The second case study assumes a chip multiprocessor
network that connects 64 processors with virtual channel
routers. Multiple prediction algorithms are evaluated on
the network with seven parallel applications taken from the
NAS parallel benchmark (NPB) [1] programs, in addition
to typical synthetic traffic patterns, in order to clearly show
their strong and weak points.

5.2.1 Router Architecture

Original Router Dimension-order routing and wormhole
switching with two virtual channels are employed as a rout-
ing and a switching technique, respectively. The router has
a 4-flit input buffer for each virtual channel. Since we use
one cycle for the link traversal (LT), a header flit is trans-
ferred to the next router or core in at least four cycles.

Prediction Router We need multiple prediction algo-
rithms, since various parallel applications are running on
the network. Here we selected SS, LP, and FCM as simple

and practical predictors. We implemented them on two pre-
diction routers. Pred(SS+LP) supports SS and LP, while
Pred(SS+LP+FCM) supports FCM in addition to SS and
LP. They can dynamically change their prediction algo-
rithm in a single cycle in response to a given traffic pattern.
They forward a header flit in two cycles when the prediction
hits. Otherwise, they use at least four cycles.

5.2.2 Prediction Hit Rate
Figure 13(a) shows the prediction hit rates of SS, LP, and
FCM algorithms on seven NPB programs (BT, SP, LU, CG,
MG, EP, and IS) and four synthetic patterns (bitcomp, bi-
trev, transpose, and uniform [7]). The prediction hit rates
for the synthetic traffics are better than those for the applica-
tion traffics, since the destination distributions of synthetic
ones are simpler than those of real applications.

Although the SS predictor achieves more than 80% of
hit rates in large networks (e.g., the 256-core mesh in case
study 1), its prediction hit rates are not so high in this 64-
core mesh. Especially, its hit rate is extremely low (12.0%)
in LU traffic that contains a lot of 1-hop communications
the SS never hits. In most applications, the LP and FCM
predictors provide higher hit rates than the SS does. Par-
ticularly, LP achieves 89.8% of hit rate in SP traffic that
contains a lot of repeated short-distance communications.

Each prediction algorithm has strengths and weaknesses.
Our prediction routers that support multiple algorithms
would be able to accelerate wider range of applications.

5.2.3 Hardware Amount
The original router (Orig), the prediction router with SS and
LP (Pred(SS+LP)), and the prediction router with SS, LP,
and FCM (Pred(SS+LP+FCM)) were synthesized with the
65nm CMOS standard cell library in the same way as in
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Figure 13. Evaluation results of case study 2

case study 1. As shown in Figure 13(b), the area over-
heads of Pred(SS+LP) and Pred(SS+LP+FCM) are 6.4%
and 15.9%, respectively. The latter one needs more gate
counts, since it supports the FCM predictor, which requires
a history table (e.g., 4-bit binary counter) in order to record
the number of references to each output channel. Though,
it gives high and stable hit rates in most traffic patterns, as
shown in Figure 13(a).

5.2.4 Energy Consumption
Here we estimate the flit switching energy Esw [pJ/bit] of
Orig and Pred(SS+LP+FCM) routers. As shown in Section
5.1.7, the energy overhead of prediction routers is depend-
ing on their prediction hit rate. In this case study, the maxi-
mum hit rate on each application is higher than 70% except
MG and EP traffics (Figure 13(a)). Assuming that the 70%
of the predictions hit, the expected energy overhead of the
prediction router is estimated as 9.5%.

Throughout this case study, we showed that the hit rates
of the three prediction algorithms range from 12.0% to
89.8% on the seven NPB programs. This means that the
prediction routers that support multiple algorithms can ac-
celerate wider range of applications, though their area over-
heads range from 6.4% to 15.9%, depending on the predic-
tion algorithms supported. We have illustrated these trade-
offs through this case study.

5.3 Case Study 3: 256-Core Adaptive
Tree Network

The third case study assumes a fine-grained operand net-
work that connects 256 ALUs as in case study 1, but its
connection topology is a fat tree, which uses the adaptive
up*/down* routing.

5.3.1 Router Architecture
Original Router To connect 256 ALUs, we use fat tree
(4,4,4), in which each router except rank-4 routers has four
physical channels for upper and lower connections, respec-
tively. For packets moving toward the root of the tree (i.e.,
upper transfers), each router adaptively forwards an incom-
ing packet to one of four upper channels, while it selects a
single lower channel in the case of lower packet transfers.
The router has a 4-flit input buffer for each input channel,
and its pipeline structure is the same as in case study 1.

Prediction Router Here we use the modified version of
SS algorithm called LRU for lower channels. The LRU-
based predictor speculatively forwards an incoming packet
to the least recently used upper channel, in order to dis-
tribute the congestion over multiple upper channels. In the
case of upper channels, on the other hand, it is difficult to
predict a single correct output channel among four candi-
dates. We implemented two prediction routers. Pred(LRU)
employs LRU for lower channels but no predictor for up-
per ones, while Pred(LRU+LP) employs LRU and LP for
lower and upper channels respectively. Pred(LRU+LP) can
reduce more latency by the aggressive prediction, although
it incurs more energy overhead due to more dead flits.

5.3.2 Prediction Hit Rate / Zero Load Latency
By using the cycle-accurate network simulator, we esti-
mated the prediction hit rates of the two prediction routers
on 16-core, 64-core, and 256-core fat trees with uniform
random traffic. Then the same tendency can be seen in both
the simulation results and the analysis results (Figure 11).

Figure 14(a) shows the zero load latencies of the orig-
inal router (Orig), Pred(LRU), Pred(LRU+LP), and that
with perfect prediction (Ideal). The results show that
Pred(LRU+LP) reduces 30.7% zero load latency compared
with the original one, in the case of the 256-core fat tree.

5.3.3 Hardware Amount / Energy Consumption
The original router (Orig) and Pred(LRU+LP) were synthe-
sized with the 65nm standard cell library in the same way as
in case study 1. Figure 14(b) shows that the area overhead
of the prediction router is only 7.8%.

As for the energy consumption, we estimated the flit
switching energy Esw of Pred(LRU+LP) router, as in Sec-
tion 5.1.7. Assuming that the 55% of the predictions hit, the
expected energy overhead of the prediction router is 9.0%.

Throughout this case study, we confirmed that our pre-
diction router architecture can be applied to the adaptive
up*/down* routing on fat trees, in addition to the determin-
istic routing on meshes and tori.

6 Conclusions

We proposed the prediction router architecture, which
predictively forwards packets without waiting the RC, VA,
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Figure 14. Evaluation results of case study 3

and SA operations, based on the prediction algorithm se-
lected from several candidates in response to the network
environments, such as the network topology, routing algo-
rithm, and traffic pattern. Then, we presented the formulas
that estimate the hit rates of five prediction algorithms on
meshes, tori, and fat trees.

In the three case studies, we implemented prediction
routers by using a 65nm CMOS process, and evaluated
them in terms of the prediction hit rate, zero load latency,
hardware amount, and energy consumption. Case study 1
assumed a 256-core fine-grained mesh network. We con-
firmed the accuracy of the formulas by comparing the pre-
diction hit rates derived from the formulas with the simu-
lation results. The evaluation results of the SS-based pre-
diction router showed that although the area and energy are
increased by 10.1% and 8.0% respectively, the communica-
tion latency is reduced by 48.2% thanks to its high hit rate.
Thus, the prediction router presents favorable trade-offs be-
tween these modest overheads and the latency saving. Case
study 2 assumed a 64-core chip multiprocessor network.
Multiple prediction algorithms were evaluated on the net-
work with seven NPB programs. Their hit rates range from
12.0% to 89.8% depending on the traffic pattern. Thus, the
prediction routers that support multiple algorithms can ac-
celerate wider range of applications. Though, their area
overheads range from 6.4% to 15.9%, depending on the pre-
diction algorithms each router supports. In case study 3, we
also applied the prediction router to fat tree networks and
showed its feasibility. Throughout these case studies, we
showed that the prediction router architecture is versatile
and applicable to various network environments.

Possible improvement of this study is to investigate the
adaptive predictor-selection mechanism that dynamically
optimizes the predictor in response to the current traffic pat-
tern. We are designing some adaptive selection policies and
will evaluate them as future work.
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