
Performance, Cost, and Energy Evaluation of Fat H-Tree:
A Cost-Efficient Tree-Based On-Chip Network ∗

Hiroki Matsutani1, Michihiro Koibuchi2, and Hideharu Amano1

1Keio University 2National Institute of Informatics
3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo,

JAPAN 223-8522 JAPAN 101-8430
{matutani,hunga}@am.ics.keio.ac.jp koibuchi@nii.ac.jp

Abstract

Fat H-Tree is a novel tree-based interconnection network
providing a torus structure, which is formed by combining
two folded H-Tree networks, and is an attractive alternative
to tree-based networks such as Fat Trees in a microarchitec-
ture domain. In this paper, we introduce Fat H-Tree and its
deadlock-free routing algorithms. The performance of Fat
H-Tree is evaluated using real application traces, and the
result is compared with those of other tree-based networks.
The network logic area and wire resources for Fat H-Tree
are computed based on a typical implementation of on-chip
routers using a 0.18µm standard cell library. In addition,
the energy consumption is estimated based on the gate-level
power analysis. The results show that 1) Fat H-Tree outper-
forms Fat Tree with two upward and four downward con-
nections in terms of throughput and average hop count;
2) Fat H-Tree requires 19.3%-26.4% smaller network logic
area compared with the Fat Tree; 3) Fat H-Tree consumes
8.3%-8.6% less energy compared with the Fat Tree due to its
short average hop count; 4) Fat H-Tree uses slightly more
wire resources compared with the Fat Tree, but the current
process technology can provide sufficient wire resources for
implementing Fat H-Tree based on-chip networks.

1 Introduction

The advance of the semiconductor technology allows us
to integrate a number of processing cores on a single chip,
and various types of Network-on-Chip (NoC) have been
studied to connect them by introducing a network structure
similar to that in parallel computers[3, 4].

∗This work was supported by Joint Research Fund, “Network-on-Chip
Architecture,” National Institute of Informatics.
1-4244-0910-1/07/$20.00 c©2007 IEEE.

NoCs have been utilized not only for high-performance
microarchitectures but also for cost-effective embedded de-
vices mostly used in consumer equipment such as set-top
boxes or mobile wireless devices. Such embedded applica-
tions often demand very tight design constraints in terms of
cost and performance; thus the silicon budget available for
their on-chip network infrastructure should be modest. On
the other hand, NoCs are able to exploit the enormous wire
resources, unlike inter-chip interconnects whose bandwidth
is usually limited by the pin-count limitation problems out-
side the chip. Assuming a 0.1µm CMOS technology with
0.5µm minimum wire pitch, for example, a 3mm × 3mm
tile can exploit up to 6,000 wires on each metal layer as
illustrated in [4]. Finding the on-chip networks that effec-
tively use large numbers of wires for low latency and high
throughput communication with a modest silicon budget is
thus essential for rapidly evolving embedded devices.

Two-dimensional mesh and torus[4] have been employed
as a typical on-chip interconnect, because their grid-based
regular arrangement is intuitively considered to be matched
to the two-dimensional VLSI layout. On the other hand,
constant attention has been focused on tree-based topolo-
gies, because of their relatively short hop-count that enables
lower latency communication compared with mesh or torus.
In the case of tree-based networks as well as grid-based
ones, their performance and area cost have been widely
studied [6, 8, 9], and it has been observed that a tree-based
network achieves at least as high throughput as a mesh for
equivalent chip sizes. In addition, since various NoCs use
a tree-based structure[1], we mainly focus on trees for cost-
efficient on-chip networks. Note that a comprehensive com-
parison of tree and grid structures is beyond the scope of our
paper.

Figure 1 shows typical on-chip tree-based topologies
with low node degree, where a white circle represents a pro-
cessing core and a shaded square represents a router con-
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Figure 1. Typical interconnects and their two-
dimensional layout

necting other routers or cores. They have different numbers
of routers, different link lengths, and different numbers of
ports per router, all of which affect throughput, amount of
hardware for network resources, and energy consumption.

H-Tree has one upward and four downward connections.
Although H-Tree would be placed on a square die of a VLSI
chip, the topology is equivalent to a simple tree, so it still
has a common weak point of a tree. That is, links or routers
around the root of the tree are frequently congested.

To mitigate the congestion around the root of the tree,
Fat Tree enhances the number of connections toward the
root[9]. As stylized in [9], various forms of Fat Tree can
be created, and they can be expressed with a tuple (p, q, c),
where p is the number of upward connections, q is the num-
ber of downward connections, and c is the number of up-
ward connections that each core has. Figure 1(c) shows a
typical (2, 4, 2) Fat Tree, in which each router (except for
top-rank routers) has two upward and four downward con-
nections, and each core has two upward connections. This
is a network architecture employed in CM-5[10]. On the
other hand, Figure 1(d) shows a more reasonable one la-
beled with (2, 4, 1), which means every core has only one
upward connection. In this paper, we consider (2, 4, 1) and
(2, 4, 2) to be typical on-chip Fat Trees with low node de-
gree for comparison purposes.

We proposed a novel tree-based interconnection network
called Fat H-Tree that is unlike the existing interconnects

mentioned above and is an attractive alternative to the other
tree-based topologies. A Fat H-Tree has a torus structure,
which is formed by only combining two H-Trees, and it
achieves as high performance as the torus by using a smaller
network logic. Interconnection networks that have both
tree and grid structures have been researched for large-scale
parallel machines; for example, Recursive Diagonal Torus
(RDT)[14] is an extended hierarchical torus which also has
tree properties. However, since RDT was originally de-
signed for massively parallel machines, its node degree is
high (e.g., at least 8), so its connection structure tends to
be costly in a microarchitecture domain and its layout on a
chip is also difficult.

Although we first presented the idea of Fat H-Tree a cou-
ple of years ago[13], we did not do detailed evaluations of
its performance, cost, and energy consumption. In this pa-
per, first, we revise the description of the Fat H-Tree and
present three routing algorithms for different purposes. Sec-
ond, we evaluate the performance of Fat H-Tree through the
flit-level simulation. Third, the required hardware amount
and wire resources are computed based on a typical im-
plementation of NoC routers using a 0.18µm standard cell
library. In addition, the energy consumption is estimated
based on the gate-level power analysis of them.

In this paper, Section 2 and 3 introduce Fat H-Tree and
its deadlock-free routing algorithms. Section 4 discusses
the cost and performance advantages of Fat H-Tree over
typical tree-based networks, based on the topological prop-
erties. The theory is demonstrated through simulations in
Section 5. Section 6 concludes this paper.

2 Fat H-Tree

Fat H-Tree is a novel tree-based interconnection network
providing a torus structure, which is formed by combining
two H-Tree networks, called red tree and black tree. Sim-
ilar to the (2,4,2) Fat Tree in Figure 1(c), every processing
core in a Fat H-Tree has two ports: one for connecting to
the red tree and the other one for the black tree. The net-
work interface (NI) in the Fat H-Tree has a routing function
to forward packets from red to black and vice versa. This
function provides torus-like alternative paths in the Fat H-
Tree, which greatly improve its performance (see Section
5.4).

a) Red Tree Figure 2 shows the red tree, where the num-
ber in a router (e.g., 1,2, or 3) represents its rank. As-
sume that 4n = 22n cores are aligned in a 2n × 2n two-
dimensional grid square, and two-dimensional coordinates
(x, y) are assigned to each core. We call such a core a
rank-0 router from the network point of view. For a rank-0
router (x, y), the red-tree coordinates R(r0, r1, ...rn−1) are
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assigned as follows.

ri = ((x/2i) mod 2) + 2 × ((y/2i) mod 2) (1)

For each i from 0 to n − 1, four rank-i red routers
R(ri, ...rn−1) which have the same part of coordinates
R(ri+1, ...rn−1) are connected to the rank-(i+1) red router
labeled with R(ri+1, ...rn−1). The top-rank router in the
red tree has thus coordinates R. Figure 2 shows R, R(0),
R(2, 0), and R(2, 2, 0) as examples of red-tree coordinates.

b) Black Tree Figure 3 shows the black tree, which is
located to the lower right of the red tree. For a rank-0 router
(x, y), the black-tree coordinates B(b0, b1, ...bn−1) are as-
signed as follows.

bi = ((((x − 1) mod 2n)/2i) mod 2) +
2 × ((((y − 1) mod 2n)/2i) mod 2) (2)
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For each i from 0 to n − 1, four rank-i black routers
B(bi, ...bn−1) which have the same part of coordinates
B(bi+1, ...bn−1) are connected to the rank-(i + 1) black
router labeled with B(bi+1, ...bn−1). Figure 3 shows B,
B(2), B(1, 2), and B(0, 1, 2) as examples of black-tree co-
ordinates.

c) Fat H-Tree On 2n ×2n rank-0 routers, a Fat H-Tree is
formed with an n-rank red tree and an n-rank black tree.
As shown in Figure 4, the Fat H-Tree has a torus struc-
ture, which is formed with rank-0 and rank-1 routers in both
trees. Note that the rank-2 or upper routers in the Fat H-Tree
are omitted in the figure for ease of understanding.

d) Two-Dimensional Layout A Fat H-Tree can be folded
to avoid long feedback links laid across the chip (e.g., links
connecting the rightmost/top router and the leftmost/bottom
router). In the same manner as a folded two-dimensional
torus, a Fat H-Tree can be folded. As shown in Figure 5,
the order of nodes is changed so that every link is connected
to the next neighboring node. Obviously, Figures 4 and 5
are topologically equivalent. The placement of routers and
links is well distributed as shown in Figure 5.

3 Routing Algorithms

Packet routing is a crucial factor to make the best use
of network resources on a Fat H-Tree. We propose three
deadlock-free routing algorithms for partitioning into two
sub-networks, tree-based paths, and torus-based paths.

1. Single Tree Routing (STR) :
Either the red or the black tree is selected on a per-

packet basis. That is, a single tree is selected at the
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Figure 5. Folded Fat H-Tree (rank-2 or upper
routers are not shown)

source node prior to packet injection, and this selection
cannot be changed at intermediate routers.

2. Dual Tree Routing (DTR) :
Unlike STR, DTR allows transitions between trees at

intermediate rank-0 routers in order to always transfer
packets on minimal paths. To remove cyclic depen-
dencies between trees, we use virtual channels with
the following rule: starting from the virtual-channel
number zero, the current virtual-channel number is in-
creased only when a packet is forwarded from red to
black at a rank-0 intermediate router. This requires
�Hmax/4� + 1 virtual channels, because the longest
path changes trees from red to black up to �Hmax/4�
times, where Hmax is the maximum hop count of the
routing.

3. Torus Routing (TOR) :
TOR also allows transitions between trees, but uses

only a torus structure formed with rank-0 and rank-1
routers, as illustrated in Figure 4. Hence, it is pos-
sible to take non-minimal paths. TOR thus requires
�Hmax/4� + 1 virtual channels, where Hmax is the
maximum hop count of the routing.

Theorem STR, DTR, and TOR are deadlock-free under the
condition that zero, �Hmax/4� + 1, and �Hmax/4� + 1
virtual channels are provided, where Hmax is the maximum
hop count of each routing algorithm, respectively.

Proof Since STR sends packets along a tree which is
acyclic, STR guarantees deadlock-freedom. DTR and TOR
are also deadlock-free because no cyclic dependency occurs
as follows.

1. No cyclic dependency is formed within each tree.

2. No cyclic dependency is formed across trees, because
packets are passed from the red to the black tree by
virtual-channel transition in increasing order.

Although STR has the disadvantage of non-minimal
paths, it can physically partition the network resources into
two sub-networks, both of which provide connectivity be-
tween all pairs of processing cores, for different purposes
(e.g., pre-scheduled and dynamic networks). It can also be
used for fault-tolerance.

DTR is a minimal routing, and it usually offers high
throughput and low latency. TOR is completely free from
a tree’s weak point (i.e., root bottleneck), but its average
hop count will be increased, because it does not use all the
network resources. It thus guarantees connectivity even if
rank-i routers fail, where i > 1. In addition, by support-
ing hardware broadcast and/or multicast operation based on
a tree, unicasts along TOR and hardware multicasts can be
separated on a Fat H-Tree. This routing application presents
the possibility of customizing to fit to the traffic locality
the application generates. Since there are no routing algo-
rithms that are best performance on any applications, each
microarchitecture system should carefully select a routing
algorithm. Section 5.4 shows the throughput results of the
proposed routing algorithms.

4 Topological Properties

We discuss the cost and performance advantages of Fat
H-Tree over typical tree-based networks, based on the topo-
logical properties in terms of channel bisection, average hop
count, number of routers, and total length of links. The
properties were confirmed by conducting simulations, as
described in the next section.

4.1 Ideal Throughput

The ideal throughput of a network is the data acceptance
rate that would result from perfectly balanced routing and
flow control with no idle cycles; it is calculated as [5]

Θideal ≤ 2bBc

N
(3)

where N is the number of cores, b is the channel bandwidth,
and Bc is the channel bisection of the network.

Table 1 shows the channel bisection of typical networks.
In the table, “HT” represents H-Tree, “FT1” is (2,4,1) Fat
Tree, “FT2” is (2,4,2) Fat Tree, and “FHT” is Fat H-Tree.

Again, the number of cores is N = 2n × 2n; there-
fore, the number of ranks in an N -core tree is log4(N) =
log4(4n) = n. The channel bisection of an N -core Fat



Table 1. Channel bisection Bc

N -core 16-core 64-core 256-core
HT 4 4 4 4
FT1 2n+1 8 16 32
FT2 2n+2 16 32 64
FHT 2n+2 + 8 24 40 72
Mesh 2n+1 8 16 32
Torus 2n+2 16 32 64

Table 2. Average hop count Have

Routing 16-core 64-core 256-core
HT,FT tree 3.60 5.43 7.36
FHT STR 3.20 5.02 6.90
FHT DTR 3.20 4.84 6.78
FHT TOR 3.20 5.65 10.83
Mesh DOR† 4.67 7.33 12.67
Torus DOR† 4.13 6.06 10.03
† Dimension-order routing[5]

H-Tree is 2n+2 + 8, where the second term 8 corresponds
to that in two H-Tree networks (i.e., red and black trees)
and the first term 2n+2 is due to the torus structure of the
Fat H-Tree. Compared with the ideal throughput of simply
doubled H-Trees, the ideal throughput of a Fat H-Tree is
greatly improved by the torus structure. Section 5.4 shows
case studies of the application throughput on Fat H-Tree by
using a flit-level network simulator.

4.2 Average Hop Count

The number of source-destination pairs in an N -core net-
work is N2 − N ; thus average hop count in the network is

Have =
1

N2 − N

∑
x,y∈N

H(x,y) (4)

where H(x,y) is the hop count from core-x to core-y. Table
2 shows the average hop count of typical networks in the
case of uniform traffic, in which each source sends equally
to each destination. The average hop count depends on
whether the routing includes non-minimal paths. In the ta-
ble, STR and TOR in Fat H-Tree are non-minimal. DTR is
a minimal routing and it achieves 7.9%-11.1% shorter aver-
age hop count compared with Fat Tree.

4.3 Number of Routers

The number of routers in a chip affects the network logic
area and the implementation cost.

Assuming that the number of downward connections q is

Table 3. Number of routers R
N -core 16-core 64-core 256-core

HT (4n − 1)/3 5 21 85
FT1 (4n − 2n)/2 6 28 120
FT2 4n − 2n 12 56 240
FHT 2(4n − 1)/3 10 42 170
Mesh N 16 64 256
Torus N 16 64 256

4, the number of routers in an n-rank H-Tree, Rht, is

Rht = (qn − 1) / (q − 1) = (4n − 1) / 3. (5)

Similarly, the number of routers in a (2,4,1) Fat Tree net-
work, Rft1, is

Rft1 = (qn − 2n) / (q − 2) = (4n − 2n) / 2. (6)

A (2,4,2) Fat Tree has twice as many routers as are in the
(2,4,1) Fat Tree; thus the number of routers in the (2,4,2) Fat
Tree is Rft2 = 2Rft1. A Fat H-Tree contains two H-Trees,
so the number of routers it has is Rfht = 2Rht.

Table 3 lists the number of routers in typical networks.
The number of routers in a Fat H-Tree is smaller than that
in the (2,4,2) Fat Tree, yet the Fat H-Tree outperforms Fat
Tree in terms of ideal throughput and average hop count,
as shown in Section 4.1 and 4.2. To assess the cost and
performance advantages of Fat H-Tree, we need to consider
the amount of hardware for each router and NI in addition
to the number of routers. Actually, Fat H-Tree and (2,4,2)
Fat Tree require a 2-port NI per core, while the others use a
1-port NI for each core. In addition, an NI in the Fat H-Tree
has a routing function that forwards packets from one port
to another, and this function would increase the amount of
hardware in each NI. In Section 5.1, we implement an entire
Fat H-Tree based NoC, and compare it with other typical
networks in term of the network logic area.

4.4 Total Unit-Length of Links

Assuming that the distance between neighboring two
cores aligned in a two-dimensional grid square is 1-unit, we
define U as the total unit-length of links in a network. For
instance, a 16-core H-Tree network shown in Figure 1(b)
has 16 1-unit length links and four 2-unit length links, thus
its U is 24-unit.

The total unit-length of links in an n-rank H-Tree net-
work, Uht, is

Uht =
n∑

i=1

ui
ht · ri

ht (7)

where ui
ht is the total unit-length of links between a rank-i

router and its four child routers, and ri
ht is the number of



Table 4. Total unit-length of links U

N -core 16-core 64-core 256-core
HT Equation 8 24 112 480
FT1 nN 32 192 1,024
FT2 2nN 64 384 2,048
FHT Equation 11 72 392 1,800
Mesh 2(N − 2n) 24 112 480
Torus 4(N − 2n) 48 224 960

rank-i routers in the H-Tree. Assuming that the number of
cores is N = 2n × 2n, ui

ht = 2i+1 and ri
ht = N/4i, where

1 ≤ i ≤ n. Thus, Equation 7 can be transformed as follows.

Uht =
n∑

i=1

ui
ht ·ri

ht =
n∑

i=1

2i+1 · N

4i
= 2N

(
2n − 1

2n

)
(8)

Similarly, the total unit-length of links in a (2,4,1) Fat
Tree network, Uft1, is

Uft1 =
n∑

i=1

ui
ft1 · ri

ft1 =
n∑

i=1

2i+1 · N

2i+1
= nN. (9)

A (2,4,2) Fat Tree has double the number of routers in
the (2,4,1) Fat Tree; therefore Uft2 = 2Uft1.

A Fat H-Tree has two folded H-Tree networks, in which
each link, except for the links connecting to the top-rank
router, requires twice the wire resources of an ordinary H-
Tree. By folding the H-Tree, only the top-rank router and
its four child routers can be placed inside a 1-unit × 1-unit
grid square. Therefore, the total unit-length of links in a Fat
H-Tree network, Ufht, can be expressed as follows.

ui
fht =

{
2ui

ht 1 ≤ i ≤ n − 1
4 i = n

(10)

Ufht = un
fht ·rn

fht+
n−1∑
i=1

2i+2 · 2N

4i
= 8+8N

(
2n−1 − 1

2n−1

)

(11)
Table 4 summarizes the above discussion. As for the

mesh and torus, we ignore the links between the core and
router, which will slightly increase the total unit-length, for
the sake of simplicity. Although a Fat H-Tree uses slightly
more wire resources compared with the (2,4,2) Fat Tree in
16- and 64-core networks, the impact on the chip design is
considered to be modest, because enormous wire resources
are available in an NoC, thanks to the current CMOS tech-
nology that has six or more metal layers. In Section 5.2, we
investigate the impact of wire demand on Fat H-Tree in a
0.18µm CMOS technology.

The longest link in a network affects the wiring delay
and the number of repeaters required for wires. As for the
Fat H-Tree, each link, except for the links connecting to the

top-rank router, requires twice the wire length of a same-
sized H-Tree, while the length of the top-rank link is 1-unit
because of its folded layout mentioned above. Thus, the
longest link length in a Fat H-Tree is the same as those in
the H-Tree and Fat Tree.

5 Evaluations

The advantages and disadvantages of Fat H-Tree over
Fat Tree were demonstrated through simulations evaluating
the network logic area, wire resources, energy consumption,
and throughput.

5.1 Hardware Amount

The network logic area in an NoC is mainly composed
of routers and network interfaces (NIs) that connect a pro-
cessing core to a network. Here, Fat H-Tree is compared
with other typical networks in terms of network logic area.

We implemented a wormhole router that supports var-
ious node degrees. We also developed an NoC generator
that automatically connects the routers and NIs in the arbi-
trary network topologies. Using the Synopsys Design Com-
piler X-2005.09, we synthesized the generated NoC design
with a TSMC 0.18µm standard cell library and estimated
the network logic area. The behavior of the synthesized
NoC design was confirmed through a gate-level simulation
assuming an operating frequency of 250MHz.

The router architecture was fully pipelined, and it trans-
ferred a header flit through four pipeline stages that con-
sisted of a routing computation, virtual-channel allocation,
crossbar allocation, and crossbar traversal. The flit-width
was set to 32 bits, and each pipeline stage had a buffer for
storing one flit. The routing decisions were stored in the
header flit prior to packet injection (i.e., source routing);
thus routing tables that require register files for storing rout-
ing paths were not needed in each router, resulting a low
cost router implementation.

The NI has to be designed to interface between a process-
ing core and a network with a minimum hardware amount.
We implemented a simple NI that employs a 2-flit FIFO
buffer for both the core-to-network and network-to-core in-
terfaces. Each core in a Fat H-Tree and a (2,4,2) Fat Tree
has two upward connections, while the other networks have
only one connection. For the Fat H-Tree and the (2,4,2) Fat
Tree, we also implemented a 2-port NI that had two sets of
FIFO buffers. In addition, an NI of Fat H-Tree has to be de-
signed to support a routing function to forward packets from
one port to another. This function requires a small 2-input
multiplexer for each of the four output ports in the NI.

Figure 6 shows the synthesis results of typical 16- and
64-core networks. Although Fat H-Tree requires the largest
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Figure 6. Network logic area

NI area because of its 2-port interfaces and packet forward-
ing function, the number of routers in a Fat H-Tree is rela-
tively small, as shown in Section 4.3. As a result, Fat H-Tree
is smaller than 2-D mesh, torus, and (2,4,2) Fat Tree. In
particular, Fat H-Tree consumes 19.3%-26.4% smaller net-
work logic area compared with the (2,4,2) Fat Tree. As for
the operating frequency plots, little difference exists among
them, as shown in Figure 6.

5.2 Wire Resources

As shown in Section 4.4, Fat H-Tree slightly stretches
the total unit-length of links compared with the (2,4,2) Fat
Tree. However, the impact is considered to be modest, be-
cause the enormous wire resources available in an NoC,
thanks to the current process technology that has six or more
metal layers. In this section, we first estimate the required
wire length for a Fat H-Tree, and then we calculate the uti-
lization ratio of the entire wire resources in a chip to demon-
strate the impact of wire demand on Fat H-Tree.

The required wire length for a network is estimated as

W = 2Uwl (12)

where U is the total unit-length of links in the network, l is
the distance between neighboring two cores (e.g., 1.5mm),
and w is the bit-width of a channel. Assuming a 12mm ×
12mm chip, the distance between neighboring two cores, l,
is 3.0mm for a 16-core network and 1.5mm for a 64-core
network. Figure 7 shows the required wire length in the
cases of 16- and 64-core typical networks.
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We now shift to the utilization ratio of the wire resources
available in a 0.18µm CMOS technology. Although the pro-
cess technology offers six metal layers, we assume that the
on-chip network infrastructure can use only two metal lay-
ers, while the application logic exploits all layers. Assum-
ing that the minimum wire pitch is 1.0µm in the technol-
ogy, the 12mm × 12mm chip has up to 12,000 wires on
each metal layer crossing each edge of the chip; thus up to
288m of wires would be available in two metal layers in
the chip. Although this assumption often overestimates the
entire resources in a chip, it enables us to approximate the
wire utilization in a simple way.

Figure 7 also shows the utilization ratio of wires avail-
able in two metal layers. Fat H-Tree utilizes 4.8% of wires
in the case of a 16-core network, and it uses only 13.1% of
wires even in a large 64-core network. This also shows that
the differences between Fat H-Tree and (2,4,2) Fat Tree are
very small (i.e., 0.3%-0.5%). In addition, the 0.18µm pro-
cess used in this section is not state-of-the-art technology.
The latest technologies such as the 90nm or 65nm process
can provide many more wires, which would further ease
the wiring issue of Fat H-Tree. It is clear from the above
discussion that the current process technology can provide
sufficient wire resources for implementing Fat H-Tree based
on-chip networks.

5.3 Energy Consumption

The average energy consumed to transmit a single flit
from source to destination can be estimated as [12]

Eflit = wHave(Esw + Elink) (13)

where w is the flit-width, Have is the average hop count,
Esw is the average energy to switch a 1-bit data inside a
router, and Elink is the 1-bit energy consumed in a link.

We used the Synopsys Power Compiler to extract Esw of
the router synthesized with the 0.18µm standard cell library.
The switching activity of the running router was captured
through the gate-level simulation of the synthesized router.
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The gate-level power analysis based on this switching ac-
tivity shows that Esw is 1.13pJ when the router is operating
at 250MHz with a 1.8V supply voltage.

Elink can be calculated as

Elink = dV 2Cwire/2 (14)

where d is the average 1-hop distance (in millimeters), V
is the supply voltage, and Cwire is the wire capacitance per
mm. Cwire can be estimated using the method proposed in
[7], and is 414fF/mm in the case of a semi-global intercon-
nect in the 0.18µm CMOS technology. For instance, Elink

is 0.67pJ when the 1-hop distance is 1mm on average.
We assume 32-bit 16- and 64-core networks placed in a

12mm × 12mm chip, as in Section 5.2. First we estimated
the average 1-hop distance, d, using a flit-level simulator,
and then we derived Eflit based on Equation 13 with the
various parameters mentioned above.

Figure 8 shows the results. The energy consumption de-
pends on Have and d. Fat Trees frequently use the longest
links (e.g., 75% of source-destination pairs use the longest
ones twice in each flight). On the other hand, Fat H-Tree
tries to avoid the congested longest links but the length of
each link is longer than those of Fat Trees because of its
folded layout. As a result, average 1-hop distance of Fat H-
Tree becomes slightly longer than those of Fat Trees. Since
the average hop count of Fat H-Tree is shorter than those of
Fat Trees and it strongly affects the energy consumption as
in Equation 13, Fat H-Tree consumes 8.3%-8.6% less en-
ergy compared with Fat Trees.

5.4 Throughput

5.4.1 Simulation Environments

Network Model A flit-level simulator written in C++
was used to confirm deadlock-freedom and measure the
throughput on Fat H-Tree. A simple model corresponding
to the wormhole router mentioned in Section 5.1 was used
as a switching fabric in the simulator. A header flit requires
at least three clock cycles to be transferred to the next router

or core; one cycle for the routing computation, one cycle for
allocating a virtual-channel and a crossbar, and the remain-
ing cycle for transferring the flit to the next router or core.
Wormhole switching was used as a switching technique on
the router. The nodes inject packets independently of each
other, and we set the packet length for 16 flits including one
header flit.

Routing Algorithm We used DTR and TOR for Fat H-
Tree, and dimension-order routing (DOR) for the 2-D mesh
and torus. DTR and TOR in Fat H-Tree and DOR in 2-D
torus require virtual channels in order to avoid structural
deadlocks; thus we assumed to use two virtual channels
for these 16- and 64-core networks. Since the Fat H-Tree
and Fat Trees provide alternative paths between source and
destination, we employed the path selection algorithm pro-
posed in [11], which selects a path so as to distribute the
congestion over the network.

Traffic Pattern As for the traffic pattern, we used uni-
form synthesis traffic as a baseline. In addition, we used
application traces captured from NAS Parallel Benchmark
(NPB)[2] programs, because they would enable us to eval-
uate with various sizes/patterns of real application traffic.
We selected five matrix computation programs from NPB:
Block Tridiagonal solver (BT), Scalar Pentadiagonal solver
(SP), Conjugate Gradient (CG), Multi-Grid solver (MG),
and large Integer Sort (IS). The class of problem was set
to “W”, and the numbers of tasks was 16 or 64. The task
mapping which assigns each task into a core is a crucial fac-
tor for the average hop count and performance, and it was
optimized for every trace in every network so that the pairs
of tasks that transferred a large amount of data could be
placed near each other by using Equation 4. We employed
the branch-and-bound method as a pruning technique to ob-
tain the optimum mapping within a realistic time frame.

5.4.2 Simulation Results

First we discuss the performance advantages of Fat H-Tree
over H-Tree and Fat Tree, and then we experimentally com-
pare Fat H-Tree with 2-D mesh and torus.

Figure 9(a) shows the throughput (accepted traffic) ver-
sus the latency with the 16-core uniform traffic on Fat H-
Tree and simple trees. The average hop count of each topol-
ogy is also shown in parentheses. The average hop counts
are equal to the ones in Table 2. Fat H-Tree (both cases
of FHTD and FHTT) achieves 11.1% shorter average hop
count compared with Fat Tree. As for the throughput, Fat
H-Tree achieves higher throughput than others. Actually,
FHTT outperforms the (2,4,2) Fat Tree by 19.5%.

Similar results are also shown in the NPB traces. Fig-
ures 9(b) and 9(c) show the results for 16-core BT and MG
traces. Note that we could not show the results of SP, CG,



and IS traces because of space limitations. Fat H-Tree out-
performs the (2,4,2) Fat Tree in terms of throughput and
average hop count. Since the Fat H-Tree requires 19.3%-
26.4% smaller network logic area compared with the Fat
Tree as reported in Section 5.1, it is clear that it outperforms
the Fat Tree in terms of cost-performance. Thus we can see
that Fat H-Tree is an attractive alternative to Fat Tree.

Next, we compare FHTD and FHTT. Although both
FHTD and FHTT achieve higher throughput than Fat Tree,
an interesting tendency can be seen in their performance
differences. That is, FHTD outperforms FHTT in the BT.W
and SP.W traffic, where most communications are limited
between neighboring cores. On the other hand, FHTD is
inferior to FHTT in the uniform and IS.W traffic, each of
which is dominated by all-to-all communications. FHTD is
able to exploit the links around the roots of Fat H-Tree in or-
der to always take the minimal path, and this strategy works
well for most real application traffic. However, in the cases
of all-to-all communications, FHTD has no other choice to
use the links around the roots for taking minimal paths. As
a result, FHTD causes congestion around the roots and has
slightly lower performance in the cases of all-to-all traffic.

The simulation results with 64-core networks are shown
in Figures 9(d)-9(f). As you can see, FHTD and FHTT
achieve higher throughput than FT2 in most traces.

We experimentally compared Fat H-Tree with 2-D mesh
and torus (Figures 10(a)-10(f)). Fat H-Tree outperforms 2-
D mesh in all traces, and it also achieves as high throughput
as the torus when a suitable routing algorithm is selected
according to the traffic pattern. Since the required silicon
budget for a Fat H-Tree is smaller than those for mesh and
torus, Fat H-Tree could be comparable to these simple grid-
based networks.

6 Conclusions

In this paper, we introduced Fat H-Tree and its deadlock-
free routing algorithms. We showed their properties, and
evaluated them. The evaluation results provide us with the
following conclusions: 1) Fat H-Tree outperforms Fat Tree
with two upward and four downward connections in terms
of throughput and average hop count; 2) Fat H-Tree requires
19.3%-26.4% smaller network logic area compared with the
Fat Tree; 3) Fat H-Tree consumes 8.3%-8.6% less energy
compared with the Fat Tree due to its short average hop
count; 4) Fat H-Tree uses slightly more wire resources com-
pared with the Fat Tree, but the current process technology
can provide sufficient wire resources for implementing Fat
H-Tree based NoCs. Although the required silicon budget
for a Fat H-Tree is smaller than that for the Fat Tree, Fat
H-Tree achieves higher performance compared with the Fat
Tree. Thus, Fat H-Tree outperforms the Fat Tree in terms of
cost-performance.

Possible improvement of Fat H-Tree is to develop effi-
cient two-dimensional layouts for the general m × n net-
works, where m �= n. In addition, we are planning to em-
ploy Fat H-Tree as a network architecture of 3-D stacked
chips. That is, stacked chips, each of which has its own
on-chip H-Tree network, are connected with an inter-chip
network. Fat H-Tree will be used to integrate these on-chip
and inter-chip networks.
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Figure 9. Fat H-Tree vs. H-Tree and Fat Trees
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Figure 10. Fat H-Tree vs. 2-D mesh and torus


