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Batch processing requires time and thus recent 
data cannot be reflected to the analysis result
 Combine batch and stream processing to 
make up the realtime capability
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Nathan Marz, et.al., "Big Data: Principles and best practices of scalable 
realtime data systems", Manning Publications (2015).
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Multilevel NOSQL cache:
L1 NOSQL cache … FPGA-based hardware cache
L2 NOSQL cache … In-kernel software cache
Tradeoffs between capacity and speed:
L1 NOSQL cache … Very fast/efficient but small
L2 NOSQL cache … Fast and large
Design space exploration  [IEEE HoTI’16]



FPGA NIC Cache for Blockchain
• Blockchain

– A chain of blocks each contains transactions 
verified and shared by all the parties
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1. Bob wants to send money to Alice

2. TX(BobAlice) is 
represented as a block

3. The block is 
broadcasted to 
all the nodes

Bob Block

Block

Block

Block

Block

Block

4. After verified, 
the block is added 
to the blockchain



FPGA NIC Cache for Blockchain
• IoT devices (SPV nodes)

– Cannot maintain whole the blockchain data 
(>100GB) due to resource limitation

• Simple payment verification
– Ask full node to check whether a transaction 

of interest has been completed or not
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Alice

1. Alice wants to verify TX(BobAlice)

Block

Block

Block

Block

Full node

2. Alice contacts a 
full node to verify it
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Alice

Block

Block

Block

Block

Full node

2. Alice contacts a 
full node to verify it

The number of IoT devices that join blockchain
will increase
To reduce full node accesses from SPV nodes, 
FPGA NIC KVS is used as “cache” of blockchain
[HEART’17]

FPGA NIC 
Cache

1. Alice wants to verify TX(BobAlice)
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Data processing w/ Spark+GPU

Array Cache 
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RDD 1 RDD 2

RDD 3
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[HEART’16]

Data are stored in RDDs (i.e., distributed shared memory)
RDDs are converted to array structure & transferred to GPU
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GPUs
PCIe card 
inserted in 
the server

10/40GbE 
Switch10G+10G

10G+10G

Many GPUs are directly connected to Apache 
Spark server via NEC ExpEther (20Gbps)

Data processing w/ Spark+GPUs
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Data processing w/ Spark+GPUs

Array Cache 
(Converted from Spark RDDs) 

User Space

Reduction & transformation 
of RDDs offloaded to GPUs

Array Cache (RDDs) RDD 1 RDD 2

RDD 3

10GbE Switch

[ICPADS’16]

RDD 1

RDD 2

RDD 3

RDD 4

RDD 5

RDD 6
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10Gbps outlier filtering: FPGA NIC
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NetFPGA-10G

NetFPGA-10G Device Driver

10GbE x4

Data Mining
Machine learning algorithms
 Mahalanobis Distance
 Local Outlier Factor(LOF)
 K-Nearest Neighbor(KNN)

Sensor Data Explosion

Outlier

Huge Size Small Size

Only anomaly-
valued packets are 
received

User Space
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NetFPGA-10G

NetFPGA-10G Device Driver

10GbE x4

Data Mining
Machine learning algorithms
 Mahalanobis Distance
 Local Outlier Factor(LOF)
 K-Nearest Neighbor(KNN)

Sensor Data Explosion

Outlier

Huge Size Small Size

Only anomaly-
valued packets are 
received

User SpaceDensity-based approach to find outliers (e.g., 
higher LOF value when k neighbors are distant)
All reference data needed for density computation
 Frequently-accessed reference data clusters are 

cached in FPGA NIC [PDP’17]



Spark Streaming: FPGA NIC

18

NetFPGA-10G

NetFPGA-10G Device Driver

10GbE x4

One-at-a-time

Results of one-at-a-
time processing
(e.g., filter) received

User SpaceMicro-batch• Stream processing

• Spark Streaming
– Micro-batch style for 

compatibility w/ Spark
– Large latency

One-at-a-time style

Micro-batch style

batch batch

 Stream processing components which can 
be executed as “one-at-a-time style” are 
offloaded to FPGA NIC [IEEE BigData WS’16] 

(e.g, 1sec)
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Thank you !
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