8 GLADIO $©

Accelerating Anomaly
Detection Algorithms on
FPGA-Based High-Speed NICs

Iroki Matsutani
Dept. of ICS, Keio University
http://www.arc.ics.keio.ac.jp/~matutani

August 2nd, 2018  International Forum on MPSoC for Software-Defined Hardware (MPSoC'18) ]_



http://en.wikipedia.org/wiki/Image:Keio-logo.png
http://en.wikipedia.org/wiki/Image:Keio-logo.png

Accelerator design for big data
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Today’s talk: Online learning
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Offline vs. Online learning
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Online learning approaches

ChangeFinder:

Outlier and change point
detections on time-serie
data

AR-model based Neural network

Next value X; is predicted Online sequential learning for
based on recent p values SLFN (input, hidden, and output
layers)
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ChangeFinder on 10GbE FPGA

 ChangeFinder algorithm [3.Takeuchi, IEEE TKDE'06]

_Step 1 (Outlier score):

Receive input data Xt at time t

| Step 2 (Smoothing):
.. Calculate moving average Yt of the outlier
Smoothing is controlled by window size S

Step 3 (Change-point score):
= Step 1 is performed for Yt
The result is change-poipt,
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ChangeFinder on 10GbE FPGA

 ChangeFinder algorithm [3.Takeuchi, IEEE TKDE'06]

_Step 1 (Outlier score):

Receive input data Xt at time t .
.| Calculate outlier score of Xt based on past data Input data Xt
Influence of past data controlled by discount rate r

Step 2 (Smoothing): .
.. Calculate moving average Yt of the outlier score Mm oy
Smoothing is controlled by window size S "

Step 3 (Change-point score):
= Step 1 is performed for Yt

The result is change—poi o N
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ChangeFinder on 10GbE FPGA

 10GbE NIC datapath by Verilog HDL
« Application logic in wrapper in HLS
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ChangeFinder on 10GbE FPGA
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Online learning approaches

ChangeFinder: OS-ELM :
Outlier and change point Single hidden layer
detections on time-serie neural network (SLFN)
data
AR-model based Neural network
Next value X, is predicted Online sequential learning for
based on recent p values SLFN (input, hidden, and output
N layers) [N. Liang, TNN 2006]
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Online learning + unsupervised

Offline learning Online learning
Inference Sequential learning
only + Inference
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Test data =

Test data Pre-trained Learning Training data

predictor predictor

Unsupervised anomaly detection

[M.Tsukada, HeteroPar'18] (No training data needed)
*Collaboration with Prof. M.Kondo (UTokyo)

Normal values (incl. noise) are learned after the deployment
- Anomaly detection adapted to a given environment 11



Online learning + unsupervised

« Learn vibration pattern of fan + noise

Youtube Video: :
https://www.youtu s atch?v=tCw7p7bjwT
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Summary: Online learning FPGA
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