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Real-world edge AI: Requirements
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Our approach: On-device learning

One of the biggest issues when applying AI to
industry is to prepare accurate training data sets

On-device learning

Online learning -+ Unsupervised
|"|
On-site learning w/o Labeled training |
pre-training phase data is not required

Normal pattern

Basic concept including noise

(1) Anomaly detector is deployed | \

(2) Normal pattern incl. noise is learned (|n|t|aI|zat|om |
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Our approach: On-device learning

On-site learning w/o
pre-training phase

Online learning

Prediction +
Sequential learning

Anomaly

detection . Teg d?ta!
Learning g N
predictor Training data

On-device learning for adapting
to a given environment

Low cost edge devices 4



On-device learning: A baseline

(1) Baseline

Online learning in a deployed environment
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Case 1: Manufacture process

 Finding defects and predictive maintenance
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Case 1: Manufacture process

« Vibration pattern is learned - Detect unusual
event (e.g., air-spray from red tube)

Frequency spefie | B

Step 1: , Step 2: , Step 3:

Normal pattern Air-spray is blew to  Anomaly pattern
including regular the fan (air-spray) is detected

noise is learned

Our approach: On-site learning in a deployed
environment and detecting unusual patterns 7



Case 1: Manufacture process

« Vibration pattern is learned - Detect unusual
event (e.g., air-spray from red tube)
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On-devi
evice learning: Extension
S
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On-devi
evice learning: Extensions

(1) Baseline
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On-devi
evice learning: Extensions

(1) Baseline

Online |
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(2) Low cost learning + reduction
|  Online sequential |earning for Unsupervised anomaly
single-layer neural networks detection
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Case 2: Server rack & computer

« Computers and power/coollng components
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[4] Raysonho @ Open Grid Scheduler / Grid Engine (Public Domain) [5] Sanderflight at Dutch Wikipedia (Public Domain)



Case 2: Server rack & computer

. Heat map is Iearned 9 Detect unusual event

Remote monitorinag 1 3



Case 2: Server rack & computer

« Heat map is learned - Detect unusual event
(e.g., heat from soldering iron)
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Case 3: Mobile robot (UAV)

UAV’s status depends on payload/condition
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Case 3: Mobile robot (UAV)

+ Normal propeller (white) and damaged _

On-device [earning board & | |
Normal propeller EbBatteryare attacHeatoNUAV: Damaged propelei




Case 3: Mobile robot (UAV)

« Normal propeller (white) and damaged
propeller (red) > Detect anomaly pattern

UAV'’s stat pends on payload/condition
lea g + unsupervised detection

Battery and on-device Iearnihg module is

attached to the flying UAV
| 17



On-device learning: Summary

— One of the biggest issues when applying AI to
iIndustry is to prepare accurate training data sets

On-device learning

Online learning -+ Unsupervised

On-site learning w/o Labeled training
pre-training phase data is not required
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