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Abstract

Various types of Networks-on-Chips (NoCs) have
been employed light-weight routers compared with
those in parallel computers, and a virtual-channel
mechanism, which requires additional logic and
pipeline stages, is one of the crucial factors for a low
cost implementation of an NoC router in the case of
simple tile-based architectures. Although a torus net-
work, which exploits wrap-around channels, achieves
higher throughput and lower latency than a same-sized
mesh, a virtual-channel mechanism is usually required
to avoid deadlocks in tori with dimension-order rout-
ing. In this paper, we propose a scheme to remove
virtual channels in tori by accomplishing the following
steps: 1) providing a mechanism which allows wrap-
around channels to be individually disabled in each
router, 2) a task mapping strategy that carefully as-
signs tasks to a tori, so that as many wrap-around
channels as possible are exploited without introducing
deadlocks or performance degradation. Additionally,
we extend this strategy to avoid deadlocks when ap-
plication traffic patterns are unknown or incompletely
analyzed. Although the proposed mapping does not
use virtual channels, it achieves almost the same per-
formance as conventional mapping in tori in ten traces.
Moreover, the hardware amount of the proposed router
can be decreased to 52.4% of a conventional router pro-
viding two virtual channels for tori.

1 Introduction

Various types of Networks-on-Chips (NoCs) have
been studied to connect a number of modules in a chip
by introducing a network structure similar to that in
parallel computers[1, 3]. They are able to employ a
complicated network protocol stack, and they are usu-
ally suitable for connecting a number of modules.

One of the major target applications of NoCs
is stream processing such as JPEG or MPEG coders
mostly used in consumer equipments. Figure 1 shows

a task diagram of JPEG2000 decoding. In the process-
ing, each task can be mapped onto each node 1 , and
is performed in a pipelined manner. In this case, the
communication is limited only between neighboring
two nodes. However, the framed part called EBCOT
(Embedded Block Coding with Optimal Truncation)
requires a large computational load and bottlenecks
the whole stream flow if each processing in EBCOT is
assigned into a single node. For equalizing the stream
flow, the processing of EBCOT should be distributed
into several nodes and executed in parallel. In the
parallelized case, the communication pattern between
nodes includes a stream fork and join.
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Figure 1: A task graph for JPEG2000 decoding.

Two-dimensional mesh [2, 6, 9] and torus[3, 7]
have been employed as the NoC topology, because
only a small number of ports (up to four) are required
to connect with the neighboring routers. A simple
and popular deterministic routing on such networks is
dimension-order routing, which simply sends packets
on Y direction after completing on X direction. In
a router, its routing algorithm has been implemented
using a small-dedicated logic, and a routing table that
requires register files for storing routing paths is hardly
used. Dimension-order routing is simple but it can
uniformly distribute minimal paths between all pairs
of nodes in the case of uniform traffic.

Although a torus network has twice bisection
bandwidth of a same-sized mesh, dimension-order
routing originally requires two virtual channels to
avoid deadlocks in the case of tori. Whereas a mesh
network requires no virtual channels.

A virtual-channel mechanism strongly affects the
router architecture, its hardware amount, and latency

1In this paper, we use the term “node” to represent the tile
where a set of an IP core and a router is included.



in the case of the simple tile-based architectures. Al-
though an input buffer is a crucial component in sim-
ple NoC routers, a separate buffer memory is required
for each virtual channel in order to switch flits from
multiple virtual channels to the same physical channel
in a single cycle[4]. Typical router architectures are
pipelined at the flit level, and an additional pipeline
stage is usually required for the virtual-channel mech-
anism so as not to pack more logic into a stage. For
example, each header flit travels through the steps of
routing computation, virtual-channel allocation, cross-
bar allocation, and crossbar traversal[4]. The pipeline
depth is directly related to the depth of the input
buffers and latency of the networks. Thus, a virtual-
channel mechanism is one of the crucial factors for low
cost implementations of simple NoC wormhole routers.

In recent design methodologies, embedded sys-
tems and their applications are designed with sys-
tem level description languages like System-C, and
simulated in the early stage of design in the sim-
ple tile-based architectures. By analyzing the com-
munication pattern between computational tasks in
the target application, we can statically optimize its
task mapping[6]. To remove virtual channels from
dimension-ordered routers on tori, we propose a task
mapping strategy that carefully assigns tasks onto a
torus so that as many wrap-around channels as possi-
ble are exploited without introducing deadlocks or per-
formance degradation. Additionally, we extend this
strategy to avoid deadlocks when application traffic
patterns are unknown or incompletely analyzed.

Notice that virtual channels play a key role to
avoid not only deadlocks, but also head-of-line block-
ing. However, average hop count is small in the cases
of stream processing, so the advantage of increasing
throughput is not fully extracted in our target NoCs.

The rest of this paper is organized as follows. Ex-
isting virtual-channel free solutions to route packets
are surveyed in Section 2, and our task mapping strat-
egy is proposed in Section 3. In Section 4, the mapping
strategy was applied to real application traces and the
results are compared with a virtual-channel router on
tori. In addition, hardware amount of the proposed
router is compared with that of a conventional virtual-
channel router. Finally, we conclude in Section 5.

2 Related Work

To remove virtual channels from dimension-
ordered routers on tori, the bubble flow control[8] has
been developed mainly for parallel computers. This
is an injection limitation mechanism that guarantees
continuous message movement in the network by pre-
serving at least one empty packet in routers’ queue.
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Figure 2: An example of 2-D reconfigurable torus.

To preserve buffers for one or more packets, the bub-
ble flow control is used with virtual-cut through (VCT)
switching that requires buffers with capacities for one
or more whole packets. However, since the buffer size
is a crucial factor for implementing lightweight NoCs
described in Section 1, wormhole switching technique
has been employed in the case of NoCs.

Another technique to remove cyclic dependencies
is based on temporally storing packets that could in-
troduce channel cyclic dependencies at an intermedi-
ate node[5]. It is mainly intended to the case of sys-
tem area networks (SANs) with no virtual channels,
such as Myrinet. This technique is used to efficiently
implement various routing algorithms on SANs. On
the other hand, NoCs (intra-chip communication) are
quite latency-sensitive compared with SANs (inter-
chip). The latency to store and reinject packets on
an intermediate node cannot be ignored on NoCs, and
the large number of store-and-reinjected packets intro-
duce the serious performance degradation. Thus, this
method would not be directly applied into NoCs.

3 Task Mapping Strategy

A scheme for removing a virtual-channel mech-
anism from dimension-ordered routers on tori is pro-
posed. Our approach has the following designs: 1)
each wrap-around channel has flexibility in that it
can be dynamically enabled and disabled; 2) tasks are
carefully assigned onto nodes so that as many wrap-
around channels as possible are used without introduc-
ing deadlocks or performance degradation.

3.1 Reconfigurable Torus

We propose a variant of torus in which each wrap-
around channel can be dynamically disabled. Each
node in k × k 2-D torus is denoted as Ni, where
i = {0, ..., k2−1}. The set of unidirectional links along
a given direction forms a unidirectional cycle. The uni-
directional cycle that includes node Ni for x+ direction
is denoted as ring Rx+

i . The other unidirectional cycles



for the x−, y+, and y− directions are denoted as ring
Rx−

i , Ry+
i , and Ry−

i , respectively. In Figure 2, ring
Rx+

0 is a unidirectional cycle N0−N1−N2−N3−N0.
When all wrap-around channels are disabled, a

deadlock-free path set is always guaranteed, but its
performance is drastically decreased compared to that
of a torus. Here, we employ a function to dynamically
disable a part of the wrap-around channels in response
to the communication pattern, so as to exploit most
of the wrap-around channels. We call such a network
a “reconfigurable torus.” Note that the links are not
electrically but logically disabled. That is, the routing
table is just changed so as not to use the disabled link.

Figure 2 is an example of a 4 × 4 reconfigurable
torus. Wrap-around channels for rings Rx+

4 , Rx−
4 ,

Ry+
0 , Ry−

0 , and Rx−
8 are disabled in this example. Each

router in reconfigurable tori has registers in which
a set of configurations (enable or disable) of wrap-
around channels for each direction is stored. When
a wrap-around channel of a certain direction is dis-
abled, the routing function becomes the same as that
in a mesh network that requires no virtual channel for
the dimension-order routing. The overhead area for a
router in reconfigurable tori will be small, because only
a 1-bit register is needed for each direction to switch
its routing function. The synthesis result of a router
for reconfigurable tori is shown in Section 4.1.

3.2 Mapping Algorithm

In order to assign tasks onto a reconfigurable
torus, our task mapping strategy uses the communica-
tion pattern of the target application in which all the
communication events are recorded. Our target appli-
cation is stream processing as illustrated in Section 1.
These applications are designed with system level de-
scription languages, and simulated in the early stage
of design. We can obtain the total amount of commu-
nication data for each source-destination pair by an-
alyzing the communication pattern. The total size of
the communication data from task Ts to Td is denoted
as D(s,d). When D(s,d) is equal to zero, a communi-
cation path from task Ts to Td is not used so it does
not cause any deadlocks. Our task mapping strategy
carefully assigns tasks onto a reconfigurable torus so
that the valid communication paths (D(s,d) > 0) do
not form a cycle in each ring.

All possible mappings are represented in a tree
structure as shown in Figure 3. Each mapping in this
tree is represented as a linear list starting from a root
node to the other nodes. In Figure 3, mapping M =
T0 − T1 − T3 − T2 expresses that tasks T0, T1, T3,
and T2 are placed onto nodes N0, N1, N2, and N3,
respectively. Also, mapping M ′ = T0 − T2 expresses
that tasks T0 and T2 are placed onto nodes N0 and
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Figure 3: An example of searching tree of mapping.
Four tasks are mapped onto four nodes.

N1, but tasks T1 and T3 have not been yet placed.
The latter mapping, which includes tasks not placed
yet, is called “incomplete mapping.”

Our task mapping strategy finds the best map-
ping that achieves deadlock-freedom and higher per-
formance from all the possible mapping combinations.
Since a search tree of all the possible combinations of
mappings is huge, our mapping strategy employs the
branch-and-bound method as a pruning technique to
obtain a solution within a realistic time.

Now our mapping algorithm is briefly intro-
duced. The Search() is a function that explores all the
branches under a given mapping. In Figure 3, given
that the current mapping is T0− T1 (step 2), Search()
explores T0−T1−T2 and T0−T1−T3 as branches under
the current position. By recursively calling Search(),
the proposed strategy walks through the whole search-
ing space. For each mapping, deadlock-freedom is con-
firmed by Cycle Detect() and the cost of the mapping
is evaluated by Cost(). The cost in this strategy is an
estimated average hop count. This strategy searches
for deadlock-free mapping whose cost is the smallest.
In Figure 3, the cost of mapping T0−T1−T3−T2 (step
6) is ten. On the other hand, the cost of an incomplete
mapping T0−T2 (step 7) is eleven. Since the cost of all
the branches under the mapping T0−T2 will be higher
than or equal to eleven, there is no chance of finding
lower cost mapping than that of T0−T1−T3−T2. By
cutting such branches, computational efforts to find a
minimal solution can be reduced.

The Task Mapping Algorithm:

1. (Initialize.) Variables are initialized. At step 1
in Figure 3, depth d := 1, mapping M := T0,
best mapping Mbest := φ, and upper-bound cost
Cub := ∞.

2. (Search down.) Search(M,d) is called in order to
explore all branches under the mapping M . The
Search() is stated below.

3. (Terminate.) When the upper-bound cost Cub is
less than ∞, the best mapping Mbest is the solu-
tion. Otherwise, no valid solution exists.



Search(M,d): This function explores all branches
under a given mapping M .

1. (Evaluate cost.) Cost(M,d) is called in order to
evaluate the cost of mapping M . Notice that the
Cost() is stated below.

(a) When cost C is greater than or equal to
upper-bound cost Cub, the search of this
branch is stopped and returned.

(b) When cost C is less than upper-bound cost
Cub and mapping M is complete, it is the
best mapping. Then the upper-bound cost
is updated Cub := C, and the best mapping
is updated Mbest := M .

(c) When cost C is less than upper-bound
cost Cub and mapping M is incomplete, all
branches under mapping M are going to be
explored. For example, in step 2 in Figure
3, all branches under M are M0 = T0 −
T1 − T2 and M1 = T0 − T1 − T3. Thus,
Search(M0, d+1) and Search(M1, d+1) are
called.

The Cost(M,d) is designed to satisfy that the cost
of an incomplete mapping is always less than or equal
to that of its child branches. Thus, the following rela-
tion must always be satisfied.

Cost(M, d) ≤ Cost(M, d + 1) (1)

When the cost of an incomplete mapping is greater
than upper-bound cost Cub, it is worthless to continue
exploring its child branches. In Figure 3, the searching
tree is pruned at steps 7 and 9.

Cost(M, d): This function evaluates the cost of a
given mapping M .

1. (Initialize a reconfigurable torus.) All wrap-
around channels are set to “enable” in a recon-
figurable torus T .

2. (Detect cycles.) The Cycle Detect(M,T) stated
below is called to check whether mapping M is
cycle-free on reconfigurable torus T . When at
least one cycle is detected, the wrap-around chan-
nels that cause cycles are disabled (reconfigurable
torus T is updated). The Cycle Detect(M,T) is
then called again.

3. (Calculate cost.) The cost C of mapping M is
calculated with the following equation:

C =
n−1∑
s=0

n−1∑

d=0

H(s,d) ×D(s,d) (2)

, where n is the number of nodes, D(s,d) is the
total amount of communication data from task
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Figure 4: Bitmaps of each direction (x+, x−, y+, y−).

Ts to Td, and H(s,d) is the path hop count from
task Ts to Td on reconfigurable torus T .

When both tasks Ts and Td are fixed in mapping
M , H(s,d) is simply calculated by dimension-order
routing. On the other hand, when both tasks Ts

and Td are not fixed, the minimal hop count is
estimated assuming that both tasks are placed on
the nearest nodes where tasks are not yet placed.
In the latter case, H(s,d) is often equal to one.

Since the cost is calculated with Equation 2, pairs
of tasks that transfer a large amount of data are placed
so that their distances are the shortest. Using this cost
function, tasks are placed so as to maximize the num-
ber of enabled wrap-around channels without causing
performance degradation.

When both tasks Ts and Td are not placed in map-
ping M , the minimal hop count is estimated assuming
the best case. Thus, the cost of an incomplete map-
ping that includes tasks not yet placed is less than or
equal to that of its child branches. This cost function
is consistent with Relation 1.

Cycle Detect(M,T): This confirms whether map-
ping M is cycle-free on reconfigurable torus T .

1. (Initialize bitmaps.) A bitmap of all nodes is
allocated for each direction (x+, x−, y+, y−) as
shown in Figure 4.

2. (Route paths.) For each pair of source task Ts

and destination task Td:

(a) When D(s,d) is equal to zero, or both Ts and
Td are not placed yet, return to 2.

(b) A path from task Ts to Td is calculated by
dimension-order routing on reconfigurable
torus T . The path is denoted as P(s,d). For
example, P(4,14) = {N4, N5, N6, N10, N14}.

(c) From path P(s,d), a source node, a destina-
tion node, and turning nodes that change
the traveling direction are removed. For
P(4,14), source node N4, destination node
N14, and turning node N6 are removed.
Thus, P ′(4,14) = {N5, N10}.



(d) For each node in P ′(s,d), the corresponding
node is marked on the bitmap of its traveling
direction. In the case of P ′(4,14), node N5 is
marked on the x+ bitmap and N6 is marked
on the y+ bitmap (Figure 4).

3. (Detect cycles.) For each ring in reconfigurable
torus T :

(a) When all nodes on a ring are not marked,
a cycle is not formed on the ring. We con-
firmed this with the following Theorem and
Proof. In Figure 4, cycles are formed at ring
Rx−

15 and Ry−
13 .

4. (Judge.) When no cycle is formed on all rings in
reconfigurable torus T , mapping M is deadlock-
free on reconfigurable torus T .

Theorem When all nodes on a ring are not marked,
a cycle is not formed on the ring.

Proof The Theorem noted above is proved with ring
Rx+

i . It can also be proved with other rings in the same
way. A source node, a destination node, and turning
nodes are not marked in the bitmaps. Thus, when node
Ni is marked on the x+ bitmap, there is at least one
packet that occupies the x− channel of Ni until the x+
channel of Ni is released. When all nodes on the ring
are not marked, there is at least one channel in which
no packet is waiting for its release. A cycle on the ring
is broken by such channels. Thus, when all nodes on a
ring are not marked, no cycle is formed on the ring.

3.3 The Case of Dynamic Traffic

It is possible that only a part of communication
patterns cannot be known in the early stage of the sys-
tem design. In such a case, the application contains
unpredictable dynamic traffic that may form cyclic de-
pendencies leading to deadlocks in our strategy.

We apply the simple concept to avoid deadlocks
in the case of including the dynamic traffic as follows:
an intermediate node temporarily stores packets to a
certain destination node on its local memory, and rein-
jects them to their destination, as briefly introduced
in Section 2[5]. Since the packet is once stored at an
intermediate node, there is no cyclic dependency be-
tween before and after the intermediate node.

This concept introduces relatively large delay at
this intermediate node in the area of NoCs that pro-
vide quite small delay on links and routers. More-
over, a large volume of dynamic traffic increases the
interconnection latency and reduces the throughput,
because an intermediate node cannot send or receive
packets when its buffer is filled with dynamic packets
waiting for their reinjection. In order to decrease the

number of store-and-reinjetcted packets, we extend the
proposed method for the case of mixing the static and
dynamic traffic as follows:

1. The task mapping method shown in the previ-
ous subsection is applied only for the static traf-
fic, which can be completely pre-analyzed. Cyclic
channel dependencies on such static traffic can be
cut by making at least one non-static-traffic chan-
nel on every ring.

2. Step (1) guarantees that only dynamic traffic will
go through the non-static-traffic channel. Thus,
in order to cut the cyclic channel dependency on
the dynamic traffic, a node connected to the chan-
nel performs store-and-reinjection only for the dy-
namic traffic that will go through the channel.

All nodes are potentially expected to provide a
buffer enough for packetization and de-packetization.
Since this buffer can be used to temporarily storing
the dynamic traffic, all nodes that have enough buffer
can become an intermediate node without additional
hardware resources.

4 Evaluation

4.1 Hardware Amount

We compare the hardware amount of routers for
reconfigurable tori, conventional meshes and tori.

We implemented a five-port 32-bit wormhole
router. In this design, the number of virtual chan-
nels is configurable among the two virtual channels
(v2), three virtual channels (v3), and no virtual chan-
nel (v1). The router with virtual channels (v2 and
v3) has four pipeline stages that consist of a routing
computation, virtual-channel allocation, crossbar allo-
cation, and crossbar traversal, while the v1 router does
not have the virtual-channel allocation stage. Each
pipeline stage has a buffer for storing a 1-flit.

We synthesized the following five router designs:
DOR+v1 is a router dedicated to dimension-order
routing on 2-D meshes, so it does not have any virtual
channels; DOR+v1+R is a router for dimension-
order routing on 2-D reconfigurable tori; CxN+v1
is a router that has routing tables and it does not
have any virtual channels; DOR+v2 is a router for
dimension-order routing on 2-D tori, so two virtual
channels are equipped; CxN+v2 has routing tables
with two virtual channels.

Figure 5 shows synthesis results of these five de-
signs under a 0.18µm standard cell library. To clearly
show the cost of a virtual-channel mechanism, we focus
on DOR+v1 and DOR+v2. As shown in the graph,
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Figure 5: Hardware amount of v1 and v2 routers.

the DOR+v2 router consumes twice the larger area
as that of DOR+v1. This is because the v2 routers
have an additional pipeline stage for virtual-channel
allocation, and they also need two sets of buffer for
each virtual channel. Hence, the cost to newly add a
virtual-channel mechanism is significant for the simple
NoC routers that do not have virtual channels.

We shift to focus on the hardware amount of a
reconfigurable-torus router. As shown in the graph,
the size of DOR+v1+R router is decreased to 52.4%
of DOR+v2 router. The main difference between
DOR+v1 router and DOR+v1+R router is that each
port in DOR+v1+R router is configurable in either
torus mode (using a wrap-around channel) or mesh
mode (not using a wrap-around channel). Although
each port in DOR+v1+R router needs a 1-bit reg-
ister to store this configuration, the additional cost
is relatively small and in actuality, the total size of
DOR+v1+R router increases only 4.3% when com-
pared with DOR+v1 router.

4.2 Throughput

Throughput of the following three network archi-
tectures are compared: Mesh+v1 is a 2-D mesh in
which all routers do not require any virtual channels;
Torus+v2 is a 2-D torus and its routers have two vir-
tual channels for deadlock-freedom; RTorus+v1 is a
2-D reconfigurable torus without virtual channels.

4.2.1 Simulation Environments

A flit-level simulator written in C++ was devel-
oped for confirming deadlock-freedom and measuring
throughput. We employ Mesh+v1, Torus+v2, and
RTorus+v1 as network architectures. Every router
has five ports; a port is connected to a single IP core,
and the remaining ports are connected to neighboring
routers. Wormhole switching is used in these routers.
A simple model consisting of input buffers, a crossbar,
and crossbar controllers is used for the switching fab-
ric in the router. A header flit requires at least three
clock cycles to be transferred to the next router or
core; one cycle for the routing decision, one cycle for

transferring a flit from an input channel to an output
channel through a crossbar, and the remaining cycle
for transferring the flit to the next router or host. We
set packet length for 16 flits including one header flit.

We use NAS Parallel Benchmark (NPB) pro-
grams as the traffic patterns in this simulation. The
NPB programs enable us to evaluate our mapping
strategy with various traffic patterns on various sizes
of NoCs. Also, their traffic includes similar access pat-
terns (fork/join) to stream processing. We selected five
matrix computation programs: BT, CG, IS, MG, and
SP. The class of problem is “W”, and the numbers of
nodes for solving the problems are 9, 16, 32, 36, and
64. We use 17 application traces for this evaluation.

For RTorus+v1, the proposed mapping strategy is
fully applied to place tasks without introducing dead-
locks. For Mesh+v1 and Torus+v2, their task map-
pings are calculated so that pairs of tasks that transfer
a large amount of data are placed near each other by
using Equation 2. In this evaluation, mapping calcu-
lation time is equally limited to at most 60 minutes in
every network for fair comparison.

In addition, our strategy is evaluated in the en-
vironments where 30% of packets are randomly gen-
erated as dynamic traffic. The results are denoted as
RTorus+v1+d. RTorus+v1+d and RTorus+v1 are
compared in the end of Section 4.2.2.

4.2.2 Simulation Results

Figure 6-9 show the accepted traffic versus the latency
with BT traffic of 9-, 16-, 36-, and 64-node NoCs, re-
spectively. The average hop counts on these mappings
are also shown in the parenthesis. In the 9-node NoC
case, the proposed mapper successfully assigns tasks
onto a reconfigurable torus with all wrap-around chan-
nels enabled, and the throughput of RTorus+v1 is the
same as that of Torus+v2. The same results are shown
in 16- and 64-node cases. Whereas in the 36-node
NoC, 12 of the 24 unidirectional wrap-around chan-
nels are prohibited in RTorus+v1, and its average hop
count becomes longer than that of Torus+v2. Note
that the throughput of RTorus+v1 still outperforms
that of Mesh+v1. Since both SP and BT are based on
similar algorithms, their communication patterns are
alike, and the results of SP are similar to those of the
BT program as shown in Figure 10-13.

Figure 20-22 show the results on IS traffic. The IS
traffic is dominated by all-to-all communications. In
the 64-node NoC case, all the wrap-around channels
are disabled in RTorus+v1, and so the performance of
RTorus+v1 is the same as that of Mesh+v1. In the 16-
node case, all wrap-around channels can be exploited
on RTorus+v1, even though all-to-all communication
is used. This is because wrap-around channels can
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Figure 14: cg.w.16

be used only for one-hop-per-dimension packets in the
case of 16-node tori, which introduce no deadlock.

The throughput on a 2-D reconfigurable-torus
router achieves almost the same performance as that
of a virtual-channel router on tori in ten of the 17 ap-
plication traces. Target applications are often fixed in
NoCs mostly for embedded applications. By carefully
assigning tasks onto a reconfigurable torus using the
proposed mapping strategy, the performance that goes
near torus can be achieved with the cheap NoC routers
in which all virtual-channel mechanism is omitted.

Finally, we show that our strategy can be used
with unpredictable dynamic traffic. The differences
between the results of RTorus+v1 and RTorus+v1+d
(30% of packets are dynamic) vary depending on each
application. For BT and SP traffic, the impact of the
dynamic traffic is slight, because the number of packets
reinjected at intermediate nodes is limited due to their
small average hop counts. On the other hand, since
the store-and-reinjection is frequently involved in IS
programs, their performance is seriously reduced for

the reason stated in Section 2. Although the task flow
can be pre-analyzed in most of stream applications as
illustrated in Figure 1, our strategy can be used for
the case of mixing the static and dynamic traffic.

5 Conclusions

A scheme for removing a virtual-channel mech-
anism from dimension-ordered routers on tori is pro-
posed by, 1) a reconfigurable torus in which each wrap-
around channel can be dynamically enabled and dis-
abled in each router, and 2) a task mapping strat-
egy that analyzes the communication pattern and as-
signs tasks onto a reconfigurable torus so that as many
wrap-around channels as possible are exploited with-
out introducing deadlocks and performance degrada-
tion. Additionally, in the case of unpredictable dy-
namic traffic, we apply a simple mechanism to avoid
their cyclic dependencies.

Through the area estimation of various routers, a
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reconfigurable-torus router without any virtual chan-
nels can be implemented with a 52.4% area of a con-
ventional router providing two virtual channels. On
the other hand, a reconfigurable torus with the pro-
posed task mapping strategy achieves almost the same
performance as that on a virtual-channel router on a
conventional torus in ten of the 17 application traces.
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