
MultiMQC: A Multilevel Message Queuing Cache
Combining In-NIC and In-Kernel Memories

Koya Mitsuzuka, Yuta Tokusashi, and Hiroki Matsutani
Dept. of ICS, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan 223-8522

Email: {koya,tokusasi,matutani}@arc.ics.keio.ac.jp

Abstract—Message queuing systems that deliver messages from
publishers to subscribers play an important role to collect data
from IoT devices. Traditional message queuing systems have
improved their performance in the context of transferring log
data from publishers such as Web servers to subscribers that
analyze the log data. In this case, both publishers and subscribers
have been assumed to have enough buffer capacity and can
transfer data as jumbo frame packets for high efficiency. In recent
IoT applications, however, publishers are small sensors or edge
devices with low-power processors and limited memory capacity.
Vast numbers of such publishers produce relatively small packets.
Such a lot of small messages significantly decrease the efficiency
of conventional message queuing systems. To address this issue, a
dedicated message queuing logic can be implemented on FPGA-
based network interface card (FPGA NIC). However, a serious
issue of such in-NIC approach is a limited memory capacity on
the FPGA NIC. To handle message overflow of the in-NIC cache,
in this paper, it is combined with a large in-kernel software cache.
More specifically, we propose a multilevel message queuing cache
combining in-NIC and in-kernel memories, called MultiMQC.
The multilevel cache improves the read performance. Regarding
the write performance, MultiMQC introduces a batch transfer
that packs small incoming messages into a single batch. We
implemented MultiMQC using NetFPGA-SUME board as in-
NIC cache and Linux Netfilter framework as in-kernel cache.
The experimental results demonstrate that the write throughput
is increased in proportion to the batch size. When pull requests
hit in the in-NIC cache, the read throughput reaches 95.8% of
10GbE line rate in four 10GbE interfaces.

I. INTRODUCTION

Utilizing big data collected from vast numbers of IoT (Inter-
net of Things) devices will make positive impacts on our soci-
ety. Because these IoT devices transmit a lot of small messages
to datacenters, their communication imposes a significant
impact on the datacenters. Message queuing systems have been
used as an infrastructure for loosely-coupled asynchronous
communications between publishers and subscribers. That
is, their communications are decoupled for higher flexibility
and efficiency. For example, AWS (Amazon Web Services)
provides sophisticated message queuing services as a part of
AWS IoT [1].

Traditional message queuing systems have improved their
performance in the context of transferring log data from
publishers such as Web servers to subscribers that analyze
the log data. In this case, both publishers and subscribers
have been assumed to have enough buffer capacity and can
transfer data as jumbo frame packets for high efficiency.
In recent IoT applications, however, publishers are small
sensor or edge devices with low-power processors and limited
memory capacity. Vast numbers of such publishers produce
small packets, which significantly decrease the efficiency of
conventional message queuing systems.

To address this issue, in this paper, first, we propose a dedi-
cated message queuing cache implemented on an FPGA-based
network interface card (FPGA NIC). This approach is referred
as in-NIC cache. However, a serious issue of the in-NIC cache
approach is a limited DRAM capacity on the FPGA board,
because its small cache capacity causes cache misses for read
requests from subscribers. To improve the cache hit rate, in
this paper, the in-NIC cache is complemented by a software
cache working at Linux kernel space, referred as in-kernel
cache. More specifically, we propose a multilevel message
queuing cache combining in-NIC and in-kernel memories,
called MultiMQC. This multilevel cache improves the read
performance of message queuing systems. Regarding the write
performance, MultiMQC introduces a batch transfer that packs
multiple incoming messages from publishers into a single
batch to reduce the number of write operations. In the batch
transfer, messages waiting for the batch write operation can
be read by subscribers so that latency overhead for the batch
transfer can be hidden. We implemented MultiMQC using
NetFPGA-SUME board as in-NIC cache and Linux Netfilter
framework as in-kernel cache. MultiMQC provides the similar
APIs as the original message queuing middleware; in other
words it is transparent to publishers and subscribers, while it
can improve the message queuing latency and throughput.

The rest of this paper is organized as follows. Section II
surveys message queuing systems and related work. Section
III proposes MultiMQC and Section IV illustrates the imple-
mentation. Section V evaluates it in terms of read and write
performance and Section VI concludes this paper.

II. BACKGROUND

A. Message Queuing Systems
Major message queuing systems, such as Apache ActiveMQ

[2], employ Advanced Message Queuing Protocol (AMQP)
for high reliability. RabbitMQ [3] is a lightweight message
queuing system using AMQP. The reliability can be improved
by introducing some advanced data cleansing techniques.
Apache Kafka [4] is widely used as an efficient message
queuing system. It does not employ AMQP in order to improve
the efficiency. Although in this paper we assume a Kafka-like
system that prioritizes the efficiency as a baseline message
queuing system, our MultiMQC can be applied to more
reliable message queuing systems by modifying the in-NIC
and in-kernel caches to comply with reliable protocols, such
as AMQP.

B. Online and Offline Subscribers
Subscribers receive interested messages via a message queu-

ing system and use them for various purposes. For example,

Fig. 1. Publishers, message queueing system, and subscribers

they can monitor messages to detect outliers and alert the
anomalies. Also they can perform statistical analysis or data
mining on the messages. The former application (referred
as online subscriber) imposes a severe latency requirement.
Regarding the latter application (referred as offline subscriber),
although the latency requirement is not severe, high-volume
data from a lot of IoT devices will be kept in the message
queuing system for a certain time, requiring a large capacity
for the storage.

C. Message Queuing for IoT Applications
As shown in Figure 1, publishers such as IoT devices pub-

lish messages to a message queuing system. The messages are
read from the message queuing system by subscribers such as
data analysis processes. Although their message format varies
depending on applications, the messages typically include
publisher ID, timestamp, and the value. The value size is quite
short in the case of sensor nodes that periodically transmit
sensor data. It also tends to be short for resource-limited
IoT devices that cannot accumulate data or when immediate
responses are required with respect to their data. As shown
in Figure 1, although each IoT device produces a low-volume
packet stream, the message queuing system receives a high-
volume stream from a lot of publishers. Such a communication
pattern imposes a significant impact on the typical software-
based message queuing system running with standard network
protocol stack.

Typical message queuing systems are quite simple; their
major functions are temporary message buffering and message
transfer. In the proposed MultiMQC, these functions are
optimized under the following assumptions.

Append-Only Write: Unlike most database systems, pub-
lished messages are never modified. More precisely, instead
of updating an already-published message, its new version is
appended to the message queue. Thus, messages are written in
a sequential and append-only manner in the message queuing
systems.

Usually Read-Once: Basically, after a subscriber receives
a message, the message is no longer requested again unless
some failures or rollbacks occur. Please note that a long term
buffering is necessary for offline subscribers for statistical
analysis or data mining, but most subscribers consume mes-
sages in a certain time period and do not request the same
messages again. Especially, subscribers for realtime applica-
tions tend to consume the latest message as soon as possible.
We thus design MultiMQC to store fresh messages in fast and

Fig. 2. In-NIC batch processing for incoming messages

small in-NIC cache for low-latency and volume of messages
in large in-kernel cache for favorable cost-performance.

D. Network Application Accelerations
Performance of network applications is often limited by

packet processing overheads of NIC and kernel network pro-
tocol stack. For example, memcached application is reported
that processing time for NIC and kernel network protocol stack
is longer than that for the software [5]. Various approaches
have been studied to overcome the inefficiency of the conven-
tional network protocol stack. One approach is to modify the
operating system to mitigate the overheads [6][7]. Another
approach is the kernel bypassing that mitigates the packet
processing overheads by bypassing the network protocol stack
[8][9]. In this case, applications are required to use dedicated
APIs or modifications are needed on the network protocol
stack. To avoid the negative impacts of a lot of small packets,
MultiMQC introduces a batch processing using in-NIC and
in-kernel caches, as shown in Figure 2.

Offloading whole or a part of network applications to
FPGA NIC drastically improves the packet processing effi-
ciency. For example, a standalone memcached appliance is
implemented in an FPGA NIC for high throughput and high
energy-efficiency [10]. This is referred as an in-NIC approach.
However, it suffers a limited DRAM capacity on the FPGA
board. Also, implementing whole or a part of applications to
an FPGA requires a high design cost. To address this issue, a
multilevel cache combining in-NIC and in-kernel approaches
is proposed for NoSQL data stores [11]. Different from the
standalone approach, the cache approach is transparent to
existing message queuing software. In this paper, we apply
the multilevel cache approach to message queuing for high
efficiency without modifying the existing message queuing
software. The proposed multilevel approach can strike a good
balance between the latency for online subscribers and the
capacity for offline subscribers.

III. MULTIMQC DESIGN

A. Multilevel Organization
The proposed MultiMQC combines in-NIC cache and in-

kernel cache. In general it consists of n cache layers. For
example, the prototype system implemented in Section IV
consists of three cache layers: two layers in NIC and one
layer in kernel space (please see Table I). They are denoted
as layer-1, layer-2, and layer-3. Figure 3 shows a general
structure of MultiMQC that has three cache layers. Please note
that MultiMQC works as a multilevel cache for an original
message queuing middleware (e.g., Apache Kafka) running on
user space. In this paper, it is denoted as layer-4 or last-level

Fig. 3. MultiMQC general structure

Fig. 4. Logical and physical storage layout in MultiMQC

cache. In addition, application-specific logic for serialization
and de-serialization can be implemented in the FPGA NIC as
Input Function and Output Function.

MultiMQC employs a simple storage layout like Apache
Kafka [4]. Messages are classified into particular topics or
types, each of which is corresponding to a logical log. Mes-
sages are sequentially stored in the corresponding logical log.
Each message is addressed by its offset in the logical log,
as shown in the upper part of Figure 4. Storages typically
have a trade-off between performance and cost per capacity,
e.g., capacity is limited in a faster storage. To strike a balance
between low latency and cost efficiency, the log is physically
stored in multilevel storages, as shown in the lower part of
Figure 4.

B. Write Operation by Publishers
Publishers such as IoT devices publish messages to message

queuing system. When a published message arrives at Multi-
MQC, it is stored in the fastest layer-1 cache (i.e., BRAMs
in the FPGA) and then it becomes available for subscribers.
A ring buffer is implemented on each cache layer. The oldest
messages in layer-i will be overwritten when new messages
arrive, depending on the new messages size. Please note that
they are asynchronously copied to the layer-(i+1) cache before
they are overwritten.

Although write latency in a higher-layer cache is typically
higher than that of a lower-layer cache, it can be mitigated
by the lower cache layers. Also, capacity of a higher-layer
cache is larger than that of a lower-layer cache; thus messages
in higher cache layers have a long lifetime (e.g., weeks or
months depending on the capacity). The last-level will be
a mass storage device attached to host machines with some

Fig. 5. Example behavior between two layers

Fig. 6. Relationship between storage parameters and acceptable latency

sophisticated data management techniques (e.g., RAID, page
cache, anti-caching [12]).

Figure 5 illustrates an example of lifetime of a message on
two cache layers with some performance assumption. Here, the
latency is defined as the largest time until a message becomes
ready to be read by subscribers after a push request of the
message arrives at the NIC. The capacity is the size of ring
buffer on each layer and it defines how long a message can
reside in the layer. For example, assuming the capacity of
layer-i cache is 1GB and write throughput is 100MBps, a
message will be overwritten in 10 seconds. Before the message
is overwritten, it is transferred to layer-(i+ 1) cache and gets
ready to be read by then. Subscribers can read messages from
the lowest layer in which the target messages are alive. The
write latency to layer-(i + 1) does not affect the subscribers
because layer-i keeps the messages while writing them to
layer-(i+ 1).

To minimize the overall latency, latency of layer-(i+1) must
be small enough by considering the capacity of layer-i. Figure
6 illustrates how to calculate the maximum acceptable latency
of layer-(i+1) to compensate for the capacity of layer-i, based
on Equation (1).

Latency <
Capacity − (Batch Size + Overlap Size)

Write Throughput
(1)

Messages are transferred to the next cache layer in a batch
manner to improve write throughput. The batch size can be
tuned by users. In general, a larger batch size improves the
throughput. The overlap size in Equation (1) is defined as the
smallest overlap size between layer-i and layer-(i+1) caches.
It is set to the same as the MTU (Maximum Transmission
Unit) which is approximately 1500 Bytes in Ethernet. In this
case, any 1500-Byte ranges reside in either layer-i cache or
layer-(i+1) cache when they are cached. If the overlap size is
smaller than MTU, requested messages packed in the same
packet may span multiple cache layers, which makes the
control complicated. Message transfer from layer-i to layer-
(i+1) should be completed before the remaining capacity of
layer-i is used up. Assuming that a publisher’s throughput is
100MBps, the layer-1 cache capacity is 1 MBytes, and the
batch size is 512 Bytes, the acceptable latency for the layer-
2 cache is (1,000,000−(1500+512))

100,000,000 = 9.98ms. Please note that

such milliseconds-order latency is large enough for the layer-
2 cache (i.e., DRAMs on the FPGA board). Those for higher
layers will be seconds-order or longer.

C. Read Operation by Subscribers
Subscribers such as data analysis processes subscribe mes-

sages in message queuing system. In MultiMQC, they can
read messages from any cache layers of MultiMQC. If the
range of a pull request is fit in the lowest layer-i cache,
requested messages are read from layer-i cache and the reply
is sent back to the subscribers. Otherwise, the request is
passed to the next layer-(i+1) cache. As long as subscribers
continuously consume messages under a condition that the
lower-level caches keep all the necessary messages, they can
enjoy benefit of faster storages (e.g., BRAMs in FPGA or
DRAMs on the FPGA board). In other words, the performance
is maximized when subscribers continuously read messages by
a certain deadline in order to achieve a minimum gap between
data generation and processing. When a subscriber does not
require low latency for offline applications, messages may be
kept in MultiMQC for a long time. Similarly, when some
failures occur or more accurate results are requested, rollback
or rereading will be needed, which also demand a long term
preservation by higher-level caches.

D. Input and Output Functions
MultiMQC provides Input and Output Functions as shown

in Figure 3. In MultiMQC, messages are stored in the same
format in all the cache layers and they are addressed by their
logical offset. Input Function serializes incoming messages
so that they can be placed in the correct offset in the layer-
1 cache (i.e., in-NIC BRAM cache). Additional serialization
is not needed for data transfer from layer-1 cache to higher-
layer caches, because messages are already serialized by Input
Function. Because the data format is common in all the layers,
subscribers do not have to care which layer the requested
message are read from.

In MultiMQC, user-specific Output Functions can be de-
fined. Before a reply is sent back to subscribers, application-
specific processing (e.g., extraction and transformation) can
be executed on the reply messages. It can be implemented
on the FPGA part of in-NIC cache, which is often used for
accelerator for stream processing, as shown in Figure 3.

E. Transparency
Each cache layer in MultiMQC provides a common in-

terface for transparency. We can customize structure of the
multilevel cache, depending on a given hardware environment.
For example, if an in-kernel cache is not available, the in-
kernel cache layer can be removed without any changes on
in-NIC cache and the original message queuing middleware.
On the other hand, when a new storage is available as a part
of multilevel cache, the new cache layer can be inserted to
improve the cache hit rate and throughput.

To support the above-mentioned transparency, each cache
layer should provide the following functions.

• Write function to extract payload of a given push request
packet and write it to its storage

• Transfer function to transfer messages to the next layer
cache

Fig. 7. Packet formats

Fig. 8. FPGA modules overview

• Read function to read requested messages from its storage
and generates a reply if it caches the requested messages

• Forward function to pass a pull request to the next layer
otherwise

The original message queuing middleware is regarded as the
last-level cache. It is running as a user-space software and
can provide additional functions, such as partitioning and
consensus functions supported in advanced message queuing
middleware. Also, it can work with sophisticated storage
options, such as page cache and anti-caching [12].

IV. PROTOTYPE IMPLEMENTATION

As a prototype implementation of MultiMQC, the proposed
multilevel cache is organized as shown in Table I.

TABLE I
CACHE LAYERS

i Layer Location Storage
1 In-NIC BRAM layer FPGA NIC BRAM (131KB)
2 In-NIC DRAM layer FPGA NIC DRAM (8GB)
3 In-kernel layer Host machine Memory (kernel space)
4 MQ middleware layer Host machine HDD

A. Message Queuing Protocol
We implement a message queuing protocol using UDP for

simplicity 1. Figure 7 shows the packet formats. UDP payload
of a push request includes messages to be written. A pull
request includes two values: start offset and length in Bytes.
UDP payload of a pull reply includes the messages requested.

B. In-NIC Cache
We employ NetFPGA-SUME board as an FPGA NIC

that has four 10GbE interfaces and two 4GB DRAMs. We
1Although we assumed UDP as a transport layer protocol for simplicity, our

concept can be extended to TCP by combining with commercially or freely
available FPGA-based 10Gbps TCP cores, such as [13].

Fig. 9. MultiMQC Core overview

implement the first and second storage layers on the NIC
by extending NetFPGA-SUME Reference Switch Lite design
[14]. As shown in Figure 8, packets from remote machines via
four 10GbE interfaces (MAC RX0-RX3) and host machine via
PCIe (PCIe DMA) are merged into a single packet stream by
Input Arbiter module. Output Port Lookup module selects the
output port for each incoming packet and adds the routing
information. According to the information, Output Queues
module delivers the packets to one of the four 10GbE inter-
faces (MAC TX0-TX3) or the host machine via PCIe (PCIe
DMA). The proposed MultiMQC Core module is inserted
between Output Port Lookup and Output Queues modules.
A packet stream goes through the NIC in 32 Bytes per cycle
to comply with AXI (Advanced eXtensible Interface) bus of
the Reference Switch Lite.

Figure 9 shows MultiMQC Core module overview. When
a packet comes, it is classified into three packet types (push
request, pull request, and others) by Packet Classifier module.
Packets destined to a specific port number (e.g., 19999) are
classified as “push request” and forwarded to Push Controller
module. Those to another specific port number (e.g., 19998)
are classified as “pull request”. If the requested range of
messages is within in-NIC BRAM cache, it is treated as
BRAM pull request and forwarded to BRAM Pull Controller
module. If the requested range is not fit within the BRAMs
but fit into in-NIC DRAM cache, it is treated as DRAM
pull request and forwarded to DRAM Pull Controller module.
Otherwise, the request is passed to Others FIFO module so that
it is forwarded to the in-kernel cache on the host machine.
Packets that are not push nor pull requests are classified as
“others” and passed to Others FIFO module. Packet streams
from Push Controller, BRAM and DRAM Pull Controllers,
and Others FIFO are arbitrated by Packet Arbiter module and
merged into a single input stream for Arbitrated FIFO. Then
packets in Arbitrated FIFO are asynchronously passed to the
original L2 module (i.e., Output Queues).

1) Push Controller: Figure 10 illustrates the packet pro-
cessing flow of Push Controller module. This module has
four functions: 1) Input Function, 2) Write function to the in-
NIC BRAM cache, 3) Transfer function to the in-NIC DRAM
cache, and 4) Transfer function to the in-kernel cache. Input
Function is currently implemented as a simple serializer but
user-specific data transformation can be implemented as Input
Function. When a packet arrives at this module, the UDP
length field is checked and the payload part is written to

Fig. 10. Push Controller overview

Serialize Buffer.
In MultiMQC, as explained in Section III-B, messages are

written to layer-i cache, and they are transferred to layer-
(i + 1) cache before they are overwritten in layer-i. This
basic behavior introduces write and read operations to layer-i
cache at the same time. To reduce read accesses on BRAMs
and DRAMs, our prototype implementation employs more
optimized approach. That is, messages in the Serialize Buffer
are transferred to in-NIC BRAM cache, in-NIC DRAM cache,
and in-kernel cache at the same time.

The AXI bus transfers 32 Bytes per cycle. The following
steps are performed in parallel for each of 32 Bytes in Serialize
Buffer.

• Data transfer to in-NIC BRAM cache: The 32 Bytes are
copied to BRAMs and BRAM Pointer is incremented.

• Data transfer to in-NIC DRAM cache: DRAM read and
write are performed in 64 Bytes. The 32 Bytes are copied
to 64-Byte DRAM Buffer. After the 64-Byte DRAM
Buffer is filled, the 64 Bytes are copied to DRAMs and
DRAM Pointer is incremented.

• Data transfer to in-kernel cache: Data transfer from in-
NIC cache to in-kernel cache is done by the predeter-
mined batch size. The 32 Bytes are copied to Passing
FIFO. After the messages in Passing FIFO reaches the
batch size, a push request from Passing FIFO to in-
kernel cache is generated. The request is passed to Output
FIFO and when the Push Controller module wins the
arbitration, it is passed to Arbitrated FIFO in Figure 9.

• Data shift in Serialize Buffer: Serialize Buffer is right-
shifted by 32 Bytes to remove written contents and make
a space for the next 32 Bytes. Serialize Buffer Pointer is
subtracted by 32 accordingly.

The batch size for the in-kernel cache is stored in a register
in the FPGA and configured by the host machine via PCIe.

2) Pull Controller: Figure 11 illustrates the packet pro-
cessing flow of BRAM Pull Controller module. When a pull
request packet arrives at this module, its payload is extracted to
check the requested range. As shown in Figure 7, a pull request
has two parameters: start offset and length. The requested
range in the BRAMs is calculated by these parameters. If the
requested range is within the BRAMs, the requested messages
are read from the BRAMs and a reply is generated. The reply
is passed to Output FIFO and when the BRAM Pull Controller

Fig. 11. BRAM Pull Controller overview

module wins the arbitration, it is passed to Arbitrated FIFO
in Figure 9. If the requested range exceeds the BRAMs, the
pull request is forwarded to DRAM Pull Controller module.

DRAM Pull Controller module is in charge of read from
in-NIC DRAM cache. The behavior is similar to BRAM Pull
Controller module. If the requested range exceeds the DRAMs,
the pull request is forwarded to the host machine.

3) Storages: BRAMs in the FPGA are used as in-NIC
BRAM cache that has two read/write ports. One port is used
for Push Controller’s write and another port is used for BRAM
Pull Controller’s read. Data width is 32 Bytes so that it can
transfer 32 Bytes per cycle, same as AXI bus of Reference
Switch Lite. The BRAM capacity is set to 131KB and the
address width is 12 bits. The operating frequency is 200MHz.

DRAMs on NetFPGA-SUME board are controlled with an
IP generated by Xilinx MIG (Memory Interface Generator)
[15]. The operating frequency of interface logic of the IP is
set to 200MHz, which is 1/4 of the physical interface running
at 800MHz. The number of banks is eight and ordering option
is set to NORMAL. Data width is 64 Bytes. DRAM Manager
module provides a read and a write interface for the packet
control logic. DRAM Manager module serializes the read and
write requests based on a round robin manner.

C. In-Kernel Cache

To implement the in-kernel cache, we employ Netfilter
framework provided by Linux. The in-kernel cache can be
implemented as NIC driver too, but we employ the Netfilter
framework, because Netfilter modules can be implemented as
kernel modules which are independent of target NICs. When
the kernel module is installed, a certain size of memory is
allocated to be used as a ring buffer as the in-kernel cache.
The memory allocation size can be changed depending on
total memory size available in the host machine (e.g., 500GB
in [16]). The in-kernel cache is registered as a hook function
of PREROUTING property in the Netfilter framework.

When a packet destined to a specific port number (e.g.,
19999) arrives, it is detected as a push request and its payload
is written to the ring buffer. After accumulated messages in the
ring buffer become more than the batch size, a push request
for the next layer (e.g., message queuing middleware layer)
is generated and sent. The batch size of the in-kernel cache

can be larger than Ethernet MTU, because this request does
not go through physical layer nor data link layer of TCP/IP
stack. When a packet destined to another specific port number
(e.g., 19998) arrives, it is detected as a pull request and the
requested range is calculated based on its payload. If the range
is within the in-kernel cache, the reply is generated and sent
back to subscribers. Otherwise the request is forwarded to the
message queuing middleware via Linux network protocol stack
as a regular packet.

D. Message Queuing Middleware
We implement the last-level cache or message queuing

middleware as a simple UDP server process. For publication,
a process listening to port 19999 receives push requests and
writes their payload to a file. For subscription, another process
listening to port 19998 receives pull requests and sends back
the replies after reading requested messages from the file. To
improve the throughput, we use recvmmsg() system call to
receive the requests and sendmmsg() to send back the replies.

V. EVALUATIONS

We evaluate the performance of MultiMQC using a 10GbE
hardware packet generator [17]. Although some in-memory
technologies (e.g., anti-caching [12]) can be used for the last-
level message queuing software, we simply use tmpfs as a
RAM disk for storing the messages in the last-level.

A. Write Performance
To evaluate the write performance of each layer, we built a

packet generator to send push requests via four 10GbE ports.
Figure 12 shows the performance difference between the MQ
middleware layer of MultiMQC and the standalone message
queuing middleware. The batch size when transfering data
from NIC to the host machine is 1472 Bytes, while that trans-
fering from Linux kernel to user space is 32k Bytes. As shown
in Figure 12, write performance is significantly improved by
batch writing of MultiMQC. The effect of MultiMQC on write
performance depends on the request payload size and the batch
size. Regarding the payload size, a larger payload decreases
the improvement. For example, when the payload size is 4
Bytes, MultiMQC improves the write throughput by 183 times,
while when the payload is 32 Bytes the improvement is 51
times. Although a larger payload size improves the effective
throughput, more than 32 Bytes payload size cannot increase
the throughput in the case of MultiMQC. This is because the
last-level cannot keep up with such a high workload and it
becomes a bottleneck. However, even if the payload size is
512 Bytes, MultiMQC improves the write throughput by 3
times.

To evaluate the effect of batch size, we run a similar
evaluations with various batch sizes. First, the batch size when
transfering data from kernel space to user space is fixed at
32k Bytes, and that from NIC to the host machine is varied.
Figure 13 shows the result on each layer. X-axis is the batch
size to transfer data from NIC to host machine. Y-axis is the
written message size per unit time. By increasing the batch
size, the number of packets the host machine receives (i.e.,
packet processing overhead) is reduced and the throughput is
improved. When the workload on the host machine is low
(e.g., 4-Byte payload in Figure 13(a)), the in-kernel cache and

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500

W
ri
te

 T
h
ro

u
g
h
p
u
t
[M

B
p
s
]

Payload Length [Byte]

Standalone MultiMQC

Fig. 12. Write throughput improvement by MultiMQC

the last-level show almost the same performance as the in-
NIC caches by 1472-Byte batch transfer. As the payload size
increases, the host machine cannot keep up with such a high
workload and the performance gap between in-NIC and in-
kernel caches is enlarged.

The evaluation results of various batch sizes from kernel
space to user space are omitted due to the page limitations.

B. Read Performance

Figure 14 shows the read throughput of each layer. We
evaluate three cases where request range is 0-31, 0-511, and
0-1471 Bytes. Similar to the write operation, a larger payload
size improves the effective throughput. Packet processing
overhead varies depending on each layer. The performance gap
becomes large when payload size is small. When the payload
size is 32 Bytes, the read throughput of in-NIC BRAM cache,
in-NIC DRAM cache, and in-kernel cache are improved by
426, 319, and 2.1 times compared to the last-level message
queuing software. When the payload size is 1472 Bytes, both
the BRAM and DRAM cache layers improve the throughput
by 38 times, and in-kernel cache layer improves the throughput
by 2.2 times compared to the last-level. The throughput of both
the BRAM and DRAM cache layers reaches 95.8% of 10GbE
line rate for 1472 Bytes payload in four 10GbE interfaces.

Figure 15 shows the round-trip time (RTT) until a reply
arrives at client NIC after the client NIC transmits a pull
request. As the requested size increases, the cache layers on
NIC take a longer time to read messages. The cache layers
on host machine take almost the same time regardless of the
requested size because of high packet processing overheads
that hide the requested size differences. When the payload
size is 32 Bytes, the BRAM, DRAM, and kernel cache layers
reduce the latency by 82, 73, and 1.7 times compared to the
last-level, respectively. When the payload size is 1472 Bytes,
they achieve 30, 29, and 1.7 times lower latency compared to
the last-level, respectively.

Compared to the write performance, a larger performance
gain is achieved for the read performance of MultiMQC,
because higher-level cache layers do not hold down the gain
by lower-level layers. Please note that the read performance
is improved only when the request hits in the cache. A pull
request will be hit in a cache until the requested messages are
overwritten by newly-pushed messages. The available time is
defined as a time period during a request hits in the cache.
It is calculated by cache capacity and write throughput in the
similar way as the maximum acceptable latency, as shown in

Equation (1). Table II shows example cases to see how long
a message lives in each cache so that the requests for it can
hit. As shown in Table II, the available times of the caches
are relatively long for online subscribers that keep up with the
publication. Regarding offline subscribers, they typically pull
large-sized messages and the throughput tends to be high.

TABLE II
AVAILABLE TIME IN CACHE

Layer Example Write throughput
Capacity 1MBps 100MBps 300MBps

In-NIC BRAM layer 1MB 1 sec 10 msec 3 msec
In-NIC DRAM layer 8GB 133 min 1.3 min 27 sec

In-kernel layer 512GB 142 hour 1.4 hour 28 min

C. Resource Utilization

Table III shows resource utilization of the NIC part of Mul-
tiMQC. The design tool used is Xilinx Vivado Design Suite
2016.4. The target FPGA device is Virtex-7 XC7VX690T. The
target operating frequency is 200MHz. The maximum capacity
of the in-NIC BRAM cache is 4M Bytes by considering the
available BRAM resource in the FPGA device. However, when
the capacity is increased to more than 2M Bytes, the timing
constraint could not be met in our design. For write operation,
the bottleneck tends to be the host machine and performance
overheads by the NIC part can be hidden. Thus, MultiMQC
should be implemented by considering the trade-off between
read performance versus cache available time.

TABLE III
RESOURCE UTILIZATION

BRAM storage Utilization MaxAddress Capacity LUTs BRAMs Frequencywidth
12 131KB 65,760 (15.18%) 346 (23.54%) 200MHz
13 262KB 65,806 (15.19%) 381.5 (25.95%) 200MHz
14 524KB 66,394 (15.33%) 445.5 (30.31%) 200MHz
15 1MB 66,544 (15.36%) 573.5 (39.01%) 200MHz
16 2MB 66,676 (15.39%) 829.5 (56.43%) 168MHz
17 4MB 67,586 (15.60%) 1,341.5 (91.26%) 151MHz

VI. CONCLUSIONS

Traditional message queuing systems are facing a problem
in terms of the efficiency due to a lot of small messages
from IoT devices. Toward a high efficiency even with such
a small packet stream, we proposed MultiMQC that combines
1) the in-NIC and in-kernel multilevel cache to improve
read performance and 2) the batch transfer to improve write
performance. MultiMQC strikes a good balance between cache
capacity and performance by introducing the multilevel lay-
ered cache structure. Evaluation results show that MultiMQC
improves write performance by 51 times for 32 Bytes payload
packets compared to a standalone message queuing software.
MultiMQC also improves the read performance by 426 times
and the read latency by 82 times compared to the message
queuing software if subscribers always read messages when
the messages are alive in the in-NIC cache. When the requests
hit in-NIC cache and the reply payload length is 1472 Bytes,
read throughput reaches 95.8% of 10GbE line rate in four
10GbE interfaces. As a future work, we are planning to extend
MultiMQC to support more reliable protocols, such as AMQP.
We will also evaluate Output Functions implemented on FPGA
NIC to accelerate user-specific computations for subscribers.

(a) 4-Byte payload (b) 8-Byte payload (c) 16-Byte payload

(d) 32-Byte payload (e) 128-Byte payload (f) 512-Byte payload

Fig. 13. Write throughput of each layer

Fig. 14. Read throughput

Fig. 15. Read latency

Acknowledgements This work was supported by JST CREST
Grant Number JPMJCR1785, Japan.

REFERENCES

[1] “IoT Applications & Solutions,” https://aws.amazon.com/iot/.
[2] “The Apache ActiveMQ,” http://activemq.apache.org/.
[3] “RabbitMQ - Messaging that just works,” http://www.rabbitmq.com/.
[4] “The Apache Kafka,” http://kafka.apache.org/.

[5] Mendel Rosenblum, “Low Latency RPC in RAMCloud,”
https://forum.stanford.edu/events/2011/2011slides/plenary/
2011plenaryRosenblum.pdf.

[6] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy, “MegaPipe: A New
Programming Interface for Scalable Network I/O,” in Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation
(OSDI’12), Oct. 2012, pp. 135–148.

[7] K. Yasukata, M. Honda, D. Santry, and L. Eggert, “StackMap: Low-
Latency Networking with the OS Stack and Dedicated NICs,” in
Proceedings of the USENIX Conference on Annual Technical Conference
(ATC’16), Jun. 2016, pp. 43–56.

[8] I. Corporation, “Impressive Packet Processing Performance Enables
Greater Workload Consolidation,” in Intel Solution Brief, 2013.

[9] L. Rizzo, “netmap: a novel framework for fast packet I/O,” in Pro-
ceedings of the USENIX Conference on Annual Technical Conference
(ATC’12), Jun. 2012, pp. 101–112.

[10] S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ranganathan,
and M. Margala, “An FPGA Memcached Appliance,” in Proceedings
of the International Symposium on Field Programmable Gate Arrays
(FPGA’13), Feb. 2013, pp. 245–254.

[11] Y. Tokusashi and H. Matsutani, “Multilevel NoSQL Cache Combining
In-NIC and In-Kernel Approaches,” IEEE Micro, vol. 37, no. 5, pp.
44–51, Oct. 2017.

[12] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. B. Zdonik, “Anti-
caching: A new approach to database management system architecture,”
Proceedings of the VLDB Endowment, vol. 6, pp. 1942–1953, Sep. 2013.

[13] D. Sidler, G. Alonso, M. Blott, K. Karras, K. Vissers, and R. Car-
ley, “Scalable 10Gbps TCP/IP Stack Architecture for Reconfigurable
Hardware,” in Proceedings of the International Symposium on Field-
Programmable Custom Computing Machines (FCCM’15), May 2015,
pp. 36–43.

[14] “The NetFPGA Project,” http://netfpga.org/.
[15] “Memory Interface,” https://japan.xilinx.com/products/

intellectual-property/mig.html.
[16] K. Tamura and H. Matsutani, “An In-Kernel NOSQL Cache for

Range Queries Using FPGA NIC,” in Proceedings of the International
Conference on FPGA Reconfiguration for General-Purpose Computing
(FPGA4GPC’16), May 2016, pp. 13–18.

[17] “OSNT 10G Home,” https://github.com/NetFPGA/OSNT-Public/wiki/
OSNT-10G-Home.

