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PAPER

Proxy Responses by FPGA-Based Switch for MapReduce Stragglers

Koya MITSUZUKA†a), Nonmember, Michihiro KOIBUCHI††, Senior Member, Hideharu AMANO†, Fellow,
and Hiroki MATSUTANI†, Member

SUMMARY In parallel processing applications, a few worker nodes
called “stragglers”, which execute their tasks significantly slower than other
tasks, increase the execution time of the job. In this paper, we propose
a network switch based straggler handling system to mitigate the burden
of the compute nodes. We also propose how to offload detecting strag-
glers and computing their results in the network switch with no additional
communications between worker nodes. We introduce some approximate
techniques for the proxy computation and response at the switch; thus our
switch is called “ApproxSW.” As a result of a simulation experiment, the
proposed approximation based on task similarity achieves the best accu-
racy in terms of quality of generated Map outputs. We also analyze how
to suppress unnecessary proxy computation by the ApproxSW. We imple-
ment ApproxSW on NetFPGA-SUME board that has four 10Gbit Ethernet
(10GbE) interfaces and a Virtex-7 FPGA. Experimental results shows that
the ApproxSW functions do not degrade the original 10GbE switch perfor-
mance.
key words: FPGA, MapReduce, straggler

1. Introduction

As the data sets grow rapidly in size, parallel processing
frameworks such as MapReduce [1] are becoming more im-
portant. MapReduce consists of two types of nodes: worker
nodes (i.e., compute nodes) that perform parallelized tasks
and a master node that manages the entire system including
worker nodes. The parallel processing performance is of-
ten limited by only a few worker nodes that process given
tasks with low performance due to machine troubles and/or
excessive workloads. These workers are called stragglers.

Although various techniques have been invented to
handle the stragglers, they mostly impose a burden on mas-
ter node to monitor the progress of all the worker nodes. In
Backup Task [1], for example, when a straggler is detected,
the delayed task is assigned to worker node that has been
completing its task faster than the others. Backup Task that
reruns delayed tasks on fast worker nodes can always return
correct results even with stragglers. The master node is in
charge of monitoring all the worker nodes for Backup Task.
However, as the number of worker nodes increases, the man-
agement overhead of the master node increases, resulting in
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a new performance bottleneck in massively parallel process-
ing. Because such management tasks by the master node
are reluctantly introduced for the fault tolerance, spending
a lot of CPU times for the management is a waste of CPU
resources. If these resources are effectively used for compu-
tation, the performance will be improved. Please note that
the ratio of delayed tasks over all the tasks is quite small in
the case of a large degree of parallelism [2]. Depending on
applications, especially for those that do not require exact
results, additional costs for Backup Task is not justified. Al-
though replication of master nodes can distribute the man-
agement overhead, a more efficient approach is required.

As an alternative approach, in this paper, we propose
to move such straggler management burden from master
node to network switch that connects the master and worker
nodes. More specifically, the proposed network switch mon-
itors output packets from Map tasks to detect stragglers.
When detected, the proposed switch generates a response
instead of the straggler based on the outputs of the other
Map tasks, so that Reduce tasks can be started without
delay∗. Network traffic for straggler management is miti-
gated because network switch is the nearest device to strag-
glers. We introduce some approximate techniques for the
proxy computation and response at the switch; thus our
switch is called “ApproxSW.” We implement ApproxSW
on NetFPGA-SUME board that has four 10Gbit Ethernet
(10GbE) interfaces and a Virtex-7 FPGA, and demonstrate
that the ApproxSW functions do not degrade the original
10GbE switch performance.

The rest of this paper is organized as follows. Sec-
tion 2 overviews related work. Section 3 proposes Ap-
proxSW architecture and Sect. 4 illustrates its implementa-
tion on NetFPGA-SUME board. Section 5 shows experi-
mental results and Sect. 6 concludes this paper.

2. Related Work

2.1 MapReduce Processing Flow

MapReduce [1] is one of the most widely-used parallel
processing framework that processes large data sets with
number of compute nodes. We illustrate the MapReduce
processing flow which is a push-based implementation as

∗An early stage of this work has been accepted as a poster in
FPL 2017 [3]. This paper is an extended version of [3].
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Fig. 1 A behavior of MapReduce framework

shown in Fig. 1 for simplicity but our approach is applicable
to a pull-based implementation.

The cluster consists of a master node and worker nodes.
The master node assigns Map tasks to the worker nodes
when a job is started. The number of Map tasks should
be less than or equal to the number of workers so that all
the tasks can be executed in parallel. The master node di-
vides input files into fixed-size chunks and feeds them to
the worker nodes evenly. Outputs of Map tasks are formed
as key-value pairs and will be sent to appropriate Reducer
nodes through the network during the Map phase. The way
to partition the Map outputs can be defined by the user. For
example, a hashed value of each key in the output is used
to determine the destination Reducer node as in Apache
Hadoop. Each Map task notifies the master node when it
completes its assigned task. The proposed ApproxSW mon-
itors such output key-value pairs and completion notifica-
tions from the Map tasks in order to deal with stragglers.
After receiving completion notifications from all the Map
tasks, the master node assigns Reduce tasks to the workers.

During the Reduce phase, worker nodes process Map
outputs received in the Map phase and generate the final re-
sults. A MapReduce job is completed when the master node
receives completion notifications from all the Reduce tasks.

2.2 Backup Task

Backup Task [1] is the conventional solution for the strag-
gler problem in MapReduce framework. With Backup Task,
the master node monitors all the task progress and detects
delayed ones. Then the master node reschedules them spec-
ulatively to faster workers. If the rerunning tasks over-
take the original tasks and are completed faster, waiting
time for the delayed tasks can be eliminated. Sophisticated
scheduling algorithms for Backup Task have been proposed
in [4], [5]. They focus on detecting stragglers as early and
correctly as possible and thus they impose more burden on
the master node to collect more detailed progress report
from worker nodes. A distributed scheduling algorithm for
large-scale clusters is also proposed in [6]. However, it does
not discuss how to monitor the tasks in parallel in detail.

Although Backup Task can obtain accurate results
while mitigating the effect of stragglers, it imposes more

burden on the master node and network to monitor progress
of a number of worker nodes. In addition, speculative re-
running consumes extra power and compute resources. Our
ApproxSW is completely different from these prior works
but is a natural approach because all the information goes
through the switch. A prototype of ApproxSW is imple-
mented on NetFPGA-SUME board.

2.3 MapReduce Acceleration by Approximation

Approximate computing improves the compute perfor-
mance and the energy efficiency in exchange for accept-
able degradation on computation accuracy [7], [8]. Approx-
Hadoop [9] adopts an approximation technique that consists
of input data sampling and task dropping in MapReduce.
The input data sampling computes a partial result based on a
part of input data and estimates the entire result based on the
partial result. Task dropping reduces the computation cost
and execution time by dropping a part of tasks. Especially,
tasks that take longer time frames to complete compared to
the others and those that have not been started are dropped,
in order to reduce the execution time. Our ApproxSW also
employs the dropping technique in the network switch and
implements it on the NetFPGA-SUME board.

2.4 MapReduce Acceleration by FPGA

FPGA-based acceleration for various computations im-
proves both the performance and energy efficiency. Espe-
cially, commonly-used operations for a wide range of ap-
plications have been offloaded to FPGA-based accelerators.
For example, generating key-value pairs in Map phase, their
sorting based on keys in Map phase, and merging data in
Reduce phase are offloaded to FPGA-based accelerators in
[10]. Application-specific computations in Map and Re-
duce phases are also offloaded to FPGA-based accelerators.
High-level synthesis is used to implement such computa-
tion tasks on FPGAs [11]. As our ApproxSW focuses on
the management burden of master node for straggler han-
dling, it is orthogonal to these FPGA-based accelerations on
Map and Reduce phases and can be combined with them to
further improve the performance.

3. Design

3.1 Motivation

The master node is in charge of 1) task scheduling that de-
cides which worker node executes a given task and 2) task
monitoring to detect stragglers. As the number of worker
nodes increases, monitoring all the tasks becomes a burden.
One approach to improve the scalability is to employ multi-
ple master nodes. A simple solution for the multiple master
nodes is parallel monitoring, in which each master node is
in charge of scheduling and monitoring of a part of worker
nodes. Worker nodes can be monitored by multiple mas-
ter nodes so that fault tolerance of master nodes can be ad-
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Fig. 2 Behavior of MapReduce with ApproxSW

dressed. In this case, however, each worker node must know
where to send its progress report and also the network work-
load increases due to duplicated progress report messages.
On the other hand, in the case of a large degree of paral-
lelism, the number of stragglers and thus tasks assigned to
such stragglers are quite limited since tasks are more likely
assigned to fast worker nodes. In this case, dropping the
tasks executed on stragglers may not severely impact the fi-
nal results. This approach is called “Drop” in ApproxSW.

3.2 ApproxSW Overview

This paper proposes ApproxSW, a network switch based so-
lution for the straggler problem to eliminate a burden of
master/worker nodes to handle stragglers. Figure 2 shows
the ApproxSW overview. In general, a straggler solution
consists of two stages: detection and proxy response. A
simple network switch based solution is to just detect de-
layed tasks and request the master node to reschedule them
as in Backup Task. On the other hand, ApproxSW gen-
erates proxy responses instead of detected stragglers; thus
no computation and communication overheads are imposed
in any master/worker nodes to handle stragglers. Although
there are Map and Reduce tasks, in this paper we focus on
stragglers of Map phase for the proxy response by a network
switch.

3.3 Straggler Detection at Network Switch

ApproxSW monitors Map outputs to check the progress
of each task and detect stragglers. More specifically, Ap-
proxSW counts the number of key-value pairs from each
Map task, and the task whose counter value is less than θ
(Slow Task Threshold) from the average is detected as a de-
layed one. This assumes that each Map task processes al-
most the same number of keys. The other cases can be also
handled by adjusting θ appropriately. The delays are de-
tected and made up for each time when the packets arrive at
the network switch from Map tasks. Please note that the pro-
posed ApproxSW can work correctly if Combiner function
is used in the Map phase. Since Combiner function aggre-
gates the Map task results within the Map phase, in this case
ApproxSW is modified to monitor the Combiner outputs to
detect stragglers.

3.4 Proxy Response at Network Switch

ApproxSW does not notify the master node about the de-
tected stragglers but generates proxy responses instead of
the stragglers. That is, ApproxSW is in charge of the proxy
computations and completion notifications instead of de-
layed tasks. Completion notification is to inform a comple-
tion of a task to master node for starting the next phase. Gen-
erating it by proxy omits the waiting time due to stragglers,
and thus it is mandatory to handle stragglers and improve
the performance. However, it introduces some uncompleted
tasks and degrades the accuracy of the final results. Here, we
propose proxy computation for the delayed tasks to compen-
sate the negative impact on accuracy.

3.4.1 Proxy Computation

The proxy computation for stragglers by a network switch
is not a trivial job. It is difficult for network switches to ac-
cess input files and process them accordingly to complete
the computation. In the case of a large degree of parallelism
and quite small number of stragglers, such costs cannot be
justified. Therefore, we adopt an approximate computing
for the proxy computation to strike a balance between a bur-
den for handling stragglers and the accuracy of the final re-
sults.

A unique characteristic of network switch based solu-
tions is that the outputs from the other tasks are available at
a network switch since the outputs go through the switch.
We thus propose to use the outputs from the other tasks for
proxy computation. A simple implementation of this ap-
proach is to replicate the outputs of the other tasks. This
method can generate data which have a possibility of being
generated without considering the application and the input
dataset. In this paper we introduce the following three proxy
computation methods.

• Drop method: Completion notifications are sent by
proxy but no proxy computations are performed.
• Random method: In addition to proxy completion noti-

fications, proxy computations that copy the normal task
outputs in the probability of 1

n are performed, where n
is the number of Map tasks.
• Similarity method: In addition to proxy completion no-

tifications, proxy computations that copy the normal
task outputs in the probability calculated by Eq. (1) and
Algorithm 1 are performed.

In the following, the Similarity method, the most sophisti-
cated one among them, is introduced.

ApproxSW utilizes Map outputs sent by the other
workers connected to the switch in order to generate sim-
ilar outputs of delayed tasks. Since it is not feasible to store
all the Map outputs in the limited memory capacity of the
network switch, we propose to use only the recently-arrived
Map outputs (called “new data”) and statistical information
based on all the past Map outputs. Every time ApproxSW
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Algorithm 1 Similarity counting function for proxy compu-
tation

a⇐ task sending new data
key⇐ key included in new data
for all the other tasks i do

if i has sent key and a sent key for the first time then
S [a][i]⇐ S [a][i] + 1
S [i][a]⇐ S [i][a] + 1

end if
end for

receives new data, it updates the statistical information and
then generates outputs of delayed tasks by proxy. A similar-
ity between tasks is used as the statistical information. We
employ a modified version of cosine similarity as shown in
Algorithm 1. Cosine similarity is used to measure a simi-
larity between two documents [12]. Similarity counters of
two tasks are incremented when the two tasks output the
same key during a certain time window. If some specific
keys are sent many times by almost all the tasks (e.g., “the”
and “and” for word counting), the similarities between these
tasks become uniformly high and the accuracy of the proxy
computation becomes worse. To avoid this, the increment
of similarity is done only once for the same key.

After updating the similarity, ApproxSW performs a
proxy computation for each delayed task based on the out-
put of the normal task which has a high similarity to the de-
layed task. Please note that delayed tasks can be detected by
the method illustrated in Sect. 3.3. In other words, the pro-
posed ApproxSW assumes that the outputs of a delayed task
are similar to those of other tasks that have a high similarity
to the delayed task. The similar data are selected from the
outputs of normal tasks based on a probability determined
by the degree of their similarity. That is, ApproxSW copies
outputs of a similar task with the probability P in order to
perform a proxy computation for the delayed task. Equa-
tion (1) shows how to calculate P based on the similarity
S .

P =
S ab

4

∑n−1
i=0 S ai

4
, (1)

where n is the number of tasks, a is the delayed task, b is
the other task, and S ab is their similarity corresponding to
S [a][b] in Algorithm 1. P is a value obtained by normal-
izing the similarity. We empirically use the fourth power
of similarity as the evaluation function, in order to filter out
task pairs with low similarities since every task pair has a
low similarity due to frequently appearing words, such as
“a” and “the.”

ApproxSW sends the proxy computation results to ap-
propriate destination Reducer nodes as soon as the computa-
tion is completed. In this approach, the proxy computations
of delayed tasks are performed in parallel with Map tasks so
that they do not increase the total execution time.

3.4.2 Completion Notification

If ApproxSW has not received completion notifications

from all the tasks yet, it sends the completion notifications
instead of delayed tasks when a pre-determined time has
passed since it received the first completion notification. Af-
ter sending completion notifications by proxy, ApproxSW
communicates with delayed worker nodes to terminate their
delayed Map tasks.

4. Implementation

We employ the NetFPGA-SUME board as an FPGA-based
switch that has four 10GbE interfaces. NetFPGA-SUME
Reference Switch Lite design [13] is used as a baseline
10GbE switch, and we implement our ApproxSW to han-
dle stragglers by extending the baseline switch.

Figure 3 shows the ApproxSW implementation
overview. Packets from remote machines via four 10GbE in-
terfaces (MAC RX0-RX3) and host machine via PCIe (PCIe
DMA) are merged into a single packet stream by Input Ar-
biter module. Output Port Lookup module selects the out-
put port for each incoming packet and adds the routing in-
formation. According to the information, Output Queues
module delivers the packets to one of the four 10GbE inter-
faces (MAC TX0-TX3) or the host machine via PCIe (PCIe
DMA). ApproxSW module is inserted between Output Port
Lookup and Output Queues modules to monitor and gener-
ate the packets for proxy response.

4.1 Network Switch Part

A packet stream goes through the switch in 256-bit per cycle
based on the implementation of AXI (Advanced eXtensible
Interface) on the Reference Switch Lite. When the network
switch receives a packet, the packet is classified into a Map
output, a completion notification, or the other application
packet. In ApproxSW, UDP packets destined to specific port
numbers are identified as the Map outputs or completion no-
tifications. Figure 4 shows their packet formats. A payload
of these packets consists of type, id, key, and value fields.

Fig. 3 Entire hardware architecture overview implemented on FPGA
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The type field is used to identify a packet as either a Map
output or a completion notification. The id field is used to
identify the task. A Map output consists of a pair of key
and value. As shown in Fig. 4, the second part of a packet
(i.e., 256-bit to 511-bit) is processed in the second cycle.
The second part contains all the information needed for up-
dating the similarities which are also required for the proxy
calculation.

The network switch provides a dedicated hash table to
each task. A hash table manages whether each key has been
sent from a task. That is, a hashed value of a key is used
for an index of the table where the flag (sent or not) of the
key is stored. When a Map phase starts, all the flag val-
ues of the hash tables are invalidated. When the network
switch receives a packet that includes a key, the hash table
for the task that sent the packet is updated and the flag value
is validated. To simplify reseting all the values, the network
switch changes the value which indicates “sent” so that the
old “sent” values are invalidated.

The bit width of the hash table index is 15-bit and thus
the number of hash table entries is 32,678. If more hardware
resources are available, the hash table size can be extended
in order to reduce the possibility of hash collisions. A hash
collision causes an accidental increase in the similarity (if

Fig. 4 Packet format sent by worker nodes

Fig. 5 Packet control logic of ApproxSW

words on different tasks conflict) or an accidental decrease
(if words on the same task conflict and both the words ap-
pear in another task) by one word. If the number of unique
keys is far smaller than the hash table size, hash collisions
rarely occur and the penalty would be small.

Please note that when ApproxSW receives the other
packets, such as ARP (Address Resolution Protocol) re-
quests and replies, they are simply passed to the original L2
processing module in the network switch as regular packets.

4.2 Straggler Handling Part

Figure 5 shows the control logic of ApproxSW. When the
network switch receives a packet, the packet is classified ac-
cording to its IP protocol, destination UDP port, and type
fields. If it is a UDP packet which goes to a dedicated port,
it is classified into a Map output or a completion notification
according to its type field. In the other cases, it is classified
into the others. If it is a Map output, the count of key-value
pairs given by the task corresponding to the id field is incre-
mented. The similarities between the sender task and all the
other tasks are also updated. Then, the replication judge-
ment described in this section is done to detect the delay
at the time and determine which tasks require the replica-
tion. According to the result of the replication judgement,
the packet is replicated for the delayed tasks. If the packet
is a completion notification and the Complete Buffer has not
been written yet, the packet is replicated to the Complete
Buffer for proxy response of completion notifications. In
all the cases, the original packet is passed to the original
L2 switch module. When a predetermined time has passed
since the first completion notification was received, proxy
responses of the completion notifications are performed.

Figure 6 illustrates a packet passing flow of ApproxSW.
All packets are processed when they arrive at the network
switch. A received packet is first buffered in the Input FIFO
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Fig. 6 Packet passing flow in ApproxSW

Queue and, according to its type field, classified into three
types: Map output, Completion notification, and the others.
If it is an output from a Map task, the task similarities and
the Map output amounts are updated based on its id and key
fields. Also, based on their Map output amounts as illus-
trated in Sect. 3.3. Equation (2) is a condition for detecting
the delayed tasks.

(x + θ) <
y
n

(2)

n is the number of tasks, x is the number of occurrences of
a key given by each task, y is the total sum of x for all the
tasks, and θ is Slow Task Threshold mentioned in Sect. 3.3.
θ is a constant value given by the user. The division by the
number of Map tasks is implemented with a right shift oper-
ation based on an assumption that the number is a power of
two.

As mentioned in Sect. 3.4.1, a received packet is repli-
cated for a delayed task with a probability P. More specif-
ically, the received packet is replicated when the following
relation is satisfied.

P =
S ab

4

∑n−1
i=0 S ai

4
> r (3)

n is the number of tasks, a is a delayed task, b is the task
that sent new data, and S ab is their similarity. r is a random
number in range [0, 1). For ease of implementation, r is gen-
erated by using a 7-bit counter value c incremented in every
cycle; thus r = c/27. To eliminate the division operation in
Relation 3, it is transformed as follows. That is, the packet
is replicated when the following relation is satisfied.

27 × S ab
4 > c ×

n−1∑

i=0

S ai
4 (4)

Figure 7 shows a pipelined processing for updating the
similarities and detecting the delayed tasks for which the
proxy computation is required. The similarity of each task

Fig. 7 Pipeline for similarity updating and Map output replication

is updated and its fourth power is calculated in parallel. The
pipeline processing takes 20 cycles for each packet. The
depth of the 256-bit FIFO queue is more than 20 (e.g., 32)
in order to buffer all the input data coming during the 20
cycles.

After the replication judgement in the pipeline, the
packet is removed from the Input FIFO Queue and passed
to the Output FIFO Queue. If the result of the replication
judgement indicates that the packet is a Map output which
will be replicated for one or more delayed tasks, it is repli-
cated and stored in a Replicate Buffer. Then the proxy com-
putation is done for the delayed tasks. More specifically, a
Map output is copied from the Replicate Buffer and then it
is modified so that its id field is changed to one of the de-
layed tasks and passed to the Output FIFO Queue. These
steps are performed for each of the delayed tasks to which
the Map output is replicated. If the packet is a completion
notification, it is also replicated and stored in a completion
buffer. When a predetermined time has passed since the first
completion notification was received, a proxy response of
the completion notification is performed for all the delayed
tasks detected. A completion notification is copied from the
Complete Buffer and then it is modified so that its id field is
changed to one of the delayed tasks and passed to the Output
FIFO Queue. These steps are performed for all the delayed
tasks. The packets in the Output FIFO Queue are continu-
ously removed and passed to the original L2 switch module.

5. Evaluations

5.1 Accuracy of Proxy Computation

We simulate ApproxSW in terms of the accuracy of proxy
computation on the final result. Figure 8 shows the evalu-
ation setting. On this simulation, Map tasks and a Reduce
task are executed as processes on a Linux machine (Cen-
tOS 6.8). The Reduce process also works as the role of
collecting completion notifications for simplicity. An Ap-
proxSW process provides the functions of straggler detec-
tion and proxy response and is executed on the same ma-
chine. Map outputs and completion notifications are sent
from the Map processes to the Reduce process through the
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ApproxSW process. The processes perform the socket com-
munication with each other using local loopback address.
When the ApproxSW process generates proxy completion
notifications, it sends signals to the delayed Map processes
in order to terminate them. Word count is employed as a tar-
get application in the experiments. In the word count work-
load, a Map output is a key-value pair where the key is a
word and the value is always 1 (e.g., “apple, 1”). We used
three input datasets listed in Table 1 and evaluate the three
proxy computation methods: Drop, Random, and Similarity
methods. Each dataset has 16 files. Dataset1 has 16 identi-
cal files. Dataset2 has 8 pairs of 2 identical files. Dataset3
has 16 different files. In this setting, all the tasks have high
similarities to each other in Dataset1, each task has a high
similarity to another task in Dataset2, and all the tasks have
low similarities to each other in Dataset3. Each file size in-
cluded in the datasets is approximately 10,000 Bytes. Each
Map task is in charge of a single file called a chunk. The
amount is small compared to popular MapReduce use cases,
e.g., a default chunk size of Hadoop is 128MB [14]. If input
data becomes larger while the hash table size is the same,
more hash collisions in the ApproxSW will occur because
the number of unique keys in the word count application
is increased. Thus, larger datasets can be applied to Ap-
proxSW in response to available FPGA resources to imple-
ment larger hash tables. In Table 1, “Proportion of words
causing hash collisions” shows ratio of words which caused
hash collisions to all the unique words in the datasets when

Fig. 8 Overview of the simulation for accuracy evaluation

Table 1 Three datasets

Total Words Proportion of words
File number per causing hash collisions

configuration of words task 15-bit index 20-bit index 24-bit index
Dataset1 1 file × 16 25,803 1,612 0.67% 0.00% 0.00%
Dataset2 8 files × 2 24,859 1,554 8.33% 0.47% 0.00%
Dataset3 16 files × 1 24,850 1,553 15.44% 5.09% 0.00%

Fig. 9 Accuracy of proxy computation results only

the bit width of the hash table index is 15-bit, 20-bit, and
24-bit, respectively. We implemented the hash tables whose
index width is 15-bit in order to meet the timing constraint
of 200MHz. When the bit width is 24-bit, no hash collisions
occur in these datasets.

5.1.1 Accuracy vs. Proxy Computation Methods

In this experiment, the number of Map tasks is set to 16 and
the number of stragglers is set to 2. The processing times for
a single word in healthy and delayed tasks are 1,000 μsec
and 2,000,000 μsec, respectively. First, we executed the job
without any stragglers to obtain the perfect results. Then,
we executed the same job with proxy computation methods
and stragglers. Finally, we compared the latter results to the
former ones and calculated the accuracy.

Figure 9 shows the accuracy of proxy computations in
ApproxSW with two proxy methods: Random and Similar-
ity methods. The left bar at Similarity method shows the
result with hash tables whose index width is 15-bit and the
right bar shows that with hash tables whose index width is
24-bit. In these figures, “error” and “correct” represent the
wrong and correct results generated by the proxy compu-
tation, respectively. In Figs. 9 (a), 9 (b) and 9 (c) the total
numbers of proxy computations are almost the same in all
the datasets because the probabilities are normalized and the
probability distribution among the tasks does not directly af-
fect the number of proxy responses. Both the Random and
Similarity methods work well for Dataset1, in which all the
tasks have the largest similarity. Furthermore, the Similar-
ity method achieves a high accuracy for Dataset2, in which
at least a single pair of tasks has a high similarity as shown
in Fig. 9 (b). Such situations would be more likely in real
workloads where at least a single pair of tasks has a high
similarity. For example, when a file is split into multiple
chunks, tasks which process one of the chunks may have
high similarity to each other. On the other hand, when all
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Fig. 10 Accuracy of total results including proxy computation results

the tasks have uniform similarity at all, the Random method
is better because of simplicity. Such situations occur when
the input data has no locality. For Dataset3, both the Ran-
dom and Similarity methods achieve almost the same ac-
curacy because the input data has no locality. Compared
to the result of Dataset1, the accuracy of Dataset3 becomes
lower because the input file for each task in Dataset3 has
lower similarities to each other. In summary, our findings
are as follows. In terms of the accuracy, Similarity method
is equal to or better than Random method. If the input
data has a strong locality (similarities are non-uniform) like
Dataset2, Similarity method can find out the similar task
and improve the accuracy of proxy computation. On the
contrast, in Dataset2 and Dataset3, the accuracy of Random
method is not improved due to a few similar tasks as shown
in Figs. 9 (b) and 9 (c). In the specific situation where all the
tasks have a uniform similarity like Dataset1 and Dataset3,
the accuracy of both methods becomes almost the same. The
reason why the accuracies of these methods are not exactly
the same for Dataset1 and Dataset3 is that the Similarity
method estimates the similarities incrementally and thus the
probability slightly fluctuates during a job execution unlike
Random method. In these datasets, the hash collisions do
not impact significantly to the accuracy as shown in Fig. 9.

Figure 10 shows the accuracy of the entire computation
results including not only proxy responses but also outputs
from the tasks. The left bar at Similarity method shows the
result with hash tables whose index width is 15-bit and the
right bar shows that with hash tables whose index width is
24-bit. Please note that these figures include entire results of
Map tasks while Figure 9 accounts only for the results gen-
erated by proxy computation. In these figures, “correct” rep-
resents the results which are matched to the correct results
and “error” represents the results which are necessary but
not generated by the proxy computation or unnecessary but
generated by the proxy computation. As shown in Fig. 10,
negative impacts on the proxy computation in terms of accu-
racy are small because the proportion of stragglers is small.

5.1.2 Accuracy vs. Slow Task Threshold

Here we discuss the relationship between accuracy and Slow
Task Threshold parameter, which is given by a user as men-
tioned in Sect. 3.3. Slow Task Threshold determines the sen-
sitibility to the delay and affects the amount of the proxy

computation. If the Slow Task Threshold parameter is too
small, the system becomes too sensitive to the delay and
tends to make unnecessary proxy responses which introduce
low accuracy. On the other hand, the parameter is too large,
the system does not detect any delay and make no proxy re-
sponses like the Drop method. Again the number of tasks
is set to 16 and the number of stragglers is set to 2. We
use hash tables whose index has 24-bit width in this exper-
iment. To investigate the effect of different delay distribu-
tions (uniform and non-uniform), we evaluate the following
two cases: homogeneous environment and heterogeneous
environment. In the homogeneous environment, all the tasks
except for stragglers process words at the same speed. The
processing times are the same as the previous evaluation in
the homogeneous environment. In the heterogeneous envi-
ronment, the processing times are added by (Task ID × 200)
μsec so that non-uniform delay distributions are imposed.
Slow Task Threshold parameter is varied from 0 to 1,000
Dataset2 is used as the input data.

Figure 11 shows the results when the Random and Sim-
ilarity proxy methods are used, respectively. In these fig-
ures, the left and right bars show the results in the homoge-
neous environment and the heterogeneous environment for
each threshold, respectively. “error” and “correct” represent
the wrong and correct results generated by the proxy compu-
tation, respectively. In the homogeneous environment, the
probability to incorrectly detect a healthy task as a straggler
is small no matter how small Slow Task Threshold parame-
ter is. In this environment, thus the Slow Task Threshold
parameter does not degrade the accuracy. In the hetero-
geneous environment, if Slow Task Threshold parameter is
improperly low, a few slightly-slow healthy tasks, which do
not require proxy responses, may be detected as stragglers
and generate unnecessary proxy responses. This is the rea-
son the error ratio becomes high when θ is too low in the
heterogeneous environment. On the other hand, when the
threshold is high enough, the proxy computations can be
suppressed. We can tune the Slow Task Threshold properly
according to the situation (i.e., application, environment, in-
put data size, etc) to obtain good accuracy. For example,
in this environment, when θ is equal to 300, the number
of errors by the excessive proxy responses is reduced while
keeping the number of correct proxy responses as shown in
Fig. 11.
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Fig. 11 Accuracy vs. Slow Task Threshold

Table 2 FPGA utilization of the implementation

Module LUTs BRAMs DSPs
GTHE2

CHANNELs
System Signal 15 0 0 0

PCIe Controller 17,794 74 0 8
10GbE Interface

25,736 58 0 4
(x4 in total)

Input Arbitor 2,328 30 0 0
Output Port Lookup 1,104 6 0 0

Output Queues 2,554 22.5 0 0
ApproxSW Core 29,394 274 1,344 0

Total 78,974 468.5 1,344 12
Available 433,200 1,470 3,600 36

Table 3 FPGA utilization detail of the ApproxSW Core module

Module LUTs BRAMs DSPs
Complete Buffer 265 6 0
Replicate Buffer 742 6 0

Replication List FIFO 385 0 0
Hash Table (x16 in total) 384 256 0

sum × r (x16 in total) 288 0 64
similarity4 (x256 in total) 0 0 1,280

Input FIFO Queue 1,166 6 0
ApproxSW Core Total 29,394 274 1,344

5.2 FPGA Utilization

Table 2 and Table 3 show the resource utilization of Ap-
proxSW that implements the Similarity method. The design
tool is Xilinx Vivado Design Suite 2014.4. The target FPGA
device is Virtex-7 XC7VX690T. The bit width of a hashed
value is 15-bit and thus the number of hash table entries is
32,768. A similarity is represented as a 16-bit value. The
depth of the 256-bit FIFO queue is 32. The number of man-
aged tasks is 16. The operating frequency is 200MHz.

5.3 Throughput

We evaluate the throughput of ApproxSW by using Open
Source Network Tester (OSNT) [15] on NetFPGA-10G
board [13]. We assume word count as an application in the

Table 4 Machines used for measuring throughput

CPU OS NIC

Mach- Intel Core i5-3470S Ubuntu NetFPGA-

ineA (2.9GHz, 6GB, 4cores) 14.04 LTS SUME

Mach- Intel Core i5-4460 CentOS
NetFPGA-10G

ineB (3.2GHz, 8GB, 4cores) 6.7

Mach- Intel Core i5-3470S CentOS
NetFPGA-10G

ineC (2.9GHz, 8GB, 4cores) 6.8

Fig. 12 Throughput evaluation settings

experiment. Map and Reduce tasks of the word count ap-
plication are executed as CPU processes and their commu-
nications go through the network switch. Based on this as-
sumption, word count traffic is generated by the packet gen-
erators in order to measure the maximum throughput. The
OSNT packet generator is implemented on Machine B and
C (see Table 4) to generate 10Gbps packet streams. Ap-
proxSW, which is based on Reference Switch Lite offered by
NetFPGA project [13], is implemented on Machine A (see
Table 4). Figure 12 shows the experimental settings. Ap-
proxSW has four 10GbE interfaces and two OSNT packet
generators are connected to two ports each. Machines B
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Fig. 13 Packet counting module

and C set the generated packet into the packet generator
and make it start generating the packet stream via PCIe.
While the packet generators are running, the NetFPGA-
SUME board transfers the received packets and counts their
number. To count the number of incoming packets to mea-
sure the throughput, the counting logic is added just after
the Output Port Lookup module. Figure 13 shows the mea-
surement point of throughput. Machine A reads the counter
value of incoming packets asynchronously via PCIe in ev-
ery 500msec to measure the throughput. We measured the
throughputs of the original Reference Switch Lite and Ap-
proxSW ten times and calculate the average values. To
verify that the packet size does not make the performance
worse, we measured the throughputs with two packet sizes,
512-bit and 1024-bit. When the packet size is set to 512-
bit, the original Reference Switch Lite processes packets at
28.92Gbps and ApproxSW achieves 28.95Gbps. When the
packet size is 1,024-bit, the original Reference Switch Lite
achieves 33.49Gbps and ApproxSW achieves at 33.51Gbps.
As shown, there are no significant differences between the
throughputs of the original Reference Switch Lite and Ap-
proxSW. Thus, performance overhead of ApproxSW is neg-
ligible.

6. Conclusions

To eliminate the burden to handle stragglers by the master
node in MapReduce applications, in this paper we proposed
ApproxSW which is a network switch based straggler de-
tection and proxy computation mechanism, because all the
information goes through the switch. Thus, by introducing
ApproxSW, the master node no longer has to monitor the
progress of each task and detect stragglers. Also, fast work-
ers no longer have to rerun delayed tasks speculatively as in
Backup Task. However, the proxy computation for delayed
tasks by a network switch is not a trivial job due to its lim-
ited resource; thus, we adopted an approximate proxy com-
putation that replicates Map outputs of healthy tasks which
have a high similarity to the delayed tasks. Based on infor-
mation from all the tasks, the ApproxSW can estimate how
many proxy computations should be done, what data should

be generated, and when the Map phase should be finished
without no dedicated communications or rerunning tasks.
We described how to implement the mechanism as a packet
processing engine of a network switch. The proxy compu-
tations of delayed tasks are performed in parallel with Map
tasks so that it does not increase the total execution time.
ApproxSW was implemented on NetFPGA-SUME board
that has Xilinx Virtex-7 FPGA and four 10GbE interfaces.
It achieved the same performance as the original Reference
Switch Lite.
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