
Performance Evaluations of Graph Database using CUDA
and OpenMPCompatible Libraries

Shin Morishima1 and Hiroki Matsutani1,2,3

1Keio University, 3141 Hiyoshi, Kohokuku, Yokohama, Japan
2National Institute of Informatics, 3Japan Science and Technology Agency PRESTO

{morisima,matutani}@arc.ics.keio.ac.jp

ABSTRACT
Graph databases use graph structures to store data sets as
nodes, edges, and properties. They are used to store and
search the relationships between a large number of nodes, such
as social networking services and recommendation engines that
use customer social graphs. Since computation cost for graph
search queries increases as the graph becomes large, in this pa-
per we accelerate the graph search functions (Dijkstra and A*
algorithms) of a graph database Neo4j using two ways: multi-
threaded library and CUDA library for graphics processing
units (GPUs). We use 100,000-node graphs generated based
on a degree distribution of Facebook social graph for evalu-
ations. Our multi-threaded and GPU-based implementations
require an auxiliary adjacency matrix for a target graph. The
results show that, when we do not take into account addi-
tional overhead to generate the auxiliary adjacency matrix,
multi-threaded version improves the Dijkstra and A* search
performance by 16.2x and 13.8x compared to the original im-
plementation. The GPU-based implementation improves the
Dijkstra and A* search performance by 26.2x and 32.8x. When
we take into account the overhead, although the speed-ups by
our implementations are reduced, by reusing the auxiliary ad-
jacency matrix for multiple graph search queries we can sig-
nificantly improve the graph search performance.

1. INTRODUCTION
Recent advances on the Internet, network services, mobile

devices, and information sensing devices produce a vast amount
of data which are difficult to be processed by conventional
database management systems or data processing applications.
A visible example of big data sources is a social networking
service which is now being a big infrastructure to build so-
cial relationships among people from all over the world. From
an economical point of view, these services can be used for
recommendation systems based on users’ trust, in addition to
making connections between users. In these services, a vast
amount of users’ profile and their relationships are stored in
databases and various queries that update, scan, and search
the social graphs are performed. As a target graph is large,
the graph search performance becomes an important issue.

A graph database is a database system specialized for graph
structures to store data sets as nodes, edges, and proper-
ties. They are used to store and search the relationships be-
tween a large number of nodes, such as social networking ser-
vices and recommendation engines that use customer social
graphs. Since graph search queries typically require high com-
putation power, in this paper, we accelerate the graph search
functions (Dijkstra and A* algorithms) of a graph database
Neo4j by utilizing multi-core processors and graphics process-

This work was presented in part at the international symposium on Highly
Efficient Accelerators and Reconfigurable Technologies (HEART2014),
Sendai, Japan, June 911, 2014.

ing units (GPUs). More specially, we design graph search
functions by using OpenMP compatible multi-threaded library
and CUDA library for GPUs, and we integrate them into a
practical graph database system. We use 100,000-node graphs
generated based on a degree distribution of Facebook social
graph for evaluations.
The rest of this paper is organized as follows. Section 2

introduces graph search algorithms used in graph databases
and surveys prior works that accelerate graph algorithms using
GPUs. Section 3 explains our multi-threaded and GPU-based
graph search functions integrated for a graph database. Sec-
tion 4 evaluates them using random and synthetic large graphs
based on degree distribution of a social networking service.
Section 5 concludes this paper.

2. BACKGROUND AND RELATED WORK
2.1 Graph Database and Algorithms
In this paper, as a target graph database, we use Neo4j

which is one of the famous open-source graph databases im-
plemented in Java language [5]. The following algorithms are
used for graph search.

Dijkstra Algorithm. Dijkstra algorithm is a graph search al-
gorithm that solves the single-source shortest path problem for
a weighted graph. The way of solving the problem is searching
the node in ascending order of weight from source node and
extending the area where shortest path is found. Although
typical Dijkstra algorithm searches the shortest paths from
single source to every other nodes, in Neo4j the algorithm
finds the shortest path between given source and destination
pair. In this case, we can terminate the algorithm immediately
when the shortest path between given source-destination pair
is found, instead of examining all the destination nodes.

A* Algorithm. A* algorithm can be said as a variant of Di-
jkstra algorithm. An estimated cost to the destination is as-
signed to every node, and it preferentially explores the node
with the minimum estimated cost.

Shortest Path. Shortest Path algorithm finds all the shortest
paths between given source and destination pair. It explores
paths between the source and destination pair in the ascending
order of the hop count and terminates the algorithm when it
finds a path whose hop count is longer than the minimum.

All Path. All Path algorithm finds all the paths between given
source and destination pair whose hop count value is less than
or equal to a specified hop count value. It is a variant of
Shortest Path algorithm, in which we can specify the threshold
hop count value to explore.

All Simple Path. All Simple Path algorithm is similar to All
Path algorithm but it excludes paths that visit the same node
more than once.
Although the termination conditions of Shortest Path, All

Path, and All Simple Path algorithms are different, they can



be said as variants of Dijkstra algorithm that uses the constant
cost for all the edges. In this paper, therefore, we focus on
Dijkstra and A* algorithms in order to improve the graph
search performance on Neo4j.

2.2 GPUbased Graph Processing
Several works show that graph processing algorithms can

be accelerated with GPUs. Ortega-Arranz et.al. reported
that Dijkstra algorithm can accelerated by using a GPU and
achieved up to 220x speed-up with respect to the CPU [7].
Breadth-first search (BFS) is another important graph search
algorithm. Merrill et.al. reported that BFS can be acceler-
ated by using a GPU and achieved up to 29x speed-up with
respect to the CPU [4]. Prim algorithm is used to build a min-
imum spanning tree that covers a given graph. Nobart et.al.
reported that Prim algorithm can be accelerated by using a
GPU and achieved up to 14x speed-up with respect to the
CPU [6]. In this way, much works that accelerate such graph
processing algorithms by using GPUs have been done so far.
There is a prior work that accelerates a simple key-value

store database using a GPU, although it is not a graph database.
Memcached is a kind of in-memory key-value stores widely
used as a cache layer of various network services. Herther-
ington et.al. reported that the key-value store database can
be accelerated by using a GPU [2]. By introducing zero-copy
data transfer between GPU and host CPU, their GPU-based
implementation achieves up to 33x speed-up with respect to
the original implementation. However, if such zero-copy data
transfer could not be used, the speed-up benefit would be re-
duced. We believe that computation cost of such key-value
stores is relatively small and their performance is limited by
I/O bandwidth, such as memory and network I/Os; thus key-
value store applications are classified as I/O intensive. On the
other hand, graph databases discussed in this paper perform
graph search queries for large graphs, which is computation
intensive; thus there is enough room to accelerate the graph
search queries by GPUs.
However, to the best of our knowledge, there is no reports

that practically apply such GPU-based graph processing to
widely-used graph databases.

3. DESIGN AND IMPLEMENTATION
In this section, we show our multi-threaded and GPU-based

graph search functions integrated for Neo4j.

3.1 Generation of Adjacency Matrix
Neo4j is implemented with Java language, in which nodes

and edges are defined as Java classes to encapsulate these data
and group the methods to access them. Although such imple-
mentation is highly modular and extendable for practical sys-
tems, it is not friendly to parallelize such data structures with
parallel libraries, such as OpenMP and CUDA. Thus, in this
work, we employ an auxiliary adjacency matrix that represents
weight of every edge between two vertices (nodes) for parallel
executions of graph search algorithms. We modified Neo4j so
that the adjacency matrix is internally generated from corre-
sponding Java classes if necessary and used for graph search
using multicores and GPUs.
To reduce memory usage of the adjacency matrix and the

number of accesses to the matrix, we implemented it as three
linear arrays instead of a conventional two-dimensional adja-
cency matrix. Figure 1 illustrates the adjacency matrix struc-
ture implemented with three linear arrays extracted from a
graph. The left side of Figure 1 shows an example of a graph,
in which numbers in nodes and those near edges represent
node-IDs and edge weights, respectively. The right side of
Figure 1 shows the three linear arrays: Destination, Weight,
and Pointer arrays. The lengths of Destination and Weight
arrays are equivalent to the number of uni-directional links

Figure 1: Adjacency matrix is implemented with three
arrays

and that of Pointer array is equivalent to the number of nodes
+ 1.

• Each element in Pointer array PTR[n] represents accu-
mulated degree of Node-n, where PTR[n] = Σn

i=0Di and
Di represents degree of Node-i.

• Each element in Destination array DST [p] shows a con-
nected node from Node-n, where PTR[n] ≤ p < PTR[n+
1].

• Each element in Weight array W [p] shows the corre-
sponding edge weight from Node-n to Node-PTR[n].

Assume, for example, we want to know the edge weight from
Node-3 to its second destination (Node-2). We can see that
PTR[3] is five from Pointer array. Thus, the edge weight from
Node-3 to its second destination (Node-2) W [PTR[3] + 1] is
four from Weight array.
In this work, the original graph search functions of Neo4j are

hooked by our parallelized version that uses this data struc-
ture. The parallel graph search results are fed back to the orig-
inal graph search functions and processed by Neo4j as well as
normal execution. We have confirmed that our parallel graph
search results are identical to those of the original Neo4j.

3.2 Parallelization with JOMP
One of the most common approach to parallelize the graph

processing is to exploit multi-threaded execution, since most
microprocessors recently equip more than four cores that share
the same memory space on a single die or package. Since
Neo4j is implemented with Java language, we employed JOMP
[1] which is an OpenMP-like shared-memory multi-threaded
library for Java platform. We parallelized Dijkstra’s algorithm
by using JOMP so that data access conflicts between multiple
threads can be avoided.
In the case of A* algorithm, data access conflicts arise at

list structures that maintain the computation target nodes and
those that have already completed the computation. Although
these two lists can be implemented with linked-lists to reduce
memory usage, data access conflicts may occur when multiple
threads add or remove nodes to/from the lists. To avoid such
conflicts, we employed simple fixed-length arrays whose array
length is equivalent to the number of nodes, in which value ’1’
means that the node exists in the list and ’0’ does not. Using
these fixed-length structures, we parallelized A* algorithm so
as not to add or remove the same node from multiple threads
simultaneously. Although such a bitmap-like implementation
consumes more memory compared to the linked-list implemen-
tation, it can omit the list traversal processing and shorten the
data access time. Notice that their memory footprint is quite
smaller than that of the adjacency matrix; thus the overhead
is slight.



Figure 2: Parallelization with CUDA: (a) The number
of threads is set to the number of nodes , (b) The
number of threads is set to the maximum value of the
thread block. (the number of nodes > the maximum
value of the thread block.)

3.3 Parallelization with CUDA
To further boost the graph search processing of Neo4j we

parallelized the graph search algorithms for CUDA-enabled
GPUs. Since Neo4j is implemented with Java language, we
employed jcuda in order to call CUDA from Java [3].

To fully exploit thousands of CUDA cores in a single GPU,
we can typically generate much more threads than the number
of actual cores. In this work, on the other hand, we employ
a modest number of threads, i.e., 1,024 threads, which is the
maximum number of threads in a single CUDA thread block,
in order to avoid global synchronizations between thread blocks.
This is because a global synchronization that introduces stop
and restart of a kernel is costly when we use CUDA from Java.
Thus we use a modest number of threads that fit into a single
thread block.

As target graph search algorithms, we implemented Dijkstra
and A* algorithms by using jcuda library for CUDA-enabled
GPUs. They consist of the following three steps: 1) finding the
minimum value among all the nodes to find a node explored in
the next step, 2) termination detection of the algorithm, and
3) graph search and cost update of nodes. These algorithms
repeat the three steps until they are terminated by the second
step. Among these steps, the first step consumes the largest
execution time.

Reduction operation is used for finding the minimum value
among all the nodes. Typically, we can generate as many
threads as the number of graph nodes, and reduction oper-
ations are performed recursively so that the minimum value
can be found.

Figure 2(a) illustrates a flowchart for finding the minimum
value when the number of threads is set to the number of graph
nodes, while Figure 2(b) shows the case where the number of
threads is limited to the number of a thread block. If the
number of a target graph nodes is less than the number of a
thread block, 2(a) and 2(b) is same behavior. In this paper,
we don’t treat these small graph.

Note that Figure 2(a) shows a simple case in which the result
is obtained by only two reduction operations. In this figure,
operations represented in boxes are performed by the GPU
kernel, while those represented in circles are performed by the
host CPU. In Figure 2(a), first, two reduction operations are
performed by invoking the kernel to find the minimum value.
Then the result is transferred to the host CPU in order to
examine the loop termination, because this loop is executed
and controlled by the host CPU. Until the loop is terminated,
the same procedure (i.e., searching the graph, updating the
cost, and finding the minimum value) is repeated.

In Figure 2(b), on the other hand, because a single reduction
operation that processes more than 1,024 graph nodes cannot
be implemented in single thread block, finding the minimum-
valued node is divided into the following two steps.

• STEP1 in Figure 2(b): Each thread calculates the minimum-
valued node from a node set that consists of node IDs of
(n + multiples of 1024), where n is the thread ID.

• STEP2 in Figure 2(b): A reduction operation is per-
formed to find the minimum value from the results col-
lected by all the threads in the first step.

Figure 2(a) invokes three kernel calls and one data trans-
fer to the host CPU for each loop iteration. Figure 2(b), on
the other hand, calls the kernel only once at the beginning of
whole the steps. Because of our Java-based implementation,
the overheads of Figure 2(a)’s flow (i.e., calling the kernel and
transferring data to the host CPU) are large; thus, Figure
2(b)’s flow that limits the number of threads to 1,024 but re-
duces the kernel invocation overheads is faster than Figure
2(a).
Although the problem is that it cannot utilize all the CUDA

cores when the target GPU has more CUDA cores, such un-
used cores can be fully utilized by executing multiple kernels as
different streams in Kepler architecture GPUs. Especially for
graph database applications, we can see that multiple graph
search queries will be performed for the same graph data.
Thus, although a single kernel execution may not utilize all
the CUDA cores, by executing multiple kernels in parallel, we
can utilize all the cores and improve the throughput without
degrading the latency.

4. EXPERIMENTAL RESULTS
4.1 Target Graphs
The modified Neo4j that utilizes multi-threaded library or

GPU is evaluated with two types of graphs: 1) random graphs
in which edges are generated between two randomly-selected
nodes, and 2) a synthetic graph generated based on the de-
gree distribution of a social networking service. They were
generated as follows.

Random Graph. Given an average degree, a procedure that
randomly selects a node pair and connects them via a bi-
directional link is repeated until the given average degree is
satisfied. Edge weight are also randomly generated. To an-
alyze the relationship of these graph parameters and graph
search performance, various-sized random graphs whose aver-
age degree is 10 and 100 are generated for the experiments.

SNSLike Synthetic Graph. Reference [8] reports degree dis-
tribution of the Facebook social graph. We generate various-
sized synthetic graphs so that their degree distribution be-
comes similar to that of the Facebook. The median and aver-
age of the degree were set to 99 and 197, respectively.

4.2 Experimental Environment
The original and our multi-threaded graph search of Neo4j

are performed on AMD Opteron 4238 whose core frequency
is 3.3GHz and the number of CPU cores is eight. As for the
GPU-based graph search, we use NVIDIA Quadro K600 as a
low-end GPU and NVIDIA GeForce GTX 780 Ti as a high-end
GPU. Their parameters are listed in Table 1.
Graph databases can be used for social networking services.

As practical graphs for these purposes, we generated the above-
mentioned random and the synthetic Facebook graphs of 10,000,
50,000 and 100,000-node sizes. Note that our multi-threaded
and GPU implementations of graph search algorithms require
an auxiliary adjacency matrix extracted from the Neo4j orig-
inal graph data structure and generating it introduces a com-
putation overhead. In the following, we will show the ideal



(a)10,000 nodes (b)50,000 nodes (c)100,000 nodes

Figure 3: Execution time of Dijkstra algorithm with the original Neo4j, multi-threaded, and GPU (GeForce 780
Ti) implementations

(a)10,000 nodes (b)50,000 nodes (c)100,000 nodes

Figure 4: Execution time of A* algorithm with the original Neo4j, multi-threaded, and GPU (GeForce 780 Ti)
implementations

Table 1: GPUs used in the experiments

Quadro K600 GeForce GTX 780 Ti
Number of core 192 2,880
Core clock 875MHz 875MHz
Memory clock 900MHz 1,750MHz
Memory datapath width 128bit 384bit
Memory bandwidth 29GB/s 336GB/s

performance gains that do not take into account the overheads
of the auxiliary matrix. Then we will analyze the performance
gain with the overheads in Section 4.5.

4.3 A Single Execution

4.3.1 Dijkstra Algorithm
In general, Dijkstra algorithm finds the shortest paths from

a single source node to all the destination nodes. However,
since the graph search functions for graph databases are typ-
ically used to find the shortest path between a given pair of
source and destination nodes, our multi-threaded and GPU
implementations also find the shortest path between specified
source and destination nodes. In the experiments, thus, each
graph search query specifies the source and destination pairs
selected randomly.
Figure 3 shows average execution time to perform a graph

search of Dijkstra algorithm with the original Neo4j, our multi-
threaded version, and GPU-based version. NVIDIA GeForce
780 Ti is used as a GPU. We can see that the execution time
of the original Neo4j increases as the average degree increases.
For example, the execution time of a graph search for the
Facebook degree distribution graph is up to 28x larger than
that for a random graph whose average degree is 10. On the
other hand, the execution times of the multi-threaded and
GPU versions are almost constant even when the average de-
gree increases. This difference comes from the difference of
the data structure of each implementation. The results show
that our multi-threaded and GPU-based implementations are
advantageous compared to the original one when the average
node degree is quite large, such as Facebook social graph whose
average degree is 197.
The multi-threaded version is faster than the original Neo4j

implementation except for the the 50,000-node sparse graph
whose degree is 10. Especially in the 100,000-node synthetic

graph based on the Facebook degree distribution, the multi-
threaded version is up to 16.2x faster than the original imple-
mentation. The GPU version that uses GeForce 780 Ti is al-
ways faster than the original implementation. In the 100,000-
node synthetic graph based on the Facebook degree distribu-
tion, it is up to 26.2x faster than the original implementation.

4.3.2 A* Algorithm
A* algorithm uses an estimated cost value from source to

destination for each graph search in order to further improve
the performance. Thus, such an estimated cost value is re-
quired for each graph search beforehand.
A simple but commonly-used way to estimate the cost is

first assigning coordinates to every node and then calculating
the distance between the source and destination coordinates.
We use this simple but practical method in this experiment.
Since the best way to find the estimated cost value is highly
dependent on the target graph or target application, the cost
estimation is performed by a single CPU (not using multi-
threads nor GPUs) as well as the original implementation in
this experiment.
As well as Dijkstra algorithm, here we measured the execu-

tion time to find the shortest path between a specified source
and destination nodes pair using A* algorithm.
Figure 4 shows average execution time to perform a graph

search of A* algorithm with the original Neo4j, our multi-
threaded version, and GPU-based version. The results show
a different tendency compared to those of Dijkstra algorithm.
More specifically, the multi-threaded and GPU versions in Fig-
ures 4 (b) and (c) show the minimum execution time when the
node degree is 100 compared to node degrees of 10 and 197
(i.e., Facebook graph).
Because A* algorithm preferentially searches the node that

shows the smallest estimated cost to the destination, the pos-
sibility to find a closer node to the destination increases as
the node degree increases. In the case of the synthetic graph
based on the Facebook degree distribution, although its av-
erage degree is 197, the median of degree is 99 and 10% of
the nodes have a quite small degree (i.e., ≤ 10). That is, the
Facebook graph has more such small-degree nodes compared
to the random graph whose average degree is 100. This is the
reason why the multi-threaded and GPU versions sometimes
show the minimum execution time when the node degree is



(a)10,000 nodes (b)50,000 nodes (c)100,000 nodes

Figure 5: 100 sequential and parallel execution times of Dijkstra algorithm with two GPUs

(a)10,000 nodes (b)50,000 nodes (c)100,000 nodes

Figure 6: 100 sequential and parallel execution times of A* algorithm with two GPUs

100 compared to node degrees of 10 and 197.
On the other hand, the execution time of the original Neo4j

implementation increases as the node degree increases as shown
in Figures 4 (b) and (c), except for the small 10,000-node graph
in Figure 4 (a) due to the above-mentioned reason.

The multi-threaded version is faster than the original Neo4j
implementation except for the the 100,000-node sparse graph
whose degree is 10. Especially in the 100,000-node synthetic
graph based on the Facebook degree distribution, the multi-
threaded version is up to 13.8x faster than the original imple-
mentation. The GPU version that uses GeForce 780 Ti is al-
ways faster than the original implementation. In the 100,000-
node synthetic graph based on the Facebook degree distribu-
tion, it is up to 32.8x faster than the original implementation.

4.4 Parallel Executions
In this section, we evaluated the executions time for per-

forming 100 graph searches in parallel using our GPU-based
implementation.

4.4.1 Dijkstra Algorithm
Here we compare the results on the low-end and high-end

GPUs and analyze the parallel execution of the GPU ker-
nel (100 graph searches using Dijkstra algorithm in parallel).
Figure 5 shows the results of 100 sequential executions with
Quadro K600 (low-end GPU), parallel executions with Quadro
K600, 100 sequential executions with GeForce 780 Ti (high-
end GPU), and parallel executions with GeForce 780 Ti.

In Kepler architecture, 192 cores are used as a single thread
block, which means that whole cores in Quadro K600 are used
for a single thread block. Nevertheless, the throughput can
be improved with parallel execution of the kernel, because the
kernel is executed in parallel when the number of used cores is
less than 192 during reduction operation and memory access.
In fact, in the case of Quadro K600, the parallel execution is
1.5x to 2.2x faster than the sequential executions.

As shown in the Table 1, Quadro K600 and GeForce 780
Ti are different in terms of the number of CUDA cores and
memory clock frequency. Their CUDA cores are operated at
the same clock frequency. Because the number of cores used
for a single thread block is 192, the difference of their sequen-
tial execution times comes from the difference of their memory
access speed. In the case of the 10,000-node random graph,
the difference of their sequential execution times is small be-
cause the memory access speed is not dominant in terms of the

Figure 7: Overhead to generate auxiliary adjacency
matrix

execution time. In the cases of the 50,000 and 100,000-node
graphs, the sequential execution time with GeForce 780 Ti is
1.7x to 2.2x faster than that of Quadro K600.
In the parallel executions with GeForce 780 Ti, because the

number of cores used is larger than 192, the throughput is also
increased significantly. As a result, the parallel execution per-
formance is up to 15.4x faster than the sequential execution.

4.4.2 A* Algorithm
Here we measured execution times to perform A* algorithm

100 times sequentially or in parallel. Figure 6 shows the se-
quential execution time with Quadro K600 (low-end GPU),
parallel execution with Quadro K600, sequential execution
with GeForce 780 Ti (high-end GPU), and parallel execution
with GeForce 780 Ti.
We can see that in all the cases, the execution time is large

when average degree is 10 and it decreases when the average
degree is 100, as well as the results in Figure 4. When we
focus on the relative differences on the four cases, their exe-
cution times show the similar tendency as Dijkstra algorithm
(Figure 5). Although the tendency is similar to that of Dijk-
stra algorithm, the speed-up for A* algorithm with GeForce
780 Ti is smaller than that for Dijkstra algorithm because of
the overhead to calculate estimated cost value with host CPU.

4.5 Overhead
Although our multi-threaded and GPU-based implementa-

tion require the same auxiliary adjacency matrix extracted



(a)Dijkstra algorithm (b)A* algorithm

Figure 8: Relative execution time that includes the auxiliary adjacency matrix generation and a single graph
search on GeForce 780 Ti (the execution time of the original Neo4j implementation is normalized to 1.0)

from the Neo4j original graph data structure, so far we did not
take into account the overhead to generate it. The overhead
depends on the number of nodes and node degree. Assum-
ing that we perform multiple graph search queries on a target
graph, the auxiliary adjacency matrix is generated only at the
first query and the same adjacency matrix is used for succes-
sive queries. Thus, our implementations are suitable for appli-
cations that perform a certain amount of queries for the same
graph structure. Conversely, in the cases of applications that
perform graph searches on “the latest” target graph whose
structure changes very frequently, the adjacency matrix gen-
eration overhead may cancel the benefit of the multi-threaded
and GPU executions.
Figure 7 shows overhead to generate the adjacency matrix

for each graph. We can see that the overhead proportionally
increases as the number of nodes and the node degree.
Figure 8 shows the relative execution time that includes

the auxiliary adjacency matrix generation and a single graph
search on GeForce 780 Ti. The execution time of the origi-
nal Neo4j implementation is normalized to 1.0. Thus, when
the relative execution time is greater than 1.0, a single graph
search query using GPU cannot improve the performance com-
pared to the original Neo4j implementation.
In the case of Dijkstra algorithm (Figure 8(a)), our GPU

implementation is faster than the original implementation ex-
cept for the 50,000-node random graph whose average degree
is 10, even when the auxiliary adjacency matrix must be regen-
erated for each query. When multiple queries are performed
for the same graph structure, our GPU-based implementation
becomes more advantageous.
In the case of A* algorithm (Figure 8(b)), because its ex-

ecution time is shorter than that of Dijkstra algorithm, the
impact of the overhead is bigger. As a result, our GPU-based
implementation is slower than the original Neo4j implemen-
tation. In other words, our GPU-based implementation can
improve the performance when multiple search queries can be
performed for the same auxiliary adjacency matrix.
Note that the overhead discussed in this section is the calcu-

lation time to newly generate the auxiliary adjacency matrix.
On the other hand, in typical use cases of graph databases,
graph update queries change only a part of the whole graph
(e.g., some specific nodes, edges, and properties) and do not
change the whole graph structure drastically. In this case,
we can modify only a part of the auxiliary adjacency matrix
instead of newly regenerating the matrix. Since the same aux-
iliary adjacency matrix can be used for a long period, we can
drastically reduce the overhead of generating the adjacency
matrix. Consequently, we believe that the speed-up obtained
by our implementations is significant, as mentioned in Sections
4.3 and 4.4.

5. SUMMARY

In this paper, we designed and implemented graph search
functions (Dijkstra and A* algorithms) with a multi-threaded
library for multi-cores and CUDA for GPUs. Although graph
processings using GPUs have been well researched so far, in
this work we integrated our multi-threaded and GPU-based
graph search functions into a practical graph database. Our
multi-threaded and GPU-based graph functions require an
auxiliary adjacency matrix for a target graph. We evaluated
them in term of graph database search performance on up
to 100,000-node graphs generated based on a constant node
degree and a degree distribution of Facebook social graph.
The results show that, when we do not take into account

additional overhead to generate the auxiliary adjacency ma-
trix, multi-threaded version improves a single search query
that uses Dijkstra and A* algorithms by 16.2x and 13.8x com-
pared to the original implementation. The GPU-based imple-
mentation improves a single search query by 26.2x and 32.8x,
and the performance gain further increases as the number of
search queries performed increases. When we take into ac-
count the overhead, although the speed-ups by our implemen-
tations are reduced, by reusing the auxiliary adjacency matrix
for multiple graph search queries we can significantly improve
the graph search performance.

6. REFERENCES
[1] J. M. Bull and M. E. Kambites. JOMP - An

OpenMP-like Interface for Java. In Proc. of International
Conference on Java Grande, pages 44–53, June 2000.

[2] T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor,
and T. M. Aamodt. Characterizing and Evaluating a
Key-value Store Application on Heterogegenenous
CPU-GPU Systems. In Proc. of the International
Symposium on Performance Analysis of System and
Software, pages 88–98, April 2012.

[3] jcuda.org. http://www.jcuda.org.
[4] D. Merill, M. Garland, and A. Grimshaw. Scalable GPU

Graph Traversal. In Proc. of International Symposium on
Principles and Practice of Parallel Programming, pages
117–128, August 2012.

[5] Neo4j.org. http://www.neo4j.org.
[6] S. Nobari, T.-T. Cao, S. Bressan, and P. Karras. Scalable

Parallel Minimum Spanning Forest Computation. In Proc.
of International Symposium on Principles and Practice of
Parallel Programming, pages 205–214, August 2012.

[7] H. Ortega-Arranz, Y. Torres, D. R. Llanos, and
A. Gonzalez-Escribano. A New GPU-based Approach to
the Shortest Path Problem. In Proc. of International
Conference on High Performance Computing and
Simulation, pages 505–511, July 2013.

[8] J. Ugander, B. Karrer, L. BackStrom, and C. Marlow.
The Anatomy of the Facebook Social Graph. In Arxiv
preprint arXiv:1111.4503, November 2011.


