
A Case for Remote GPUs over 10GbE Network for VR
Applications

Shin Morishima, Masahiro Okazaki and Hiroki Matsutani

Keio University, 3141 Hiyoshi, Kohokuku, Yokohama, Japan
{morisima,okazaki,matutani}@arc.ics.keio.ac.jp

ABSTRACT
Due to advances on graphic processing technology and sensing
technology in recent years, VR technology that enables users
to experience environments made by computer similar to real
environments has become popular. In VR technology, compu-
tation cost of graphic processing is high and thus it requires
a high-end GPU because high-quality pictures that look like
real environments are processed while reflecting sensor infor-
mation. Therefore, users have to prepare a computer with a
high-end GPU, which requires a high cost. In this paper, we
propose to connect GPU cluster and user-side computers via
10GbE (10Gbit Ethernet) network so that graphic processing
for HMDs is done by the GPU cluster via a network. In this
way, users can use HMD with inexpensive computers because
they do not have to prepare computers with high-end GPUs.

In this paper, we propose an index to evaluate performance
of VR processing tasks in remote GPU environment and eval-
uate the performance in the remote GPU environment based
on this index. We also propose a condition that does not de-
grade user experience in the remote GPU environment and al-
location methods of multiple tasks to GPUs under this condi-
tion. The evaluation results of the proposed allocation meth-
ods show that if there is a high-load task, the method that
preferentially allocates tasks to GPUs with low bandwidth
achieves high performance; otherwise the method that prefer-
entially allocates tasks to GPUs with high utilization achieves
a high performance.

1. INTRODUCTION
VR (Virtual Reality) is a computer technology that enables

users to experience environments made by computer similar
to real environments. It has been widely used for video games
and flight simulator.

A typical VR device is a HMD (Head-Mount Display) that
a user wears like a hat. The components of HMD are a dis-
play and sensors. The sensors scan motion of line of sight
and position of a user. The display projects a picture that
is reflected by sensing data. Recently, VR with HMD has
become popular, because graphic processing using GPU and
sensing technologies have been improved. HMDs for general
consumers (e.g., Playstation VR by Sony [3] and Oculus Rift
by Oculus [2]) have been released, which demonstrates the
popularization of VR with HMD.

In VR with HMD, computation cost of graphic processing
is high and thus it requires a high-end GPU because high-
quality pictures that look like real environments are processed
while reflecting sensor information. Therefore, to use HMDs,
users have to prepare a computer with a high-end GPU, which
requires a high cost.

In this paper, we propose to connect GPU cluster and users’
computers via 10GbE (10Gbit Ethernet) network so that graphic
processing for HMDs is done by the GPU cluster via the net-

This work was presented in part at the international symposium on Highly
Efficient Accelerators and Reconfigurable Technologies (HEART2017)
Bochum, DE, June 79, 2017.

work. In this way, a user can use HMD with inexpensive com-
puter because the user does not have to prepare a computer
with a high-end GPU. Additionally, our proposal can improve
GPUs utilization because the number of processes allocated to
GPU cluster can be more than the number of GPUs in GPU
cluster.

However, in the case of the VR technology with such re-
mote GPUs, which are connected via 10GbE network, the
bandwidth between CPU-GPU is smaller and communication
delay is larger than GPUs connected with PCIe directly. In
this paper, we propose a measurement index to evaluate a
processing performance of VR technology in remote GPU en-
vironment. We then evaluate relationships of the performance
vs. the bandwidth and communication delay between CPU-
GPU. Additionally, we consider the effective way of allocating
VR processing tasks to GPU cluster based on performance of
VR application with remote GPUs.

The rest of this paper is organized as follows. Section 2
surveys related work. Section 3 introduces VR systems us-
ing remote GPUs and proposes a performance index of VR
assuming remote GPUs. Section 4 proposes the way of allo-
cating VR processing tasks to GPU cluster. Section 5 evalu-
ates performance of VR using remote GPUs and the VR task
allocation methods. Section 6 concludes this paper.

2. RELATED WORK
We employ NEC Exp-Ether [10] as a PCIe over 10GbE tech-

nology to use GPUs via Ethernet network. The approach is to
connect user-side computers and GPU devices via a PCIe over
10GbE assuming that these GPU devices form a GPU cluster
(or GPU pool). By using Exp-Ether, PCIe packets for GPUs
can be transported in 10GbE by encapsulating the packets
into an Ethernet frame. In our case, pooled GPUs can be
connected to user-side computers via 10GbE when users use
VR application. This approach is well-suited to GPU as a
Service (GaaS) clouds [6]. It is also suited to recent trends
on rack-scale architecture [1][5] and software-defined infras-
tructure. Actually it has been adopted for compute-intensive
applications that require many GPU devices other than VR,
such as distributed databases [7] and distributed data pro-
cessing [8]. For example, database queries are processed by
remote GPU devices connected via 10GbE in [7] and Apache
Spark operations are processed by remote GPU devices in [8].
Please note that we use Exp-Ether 10G that achieves up to
20Gbps bandwidth in this work, while Exp-Ether 40G that
achieves up to 80Gbps is already available, which would sig-
nificantly increase the CPU-GPU bandwidth.

Another approach to use GPUs via Ethernet network is
to use software service such as rCUDA [4] based on client-
server model. In this approach, GPUs are directly connected
to server machines via PCIe while clients do not have GPUs.
Instead, a client requests GPU processing to the server us-
ing TCP/IP communication via Ethernet. Then the server
processes the request using GPUs and returns the computa-
tion result to the client. If we use this approach, we need to
modify the VR applications to support CUDA and rCUDA.
It is not trivial because we need to make major changes on



Figure 1: VR system using remote GPUs

the applications when we use this approach for existing VR
applications. On the other hand, in our approach that uses
PCIe over 10GbE technology, the remote GPUs are recognized
by applications as if they are connected with PCIe directly.
So, we can use remote GPU environment for VR applications
without any changes on VR applications.
In the remote GPU environment, the latency between CPU-

GPU is longer than that of existing VR environment. The im-
pact of latency for VR user experience is analyzed in [11]. In
the remote GPU environment, the bandwidth between CPU-
GPU is restricted too. The influence of both the bandwidth
and latency for application performance is evaluated in [9] by
using rCUDA. In this paper, we propose task allocation meth-
ods for remote GPUs while taking into account the influence
of latency and bandwidth.
Recently, NVLink attracts attention as a communication

infrastructure between multiple GPUs [2]. NVLink is orthog-
onal to our proposal because it is mainly intended to accelerate
the communication between GPUs located closely.

3. VR SYSTEM USING REMOTE GPUS
3.1 System Overview
Figure 1 illustrates the proposed VR system using remote

GPUs. It consists of three components: user-side computers,
GPU pool, and Ethernet network. In our remote GPU envi-
ronment, NEC Exp-Ether interface [10] is installed to PCIe
slot of the user-side computer instead of a high-end GPU de-
vice. The Exp-Ether interface card is connected to 10GbE
network via one or two 10GbE SFP+ cables. As the GPU
pool, we assume many GPUs are connected 10GbE network
via NEC Exp-Ether interface with one or two 10GbE SFP+
cables. These pooled GPUs can be used by user-side comput-
ers via 10GbE network.
Assuming each computer requires a GPU connected via

PCIe directly, the number of required GPUs is equal to the
number of user-side machines. On the other hand, in the re-
mote GPU environment, multiple GPU processing tasks can
be allocated to one GPU, which means that we can reduce
the number of GPUs required for the entire system.
Negative aspects of the remote GPUs come from lower CPU-

GPU bandwidth and higher communication delay due to 10GbE
network. It may degrade the frame rate (i.e., the number
of pictures displayed during one second) of VR applications.
Degradation of frame rate will degrade the user experience.
In the remote GPU environment, we need to allocate GPU
processing tasks to remote GPUs so as not to degrade the
frame rate.

3.2 GPU Performance Index on VR in Remote
GPU Environment

In the remote GPU environment, GPU performance on VR
is limited due to lower CPU-GPU bandwidth and higher com-
munication delay. In the remote GPU environment, since a
lot of VR tasks are allocated to remote GPUs, we need to
know the aggregated load that each remote GPU can process

Figure 2: Example of time-time graph as GPU per-
formance index on VR in remote GPU environment

without degrading the user experience. As the aggregated
load depends on the remote GPU performance, we analyze
the relationship between GPU processing load and GPU per-
formance. In the following, we first define the GPU processing
load and GPU performance in VR processing and then pro-
pose a GPU performance index that represents the relation-
ship between GPU processing load and GPU performance.
Typically, the GPU processing load affects a GPU core uti-

lization ratio or an execution time of a GPU processing. Also
GPU performance affects them too. This means that the GPU
processing load increases in proportion to GPU core utiliza-
tion or execution time of GPU processing; thus the GPU per-
formance increases inversely in proportion to GPU core uti-
lization or execution time of GPU processing.
In the VR processing, the GPU core utilization hardly changes

and the execution time of GPU processing per frame changes
when the GPU processing load changes. Similarly, the GPU
utilization is constant while the GPU execution time changes
when CPU-GPU bandwidth or communication delay changes.
Based on the above observations, we propose to use the ex-
ecution time of GPU processing per frame as an index for
GPU performance and GPU processing load. In particular,
the GPU execution time when the GPU is directly connected
to a machine via PCIe is used as reference time, which is an in-
dex of GPU processing load. By comparing a GPU execution
time with the reference time, we can estimate the magnitude
of influence due to the overheads of remote GPU environment.
Please note that the reference time is not the total processing
time of VR application but the GPU processing time. Be-
cause the total processing time includes GPU processing time
and CPU processing time, the total processing time is longer
than the reference time.
Additionally, we propose a “time-time graph” in which x-

axis is the reference time and y-axis is the GPU execution
time in each environment to analyze a relationship between
the GPU processing load and GPU performance on VR.
Figure 2 shows an example of a time-time graph as GPU

performance index on VR in remote GPU environment. X-
axis shows the GPU processing load, which means the GPU
execution time with GPU directly connected via PCIe (i.e.,
reference time). Y-axis shows the measured GPU perfor-
mance, which means the GPU execution time on a target envi-
ronment (e.g., remote GPU environment). That is, this graph
shows a relationship between GPU processing load (i.e., ref-
erence time) and actual GPU performance on a remote GPU
environment. The performance of a directly-connected GPU
is the line with y = x because both of the axes show the same
GPU execution time. The performance of a remote GPU is
shown as a curve representing a relationship with GPU pro-
cessing load; that is, the divergence between this curve and
the line with y = x shows the impact on performance caused
by remote GPU environment. If y-axis is changed from ex-
ecution time of GPU processing to execution time of entire
processing, then the time-time graph represents a relationship
between the execution time of entire processing per frame and



GPU processing load.

4. VR PROCESSING TASK ALLOCATION FOR
REMOTE GPUS

In this paper, we assume that many user-side computers are
connected to remote GPUs in the GPU pool via a PCIe over
10GbE network technology as mentioned in Section 3.1. In
this case, the bandwidth between the computer and the re-
mote GPU is constrained by the minimum bandwidth in the
network between them. Also the communication delay is de-
termined by the number of hops between them. Because we
assume multiple GPU pools located in different places, the
bandwidth and communication delay may change depending
on location of the GPU used. In this case, because the GPU
performance of VR processing changes depending on the GPU
used, the throughput of an entire system depends on the al-
location of users’ GPU processing tasks to remote GPUs.

In this section, we consider the allocation methods to achieve
the following two objectives.

1. Eliminating negative user experience due to remote GPUs

2. Maximizing throughput of an entire system while satis-
fying the first condition

4.1 Conditions for Minimizing Negative User
Experiences

The GPU performance degradation caused by the remote
GPU environment, such as reduced frame rate and frame
drops, affects user experience. The frame rate determines a
time limit for entire processing of one frame, and the limit is
1
f
when f is the frame rate. When the total processing time

exceeds the time limit, the frame rate is decreased or some
frames are dropped.

The following equation shows the condition for keeping a
frame rate where the total processing time of a frame is T
and the frame rate is f .

T <
1

f
(1)

In the remote GPU environment, we can allocate multi-
ple VR processing tasks to one remote GPU. When one GPU
processes multiple tasks, the GPU sequentially processes these
tasks in a certain order. If all the tasks are completed before
the next frame comes, the frame rate is kept. That is, assum-
ing a GPU processing time per frame of the i-th task assigned
to a GPU is ti and the number of tasks assigned to the GPU
is n, the condition to keep the frame rate is expressed by the
following equation.

n∑
i=1

ti <
1

f
(2)

When all the GPUs satisfy Equation (2), the objective to elim-
inate negative user experience can be satisfied.

In other words, the following two conditions should be sat-
isfied in the entire system.

1. All the users’ tasks satisfy Equation (1).

2. All GPUs satisfy Equation (2).

T and ti can be estimated based on the time-time graphs
which are drawn by measuring the execution times of GPU
processing and entire processing by varying the GPU process-
ing load.

4.2 Task Allocation Methods for Remote GPUs
There are two factors that affect the GPU processing per-

formance in the remote GPU environment: 1) bandwidth and
2) the number of hops between user-side computer and remote
GPU. The number of hops affects the communication delay,

but as described in Section 5, the negative impact of commu-
nication delay on application performance is small compared
to that of bandwidth. Thus in this paper our task allocation
methods mainly consider the difference in the bandwidth as
the primary performance index 1.

In this paper, we propose the following three allocation
methods and compare them in terms of performance.

• Method 1: GPUs with higher bandwidth are preferen-
tially used.

• Method 2: GPUs with lower bandwidth are preferen-
tially used.

• Method 3: GPUs with higher utilization rate are pref-
erentially used.

These methods determine which GPU is preferentially used
when multiple GPUs are available, under the conditions that
do not degrade user experience based on Equations (1) and
(2).

When a GPU has a high bandwidth and thus the GPU
processing time is short, more GPU processing tasks can be
allocated to the GPU. Method 1 that priorities GPUs with
higher bandwidth aims at enhancing the overall performance
by increasing the utilization of high performance GPUs.

Method 2 that prioritizes GPUs with lower bandwidth as-
signs GPU processing tasks on GPUs with lower performance.
In Method 1, the GPU with the largest bandwidth is prior-
itized based on Equation (2), but Equation (1) is not con-
sidered. Based on the condition of Equation (1), there is a
possibility that GPUs with low bandwidth may not be used
at all so as not to degrade the user experience. In other words,
GPU processing tasks that require high bandwidth have to be
allocated to GPUs with high bandwidth, but if the other tasks
have been already assigned to such high-performance GPUs
with large bandwidth, the condition of Equation (2) cannot
be satisfied. In such cases, to allocate new tasks, the task al-
location has to wait until one of previously-allocated tasks is
completed, resulting in performance degradation of the entire
system. Method 2 has a potential to improve the performance
by avoiding such problem. By assigning GPU processing tasks
preferentially to GPUs with lower bandwidths, utilization of
GPUs with higher bandwidths is reduced. As a result, based
on the condition of Equation (1), Method 2 can decrease the
possibility that the task allocation waits until an empty time
slot becomes available on high-bandwidth GPUs.

In Method 3, the utilization is derived as a ratio of the
allocated GPU processing tasks over the maximum processing
capacity of the GPU. The maximum processing capacity is
represented by the right side of Equation (2), and the amount
of allocated tasks is represented by the left side of Equation
(2). Thus, the utilization R is expressed by the following
equation.

R =

∑n
i=1 ti
1
f

(3)

Method 3 aims at increasing the utilization of each GPU
by preferentially allocating GPU processing tasks to GPUs
with higher utilization. Since the utilization is prioritized in
Method 3, GPUs with lower bandwidth are more likely to
be given a higher priority because the utilization occupied
by each task becomes high. Therefore, similar to Method 2,
Method 3 can avoid the possibility to wait for a free time
slot on high-bandwidth but heavily-loaded GPUs due to the
condition of Equation (1).

5. EVALUATIONS
1Depending on a given network environment, communication
delay (or both) should be selected as the primary performance
index.



Figure 3: Relationship between CPU-GPU band-
width and GPU execution time per frame of VR ap-
plication

5.1 Evaluation Environment
In the experiments, we use a computer in which the proces-

sor is Intel Xeon E3-1225v2 and memory capacity is 16GB.
The GPU used is NVIDIA GeForce GTX980Ti. Table 1 lists
specification of the GPU. The GPU is installed to PCIe 3.0
x16 slot of the computer in the directly-connected GPU case,
while it is connected to the computer with one or two 10GbE
SFP+ cables using NEC ExpEther 10G in the remote GPU
cases. The bandwidth of PCIe 3.0 x16 is up to 256Gbps, while
that of ExpEther 10G is 20Gbps using two 10GbE cables at
the maximum. We use 10GbE switches to evaluate the impact
of communication delay with multiple hops. As a benchmark
program, VR application was created using Unity 5.4.0 as a
development environment and Oculus Rift was used as a VR
device. The benchmark VR application is continuously gener-
ating many identical objects that move in constant motion as
a video. We prepared multiple videos by changing the num-
ber of objects in the video in order to generate different GPU
loads.

Table 1: GPU spec used in the experiments
GeForce GTX 980 Ti

Number of cores 2,816
Core clock 1,038MHz
Memory clock 7,010MHz
Memory datapath width 256bit
Memory capacity 6GB

5.2 Relationship between CPUGPU Bandwidth
and VR Processing Performance

The factors that the remote GPU affects the VR process-
ing performance are the bandwidth and communication delay
between CPU and GPU, and this section focuses on the band-
width. In the remote GPU environment assumed in this pa-
per, user-side computers and remote GPUs are connected via
10GbE network. As mentioned above, the CPU-GPU 10GbE
network bandwidth is lower than that of the direct connection
via PCIe 3.0 x16. As the bandwidth becomes lower, the over-
head of CPU-GPU communication becomes larger, and the
VR processing performance is degraded. Its negative impact
is evaluated by using the time-time graph described in Section
3.2.
Figure 3 shows the relationship between the CPU-GPU

bandwidth and the GPU execution time per frame of the VR
application. The direct PCIe connection has the highest band-
width. Since its GPU execution time is used as the index of
GPU processing load, the relationship between its GPU exe-
cution time and GPU processing load becomes a straight line
of y = x. The remaining two curves show the GPU execu-
tion times in two remote GPU environments with different
bandwidths. As shown in the graph, the remote GPU envi-
ronments increase the GPU execution time in any GPU pro-
cessing load. By comparing the remote GPU environments

Figure 4: Relationship with CPU-GPU bandwidth
and execution time of entire VR processing per frame

with 20Gbps and 10Gbps bandwidths, the lower CPU-GPU
bandwidth environment increases the GPU execution time.
In the VR application, since the transfer of the GPU process-
ing contents from CPU to GPU and the transfer of the GPU
processing result from GPU to CPU are performed for each
frame, these transfer overheads are incurred for each frame2.
The increase in execution time of the GPU processing af-

fects the performance of an entire VR application. Figure
4 shows the relationship between the CPU-GPU bandwidth
and the execution time per frame of an entire VR application.
When an entire processing task is finished earlier than the re-
quired frame rate, the GPU simply waits for the next frame.
The frame rate is set to 60fps (frame per second) in this eval-
uation environment; thus, the frame length is about 16msec.
When the total execution time is less than this, the GPU waits
for the next frame so that the total execution time becomes
16msec. When the total execution time increases more than
this, on the other hand, the frame rate is decreased.
From Figure 4, it can be seen that the total execution time

of the entire VR application increases as the GPU processing
time in the remote GPU environment (Figure 3) increases.

5.3 Relationship between CPUGPU Commu
nication Delay and VR Processing Perfor
mance

The second factor that affects the VR processing perfor-
mance in the remote GPU environment is the CPU-GPU com-
munication delay. In the remote GPU environment, user-side
computers and GPU pool are connected via 10GbE network
and there may be multiple switches (or hops) between them.
The communication delay increases as the number of CPU-
GPU hops increases. Thus, the relationship between the com-
munication delay and the VR processing performance is eval-
uated by varying the number of 10GbE switch hops for the
CPU-GPU communication.
Figure 5 shows relationship between the CPU-GPU hops

and the GPU execution time per frame of the VR applica-
tion. The communication bandwidth is set to 10Gbps in this
figure. In this graph, 0-hop indicates that there is no switch
between CPU and GPU, that is, the user-side computer and
GPU are directly connected by a 10GbE SFP+ cable with Ex-
pEther 10G. 1-hop indicates that the user-side computer and
GPU are connected via 10GbE network through one 10GbE
switch. When comparing the remote GPU environments with
1-hop and 0-hop, the GPU execution time of 1-hop is slightly
longer than that of 0-hop, but the difference is not signifi-
cant as shown in the graph. That is, negative impact of the
communication delay due to intermediate switch on perfor-
mance is quite small as compared to that of the bandwidth.
In this case, when allocating tasks to remote GPUs, the band-
width should be considered at first rather than the number of
hops. Please note that the proposed task allocation methods

2Although we employ ExpEther 10G in this work, the band-
width will be significantly improve with ExpEther 40G that
achieves up to 80Gbps, which will be our future work.



Figure 5: Relationship between CPU-GPU hops and
GPU execution time per frames of VR application

described in Section 4.2 consider the bandwidth.

5.4 Task Allocation Methods for Remote GPUs
We evaluate the three tasks allocation methods described

in Section 4.2 based on simulations using the execution times
for each bandwidth measured in Section 5.2. The task alloca-
tion is performed under the conditions of Equations (1) and
(2) described in Section 4.1, so it is necessary to obtain the
parameters used in these equations. Again, T is the execution
time of an entire VR processing shown in Figure 4. ti is the
execution time of each GPU processing shown in Figure 3.
The frame rate f requested by the application is set to 30fps
which is the frame rate used in television and the like.

We assume that each GPU processing lasts a certain number
of frames with a certain workload. In this case, they have
two variables: the GPU processing load t and the number of
frames k. The workload of each GPU processing is represented
by t × k. Assuming the number of tasks to be processed in
a simulation is N , the total workload S is expressed by the
following equation.

S =
N∑
i=1

tik (4)

S is set to a constant value. Tasks are generated until the
total workload reaches to S. These tasks are processed with
GPUs. The performance of the entire system is evaluated
based on the number of frames processed until all the tasks
are completed. In this simulation, S is set to 100 million. To
analyze the effects of the number of GPUs and network config-
uration, we evaluate the performance by changing the number
of GPUs and network bandwidth in the remote GPU environ-
ment. As the bandwidth, we assume 20Gbps and 10Gbps in
the evaluation shown in Figure 3. More specifically, the num-
ber of GPUs with 20Gbps bandwidth is fixed to five and the
number of GPUs with 10Gbps bandwidth is varied. As can
be seen from Figure 4, the total processing time T of the en-
tire VR processing also increases as the GPU processing load
t of each task increases. Therefore, from Equation (1), the
task cannot be allocated to GPU with low bandwidth if t is
large; thus the possible range of t affects the performance of
the system. In this evaluation, there are two possible ranges
of t:

• 1 ≤ t ≤ 6 that satisfies Equation (1) by GPUs with
10Gbps for all the tasks

• 1 ≤ t ≤ 8 that satisfies Equation (1) by GPUs with
20Gbps for all the tasks

The above t’s ranges were obtained so that corresponding T
values satisfy Equation (1) based on T -to-t relationship in
Figure 4. We randomly generate GPU processing loads so as
to satisfy the above t’s ranges. In this evaluation, the first
range of t is denoted as “low load case” and the second range
is “high load case”. The number of consecutive frames k,

Figure 6: Relationship between the number of GPUs
with 10Gbps CPU-GPU bandwidth and the number
of execution frames in high load case

Figure 7: Relationship between the number of GPUs
with 10Gbps CPU-GPU bandwidth and the number
of execution frames in low load case

which is another variable of task, is set to a random number
in the range of 100 ≤ k ≤ 1000.

Figure 6 shows the performance of the three allocation meth-
ods when the number of GPUs with 10Gbps bandwidth is
varied in the high load case. The vertical axis represents the
number of frames necessary for completing a certain amount
of tasks and the smaller number indicates that the through-
put is higher. A task with a high load cannot be allocated
to GPUs with 10Gbps from the restriction of Equation (1).
Therefore, since tasks with high load become bottleneck, in
all the methods the performance improvement by increasing
the number of GPUs is saturated when the number of GPUs
is 15 or more.

When comparing the three methods, Method 2 that prefer-
entially allocates tasks to GPUs with small bandwidth achieves
a good performance. This is because it can allocate more
tasks, which are high load and bottleneck, to GPUs with
20Gbps bandwidth.

Figure 7 shows the performance of the three allocation meth-
ods when the number of GPUs with 10Gbps is varied in the
low load case. Unlike at the high load case, since there is no
task that does not satisfy Equation (1), performance of all
the methods improves as the number of GPUs increases. Per-
formance differences between these methods are smaller than
those at the high load case, but Method 3 achieves the highest
performance. In Method 3, tasks are preferentially allocated
to GPUs with high utilization ratio. Since it can increase the
utilization of all GPUs regardless of bandwidth, it achieves a
higher performance than the other methods.

Based on these results, Method 2 should be adopted if there
is a high-load task that may not satisfy Equation (1); other-
wise, Method 3 should be adopted.

As task allocation to remote GPUs, multiple tasks can be
allocated to one GPU as long as the conditions of Equations
(1) and (2) are satisfied. On the contrary, in the existing VR
environment that does not use remote GPUs, since process-



Figure 8: Performance of remote GPU environment
and directly-connected GPU environment in high
load case

Figure 9: Performance of remote GPU environment
and directly-connected GPU environment in low load
case

ing tasks of each user-side computer are performed by a local
GPU directly connected to the computer, only one task can
be allocated to each GPU. Therefore, if more than one tasks
can be allocated to one GPU on average, the remote GPU en-
vironment achieves a higher overall system throughput than
the conventional environments. The high throughput means
that tasks of the same number of users can be processed with
fewer GPUs compared to the conventional environments.
Figures 8 and 9 show the performance of GPUs directly-

connected by PCIe and those of remote GPU when the same
number of GPUs are used at high load and low load respec-
tively. As the remote GPU allocation method in the exper-
iments, we choose the best method for each case. The ratio
of 20Gbps/10Gbps bandwidth GPUs in the remote GPU en-
vironment is the same as in Figures 6 and 7. These figures
show that the performance of the remote GPU environment
is higher in two cases: 1) high load case with fewer GPUs and
2) low load case with any number of GPUs. In the case of low
load case, since all the GPUs satisfy Equation (1) and one
or more tasks are always allocated, the performance becomes
higher than the directly-connected GPU case. On the other
hand, in the high load case with more GPUs, because of the
increase of the number of GPUs that cannot satisfy Equa-
tion (1), the performance is lower than the directly-connected
GPU case. Assuming the maximum bandwidth between the
user-side computers and GPU pool is given, it is important
to configure the ratio of different bandwidth GPUs by con-
sidering the distribution of application workloads, such as the
numbers of tasks with high and low loads.

6. SUMMARY
VR technology requires a high graphic processing power

and thus it requires a high-end CPU for each user; so the
cost to enjoy VR applications is typically high. In this paper,
we proposed to use the remote GPUs for VR applications so
that the user-side computers and pooled GPUs are connected
via 10GbE network. With this approach, users can utilize
pooled GPUs via network and do not have to prepare com-
puters with high-end GPUs; thus the cost to start VR appli-

cations can be reduced. In this paper, we proposed an index
to evaluate the VR application performance in the remote
GPU environment. We then evaluated relationships between
the performance and the CPU-GPU bandwidth and commu-
nication delay. The evaluation result showed that the VR
application performance is affected by the CPU-GPU band-
width. We also proposed a condition that does not degrade
user experience in remote GPU environment and allocation
methods of multiple tasks to GPUs under this condition. The
evaluation results of the proposed allocation methods showed
that if there is a high-load task, the method that preferen-
tially allocates tasks to GPUs with small bandwidth achieves
a high performance; otherwise, the method that preferentially
allocates tasks to GPUs with high utilization achieves a high
performance. Please note that this is the first work to address
the initial cost for VR applications by borrowing remote GPU
environment and the prototype of the proposed VR system
has already been working comfortably in the lab.

Acknowledgements This work was supported by JSPS KAK-
ENHI Grant Number JP16J05641.

7. REFERENCES
[1] Intel Rack Scale Architecture: Faster Service Delivery

and Lower TCO. http://www.intel.com/content/www/
us/en/architecture-and-technology/
intel-rack-scale-architecture.html.

[2] Oculus Rift. https://www3.oculus.com/en-us/rift/.
[3] PlayStaion VR.

http://www.jp.playstation.com/psvr.
[4] J. Duato, A. Pena, F. Silla, R. Mayo, and

E. Quintana-Orti. rCUDA: Reducing the Number of
GPU-based Accelerators in High Performance Clusters.
In Proc. of the International Conference on High
Performance Computing and Simulation (HPCS’10),
pages 224–231, Jun 2010.

[5] S. Legtchenko, N. Chen, D. Cletheroe, A. Rowstron,
H. Williams, and X. Zhao. XFabric: A Reconfigurable
In-Rack Network for Rack-Scale Computers. In Proc. of
the USENIX Symposium on Networked Systems Design
and Implementation (NSDI’16), pages 15–29, Mar 2016.

[6] M. Liu, T. Li, N. Jia, A. Currid, and V. Troy.
Understanding The Virtualization ”Tax” of Scale-Out
Pass-Through GPUs in GaaS Clouds: An Empirical
Study. In Proc. of the International Symposium on High
Performance Computer Architecture (HPCA’15), pages
259–270, Feb 2015.

[7] S. Morishima and H. Matsutani. Distributed In-GPU
Data Cache for Document-Oriented Data Store via
PCIe over 10Gbit Ethernet. In Proc. of the
International Workshop on Algorithms, Models and
Tools for Parallel Computing on Heterogeneous
Platforms (HeteroPar’16), Aug 2016.

[8] Y. Ohno, S. Morishima, and H. Matsutani. Accelerating
Spark RDD Operations with Local and Remote GPU
Devices. In Proc. of the International Conference on
Parallel and Distributed Systems (ICPADS’16), pages
791–799, Dec 2016.

[9] C. Reao, R. Mayo, E. S. Quintana-Ort, F. Silla,
J. Duato, and A. J. Pea. Influence of InfiniBand FDR
on the performance of remote GPU virtualization. In
Proc. of International Conference on Cluster Computing
(CLUSTER’13), pages 1–8, Sep 2013.

[10] J. Suzuki, Y. Hidaka, J. Higuchi, Y. Hayashi, M. Kan,
and T. Yoshikawa. Disaggregation and Sharing of I/O
Devices in Cloud Data Centers. IEEE Transactions on
Computers, 66(10):3013–3026, Oct 2016.

[11] T. Waltemate, I. Senna, F. Hülsmann, M. Rohde,
S. Kopp, M. Ernst, and M. Botsch. The Impact of
Latency on Perceptual Judgments and Motor
Performance in Closed-loop Interaction in Virtual
Reality . In Proc. of the International Conference on
Virtual Reality Software and Technology (VRST’16),
pages 27–35, Nov 2016.


