
Distributed In-GPU Data Cache for
Document-Oriented Data Store via PCIe over

10Gbit Ethernet

Shin Morishima1 and Hiroki Matsutani1,2,3

1 Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Japan 223-8522
{morisima,matutani}@arc.ics.keio.ac.jp

2 National Institute of Informatics
3 Japan Science and Technology Agency PRESTO

Abstract. As one of NOSQL data stores, a document-oriented data store
manages data as documents in a scheme-less manner. Various string match
queries, such as a perfect match, begins-with (prefix) match, partial match,
and regular expression based match, are performed for the documents. To ac-
celerate such string match queries, we propose DistGPU Cache (Distributed
In-GPU Data Cache), in which data store server and GPU devices are con-
nected via a PCI-Express (PCIe) over 10Gbit Ethernet (10GbE), so that
GPU devices that store and search documents can be added and removed
dynamically. We also propose a partitioning method that distributes ranges
of cached documents to GPU devices based on a hash function. The dis-
tributed cache over GPU devices can be dynamically divided and merged
when the GPU devices are added and removed, respectively. We evaluate
the proposed DistGPU Cache in terms of regular expression match query
throughput with up to three NVIDIA GeForce GTX 980 devices connected
to a host via PCIe over 10GbE. We demonstrate that the communication
overhead of remote GPU devices is small and can be compensated by a
great flexibility to add more GPU devices via a network. We also show that
DistGPU Cache with the remote GPU devices significantly outperforms the
original data store.

1 Introduction

Recent advances on Social Networking Services, Internet of Things technologies,
mobile devices, and sensing technologies are continuously generating large data
sets, and a simple, scalable, and high-throughput data store is a key component
for managing such big data. Structured storage or NOSQL is an attractive option
for storing large data sets in addition to traditional RDBMS. NOSQL data stores
typically employ a simple data structure optimized for high horizontal scalability
on some selected application domains via sharding and replication over number of
machines. Due to these features, NOSQL data stores are increasing their presence
in Web applications and cloud-based systems that store and manage big data.

Document-oriented data store [1][2] is one of major classes of NOSQL. In a
document-oriented data store, data are typically stored as documents in a JSON-like
binary format without any predefined data structure or schema; thus it is referred
to as a scheme-less data store. In the document-oriented data store, a search query
retrieves documents whose values are matched to a search condition given by the
search query. Especially, string search queries, such as perfect, begins-with (prefix),
and regular expression based string match queries, are used in document-oriented
data stores. Since the computation cost for string search increases as the number of



2

documents increases, it becomes quite high when dealing with large data sets. To
mitigate the computation cost increase, database indexes are typically employed in
document-oriented data stores [7], in order to reduce the cost from O(n) to O(logn),
where n is the number of documents. Database indexing is a powerful technique es-
pecially for perfect and prefix string match queries. However, it cannot be directly
applied to some important string search queries, such as partial and regular expres-
sion based string match queries, although database indexes for regular expression
based search have been studied. A motivation of this paper is to accelerate search
queries of the document-oriented data store without relying on database indexes.

To accelerate all the string search queries including the regular expression based
search in document-oriented data stores, an array-based cache suitable for GPU
processing of string search queries was proposed in [5]. The cache is extracted from
the original document-oriented data store. When the document-oriented data store
receives a string search query, the query is performed by a GPU device using the
cache and the search result is returned to the original document-oriented data store.
However, a serious problem of the cache is that, since it targets only a single GPU
device, it is inefficient for data larger than a device memory capacity of a single GPU
device. Thus, a horizontal scalability to add more GPU devices and increase the
device memory capacity is required to manage a larger data set. In addition, since
the number of documents in the data store increases and decreases dynamically, a
flexibility to add and remove GPU devices dynamically is required.

To address these requirements, in this paper we propose DistGPU Cache (Dis-
tributed In-GPU Data Cache), in which a data store server (i.e., host) and GPU
devices are connected via a PCI-Express (PCIe) over 10Gbit Ethernet (10GbE)
technology [9], so that GPU devices that store and search data can be added and
removed dynamically. We also propose a documents partitioning method that dis-
tributes ranges of cached data to GPU devices based on a hash function. DistGPU
Caches can be dynamically divided and merged when the GPU devices are added
and removed, respectively. An inherent concern on DistGPU Cache may be commu-
nication latency between the host and remote GPU devices connected via 10GbE.
However, since in our proposal, DistGPU Caches reside in GPUs’ device memory,
they are not transferred to the GPU devices for every search query. Thus, communi-
cation overhead can be mitigated even with remote GPU devices. The contributions
of this paper are summarized as follows.

– We propose DistGPU Cache that distributes database cache over GPU devices
connected via a PCIe over 10GbE technology.

– We propose a documents partitioning method so that GPU devices that form
DistGPU Cache can be added and removed dynamically.

– We evaluate document-oriented data store performance when varying the num-
ber of remote GPU devices.

The rest of paper is organized follows. Section 2 surveys related work. Section
3 proposes DistGPU Cache and the cache partitioning method for multiple remote
GPU devices. Section 4 evaluates DistGPU Cache and compares it with that with
local GPU devices and the original document-oriented data store using database
indexes. Section 5 concludes this paper.

2 Background and Related Work

2.1 GPU-Based Regular Expression Matching

There are two approaches to implement regular expression matching: NFA (Non-
deterministic Finite Automaton) based approach and DFA (Deterministic Finite



3

Fig. 1. DDB Cache creation.

Automaton) based approach. To accelerate the regular expression matching, GPU
devices are used for DFA-based approach in [10] and NFA-based approach in [11].
Both the approaches have pros and cons. NFA-based approach is advantageous in
terms of memory efficiency, while DFA-based approach is faster than NFA-based
one. For a small rule-set regular expression matching, a DFA-based approach can
be accelerated by using tokens of words in [6]. In addition, a text matching based
on KMP algorithm is studied for database applications in [8]. In this paper, we
implemented a DFA-based regular expression matching for GPU devices based on
the design of [10].

2.2 GPU-Based Document-Oriented Data Store

To accelerate search queries of document-oriented data store, DDB Cache suitable
for GPU processing was proposed in [5]. A similar idea was applied for a graph data-
base in [4]. DDB Cache is an array-based data cache extracted from the document-
oriented data store, and GPU-based string processing (e.g., regular expression based
string matching) is performed for DDB Cached. Figure 1 shows a creation of DDB
Cache from document-oriented data store. The upper half illustrates a simplified
data structure of the document-oriented data store that includes multiple docu-
ments. The lower half illustrates its DDB Cache structure. DDB Cache is created
for each field of documents. The same field name and value type are used for every
document. Thus, only values are extracted from documents for each field and cached
in a one-dimensional array structure as DDB Cache. Since the length of each value
(e.g., string data) differs, an auxiliary array (PTR) is additionally used in DDB
Cache to point the start address of field value of a specified document.

In DDB Cache, value and auxiliary arrays are created for each field. Although
Figure 1 illustrates DDB Cache of only a single field, we can add DDB Cache for
the other fields. When a search query is performed, one or more pairs of value and
auxiliary arrays, which are corresponding to the field(s) specified in the query, are
transferred to GPU device memory and then a string search is performed by the
GPU device. Although a regular expression based string match query was accel-
erated by a single GPU device with DDB Cache in [5], a horizontal scalability to
add or remove GPU devices dynamically was not considered though the horizontal
scalability is one of the most important properties of NOSQL.

To address the horizontal scalability issue, in this paper we propose DistGPU
Cache, in which a host and GPU devices are connected via a PCIe over 10GbE.
We employ NEC ExpEther [9] as a PCIe over 10GbE technology. Using ExpEther,



4

Fig. 2. Overview of DistGPU Cache. Fig. 3. Photo of remote GPU devices con-
nected via 10GbE.

PCIe packets for hardware resources (e.g., GPU devices) are transported in 10GbE
by encapsulating the packets into an Ethernet frame. Please note that there are
software services based on client-server model that provides GPU computation to
clients [3], while we employ a PCIe over 10GbE technology for connecting many
GPU devices directly. In our case, pooled GPU devices can be connected to the
data store server machine via 10GbE when necessary. Thus, our proposed DistGPU
Cache is well suited to recent trends on rack-scale architecture and software-defined
infrastructure.

3 DistGPU Cache and Its Partition Method

3.1 System Overview

DistGPU Cache is a distributed database cache stored in many remote GPU devices.
DistGPU Cache consists of certain-sized buckets, each of which is processed by a
GPU device. The detail about the buckets is described in the following subsections.

Figure 2 shows an overview of the proposed system. It consists of two com-
ponents: 1) document-oriented data store and 2) DistGPU Cache distributed over
remote GPU devices accessed via 10GbE. We use MongoDB [2] as a document-
oriented data store in this paper and value fields of documents are cached in remote
GPU devices as DistGPU Cache. Figure 3 shows remote GPU devices connected
via a 10GbE switch for DistGPU Cache. Remote GPU device is connected to PCIe
card via two 10GbE cables (i.e., 20Gbps) and the PCIe card is mounted in the host
machine where MongoDB and DistGPU Cache are working.

The following steps are performed for each query in the proposed system.

– For UPDATE query, new data are written to the original document-oriented
data store. Cached data in GPU device memory (i.e., DistGPU Cache) are
updated if necessary.

– For SEARCH query, if the target fields have been cached in DistGPU Cache, the
query is transferred to a corresponding GPU device to perform the document
search. The search result is returned to the client via the document-oriented
store.

– For SEARCH query, if the target fields have not been cached, the query is
performed by the document-oriented store and the result is returned to the
client.



5

Fig. 4. Relationship between blocks and
buckets using the hash function.

Fig. 5. Assignment of buckets to GPU de-
vices.

3.2 Partitioning of Documents Values with Hash Function

Since DistGPU Cache is built by extracting values of a specific field of the docu-
ments, values in the DistGPU Cache are independent of each other. Thus, the set of
values in DistGPU Cache can be partitioned and stored into GPUs in response to
the number of GPU devices and their device memory capacity, in order to perform
a search query in parallel. For example, assuming two GPU devices, the first half
of the documents is stored in a GPU and the latter half is stored in another GPU.
However, such a simple document partitioning is inefficient, e.g., write operations
are concentrated on a single partition that contains the latest documents.

In this paper, we propose an efficient partitioning method that distributes doc-
ument values to multiple GPU devices by using a hash function. More specifically,
by the hash function, document values are distributed into small blocks and they
are distributed to GPU devices evenly so as to equalize their workload and reduce
the reconstruction overhead.

Using the proposed partitioning method, we can utilize the hash value as an
index to narrow down a search space and reduce the computation cost.

Typically, a collision resistance is required for hash functions. On the other hand,
we introduce a coarse-grain hash function that generates the same hashed value for
a range of consecutive values. Here we define “block” as a group of values with the
same hashed value. All the values in the same block are stored into the same GPU
device for search. Thus we can use such a hashed value instead of a database index
for search in order to narrow down the search range.

However, a block is not suitable to be used as a bucket directly, because the
number of values in each block (partitioned by the coarse-grain hash function) may
differ and the number of values stored in each bucket should be balanced in order to
distribute the workload of each bucket and thus improve the performance. Instead
of a single block, multiple blocks (with different sizes) are grouped as a “bucket” so
that sizes of buckets should be balanced. We also define “hashed value range” as a
set of hashed values of blocks grouped in the same bucket. One or more buckets are
assigned to a GPU device (the assignment is discussed in Section 3.4). This approach
tolerates collisions of hashed values. It also tolerates unbalanced sizes of blocks (and
thus non-uniform distribution of hashed values). Thus, a simple hash function with
a low computation overhead can be used. For example, in our implementation, the
first n characters of value strings are used as hashed values. By varying n, the sizes
of blocks can be controlled.

Figure 4 shows relationship between blocks and buckets using the hash func-
tion. We assume that values d1 to d14 are hashed and then hashed values ’A’ to ’E’



6

are generated for simplicity. Figure 4(a) shows the values in documents and their
corresponding hashed values. As shown, multiple values that have the same hashed
value are grouped as a block. Figure 4(b) shows the hashed values and their corre-
sponding blocks. Since sizes of blocks differ, these blocks are packed into buckets so
that the number of values in each bucket should be balanced, as shown in Figure
4(c). In this example, blocks that have hashed values A or B are grouped as bucket
1 and those have hashed values C, D, or E are grouped as bucket 2. The sizes of
buckets 1 and 2 are balanced. Blocks in a bucket are independent with each other
(i.e., blocks with different hashed values coexist in a bucket). When we add a new
value to DistGPU Cache, a hashed value of the new value is computed and then
the new value is stored into a bucket that covers this hashed value. Although the
sizes of buckets are currently balanced in Figure 4, the number of values in each
bucket will change dynamically due to write queries and thus their sizes will be
unbalanced as time goes on. To handle such dynamic growth of buckets, we need
to update the hashed value range of each bucket dynamically. In our design, the
maximum number of values (or the maximum total sizes of values) in each bucket is
predefined and if the number of values in a bucket exceeds the maximum number,
the bucket is divided into two buckets.

Algorithm 1 shows a pseudo code of the proposed bucket partitioning method,
assuming bucket A is divided into buckets A and B. If a bucket covers only a single
hashed value, the bucket cannot be partitioned (Line 6-8). In this case, a finer hash
function should be used instead. For example, when the hash function uses the first
n characters as a hashed value, we can increase n. The hash function should be
selected so that the number of values in each bucket does not exceed the maximum
number. In Line 9-11, a half of hashed value range of bucket A is moved to bucket
B. In Line 12-13, the number of values in each bucket is recomputed based on the
new hashed value range. Then values in bucket A are moved to bucket B based on
the new hashed value range.

Building a new DistGPU Cache or reconstructing an existing DistGPU Cache is
equivalent to newly-adding whole documents to an empty bucket. In other words,
first, HA is set to all the hashed values and xA is set to 0, then Algorithm 1
is repeated until buckets are partitioned so that their number of values does not
exceed the maximum value.

Algorithm 1 Bucket partitioning

1: A← Original bucket to be partitioned
2: B ← New bucket to be diverged
3: HA,HB ← Hashed value ranges for A and B
4: hA ← Actual hashed values included in A (hA ∈ HA)
5: xA, xB ← Numbers of hashed values in A and B
6: if xA = 1 then
7: Terminate //Bucket A cannot be partitioned any more
8: end if
9: for i = 1 to ⌊xA/2⌋ do
10: Move largest hashed value in hA to HB and delete it from HA

11: end for
12: xA ← ⌈xA/2⌉ //Number of hashed values of HA after partitioning
13: xB ← ⌊xA/2⌋ //Number of hashed values of HB after partitioning
14: Values are moved from A to B based on new HA



7

3.3 Toward Schema-Less Data Structure

In a document-oriented data store, each document may have different fields. For
example, a document has fields A and B, while another document may have only
field C. DistGPU Cache is required to support such a scheme-less data structure.

In MongoDB, all the documents must have id field as a primary key. DistGPU
Cache of id field is used as a primary key to refer to those of the other fields. To do
this, DistGPU Cache of id field needs two additional data for each field: 1) bucket
ID and 2) address inside the bucket where the field value is stored. Thus, DistGPU
Cache of id field has 2 × N additional arrays, where N is the number of fields,
to record the bucket ID and address inside the bucket where a corresponding field
value is stored.

DistGPU Cache of the other fields has an additional array, in order to record
the bucket ID and address in the bucket where a corresponding id is stored. In
other words, these additional arrays record the relationship between id field and
the other fields in the same document. When a field value in a document is accessed,
another field value of the same document can be accessed by using these additional
arrays. Please note that DistGPU Cache may not cache all the fields used in the
documents. When a field value not cached in DistGPU Cache is accessed, MongoDB
is invoked by specifying id in order to retrieve all the field values.

3.4 Assignment of Buckets to GPU Devices

To store buckets in GPU device memory as DistGPU Cache, we need to take into
account which buckets are stored to which GPU devices. In our design, each bucket
has a random integer number which is less than the number of GPU devices (e.g.,
each bucket has 0, 1, or 2 as a random integer number when the number of GPU
devices is three). The buckets are assigned to GPU devices based on their random
integer numbers. If the number of buckets is huge, such a random assignment of
buckets to GPU devices can balance the workload of GPU devices. When a new
bucket is added, assignments of the other buckets to GPU devices are not changed
and only the new bucket is newly assigned to a GPU device; thus the overhead to
add new buckets is low.

Figure 5 shows an assignment of buckets to GPU devices. Seven buckets (Figure
5(a)) are assigned to three GPU devices, as shown in Figure 5(b). Once a bucket is
assigned to GPU device, it resides in the same GPU device until DistGPU Cache
is reconstructed.

In DistGPU Cache, the number of GPU devices changes dynamically and the
bucket assignment also takes into account the number of GPU devices available.
When a new GPU device is added, b/G buckets in existing GPU devices are ran-
domly selected and moved to the new GPU device, where b is the number of total
buckets and G is the number of total GPU devices. When an existing GPU device
is removed, a new random integer number (not the current number) is generated
for each bucket in the GPU device. Then buckets in the GPU device to be removed
are moved to the other GPU devices based on their random integer number. When
a GPU device is added or removed, a range of random integer numbers for new
buckets is updated.

3.5 GPU Processing for DistGPU Cache

We use NVIDIA GPU devices and CUDA (Compute Unified Device Architecture)
C development environment to implement GPU kernels.

Since in DistGPU Cache, documents are grouped as buckets and stored into
GPU devices, document search is performed in bucket basis. In our design, values



8

that generate the same hashed value are grouped as a block in a bucket; thus some
search queries may scan only a limited bucket or GPU device memory. For example,
a perfect or prefix search query for string values scans only a bucket or GPU device
memory. On the other hand, regular expression search without any prefix cannot
limit the search space and thus scans all the DistGPU Cache.

We implemented a DFA-based regular expression search kernel similar to [10]
using CUDA. When a search space is limited to a single block, the CUDA kernel
is executed only once. Otherwise, the CUDA kernel is executed for each bucket in
the search space. In this case, since buckets are independent with each other, the
CUDA kernels for different buckets are executed in asynchronous manner. We can
thus hide the CPU-GPU data transfer overhead since the data transfer to/from
GPU devices and computation in GPU devices can be overlapped.

4 Evaluations

4.1 Evaluation Environment

MongoDB and our DistGPU Cache are operated in the same machine. CPU of the
host machine is Intel Xeon E5-2637v3 running at 3.5GHz and memory capacity is
128GB. Up to three NVIDIA GeForce GTX980 GPUs, each of which has a 4GB
device memory, are used for DistGPU Cache. We use MongoDB version 2.6.6 and
CUDA version 6.0. For DistGPU Cache, the experiment system shown in Figure
3 except that remote GPU devices are directly connected to the host without L2
switch for simplicity. For comparison, we evaluate the performance when the GPU
devices are directly attached to the host machine via PCIe Gen3 x16.

4.2 Performance with Different Bucket Sizes

Here we evaluate the performance of DistGPU Cache when the bucket size varies.
We measured the throughputs of a perfect string match query that scans only a
single bucket and a regular expression based string match query that scans all the
buckets in DistGPU Cache. In addition, we measured the query execution time
when the number of GPU devices varies in order to evaluate the dynamic join/leave
of GPU devices vs. the bucket sizes. The number of documents in our experiments
is ten million.

For the perfect string match query, ten million documents each of which has
two fields, id field and a randomly-generated 8-character string field, are generated
and the perfect string match query is performed for the string field. The regular
expression based string match query is also performed for the above-mentioned ten
million documents.

Figure 6 shows the perfect string match query performance of DistGPU Cache
when the number of GPU devices is varied from one to three and the maximum
bucket size is varied from 1×210 to 512×210. The throughput is represented as rps
(request per second). Since a perfect string match query scans only a single bucket,
the size of search space is proportional to the bucket size. Please note that when the
bucket size is smaller than a certain threshold, the GPU parallelism cannot be fully
utilized and thus the throughput becomes constant. As shown, when the maximum
bucket size is larger than 128× 210 or 256× 210, the throughput decreases.

Figure 7 shows the regular expression based string match query performance of
DistGPU Cache. Since a regular expression based string match query scans all the
buckets, the search space is constant regardless of bucket size. When the bucket size
is small, since more CUDA kernels for smaller buckets are executed, the number of
CUDA kernel invocations and the data transfer overhead between host and GPU



9

Fig. 6. Perfect string match query perfor-
mance vs. bucket sizes.

Fig. 7. Regular expression based string
match query performance vs. bucket sizes.

Fig. 8. Execution time when GPU devices
are added or removed dynamically.

Fig. 9. Perfect string match performance
when GPU devices are local and remote.

devices are increased, resulting in a lower throughput. As shown, the throughput is
increased until the maximum bucket size is enlarged to 128×210. The throughput is
significantly decreased when the maximum bucket size is 512× 210 especially when
the number of GPU devices is three. This is because, as the maximum bucket size is
enlarged, the number of buckets is decreased, the workload cannot be divided into
the three GPU devices evenly.

Figure 8 shows the execution times when the GPU devices are dynamically
added or removed. The number of GPU devices are increased from one to two
and decreased from two to one. In both the cases, as the maximum bucket size
is enlarged, the execution time is decreased. This is because, as the bucket size is
enlarged, the number of buckets is decreased and the number of memory allocations
and data transfer between host and GPU devices are decreased. When we compare
both the cases (i.e., adding and removing GPU), the execution time of the latter
case is shorter than that of the first case. This is because, when the GPU device
is added, a device memory is allocated in the new GPU device and then a part of
existing data are transferred to the new GPU device.

In summary, the performance is not degraded in both the perfect and regular
expression based string match queries when the maximum bucket size is 128× 210.
Since this bucket size is proper in this evaluation environment, we use this parameter
in the following experiments.

4.3 Performance with Local and Remote GPUs

In DistGPU Cache, we assume that GPU devices are connected to the host machine
via 10GbE (in our design, two STP+ cables are used for each GPU device, resulting
in 20Gbps). Of course it is possible to directly mount the GPU devices to the host
machine via PCIe Gen3 x16, but the number of such local GPU devices mounted



10

Fig. 10. Regular expression based string
match performance when GPU devices are lo-
cal and remote.

Fig. 11. Perfect string match performance of
DistGPU Cache and original MongoDB.

will be limited by the motherboard or chassis. Here we measured the performance
when the GPU devices are directly attached to the host machine via PCIe Gen3
x16, in order to show the performance overhead due to the “remote” GPU devices.

The perfect string match and regular expression based string match queries are
performed for local and remote GPU devices. Although these queries and documents
are the same as those in Section 4.2, the number of documents are varied from one
hundred thousand to one hundred million.

Figure 9 shows the perfect string match query throughputs for local and remote
GPU devices when the number of GPU devices is one and three. When the number of
documents is quite small, the number of buckets is also small and buckets cannot be
distributed to GPU devices evenly; thus the throughput of 3GPU case is decreased
when the number of documents is small. The throughput of the local GPU case is
always better than that of remote GPU case. However, in the remote GPU case, the
throughput increases in a higher rate compared to the local GPU case. Actually,
when the number of documents is one hundred million, the throughput improvement
from 1GPU to 3GPU is 2.14x for the remote GPU case, while it is only 1.73x for the
local GPU case. The local GPU performance is better than the remote GPU case
by 1.20x when the number of documents is one hundred million and the number
of GPU devices is three; thus performance degradation of remote GPU case is not
significant by taking into account the scalability benefits.

Figure 10 shows the regular expression based string match query throughputs for
local and remote GPU devices. In the graph, the throughput (Y-axis) is represented
as a logarithmic scale. As the number of documents is increased, the computation
cost is proportionally increased and thus the throughput is degraded. However, the
performance degradation is relatively slow, since the CUDA kernels are executed in
parallel. The local GPU performance is better than the remote GPU case by only
1.08x when the number of documents is one hundred million and the number of
GPU devices is three; thus the performance degradation of the remote GPU case is
quite small.

Regarding the latency, the execution times to deal with the perfect matching
query are 0.30 msec and 0.22 msec for local and remote GPU cases respectively,
when the numbers of documents and GPU devices are one hundred million and three
respectively. Their latencies are almost constant regardless of the number of GPU
devices because we can narrow down the search space only to a single bucket stored
in a single GPU device. Those of the regular expression matching query are 44.0
msec and 40.9 msec for local and remote GPU cases respectively, and the latencies
are decreased as the number of GPU devices increases.



11

Fig. 12. Regular expression based string
match performance of DistGPU Cache and
original MongoDB.

Fig. 13. Write query performance of Dist-
GPU Cache and original MongoDB.

4.4 Performance Comparison with MongoDB

Here we compare the proposed DistGPU Cache using three remote GPU devices
with the original MongoDB in terms of throughput using the same queries and
documents as in Section 4.3. For MongoDB, B+tree index is used to improve the
search performance of the perfect string match query, while any index is not used
for the regular expression based search query since a simple indexing cannot be
used for the regular expression based search query. In addition to the search query
performance, the write throughput is measured in both the cases: DistGPU Cache
and MongoDB with indexes. MongoDB is operated on a memory file system (i.e.,
tmpfs) for fair comparisons.

Figure 11 shows the perfect string match query throughputs of DistGPU Cache
and the original MongoDB. Comparison between DistGPU Cache and MongoDB
shows that the DistGPU Cache outperforms MongoDB even if the number of doc-
uments is small. When the number of documents is one hundred million, DistGPU
Cache outperforms MongoDB by 2.79x.

Figure 12 shows the regular expression based string match query throughputs
of DistGPU Cache and the original MongoDB. In the case of DistGPU Cache, the
throughput degradation is suppressed especially when the number of documents is
large. As a result, when the number of documents is one hundred million, DistGPU
Cache outperforms the original MongoDB by 640.8x.

Regarding the latency, the execution times to deal with the perfect matching
query are 0.30 msec and 0.071 msec for the DistGPU Cache and the original Mon-
goDB cases respectively. On the other hand, those of the regular expression matching
query are 44.0 msec and 28198.8 msec for the DistGPU Cache and the original Mon-
goDB cases respectively as the regular expression matching query is quite compute
intensive.

Figure 13 shows write query throughputs of DistGPU Cache and the original
MongoDB. B+tree database indexes are used in the original MongoDB case. In
this experiment, write queries that add new documents are performed on both the
data stores (i.e., DistGPU Cache and the original MongoDB) where ten million
documents have been already stored. Here, each document has id field and five
string fields filled with randomly-generated eight characters. As shown in Figure
13, the write throughput of the original MongoDB is degraded as the number of
indexed fields increases, while the write throughput of DistGPU Cache is almost
constant even when the number of cached fields in DistGPU Cache increases.



12

5 Summary

In this paper, we proposed DistGPU Cache, in which a host and GPU devices
are connected via PCIe over 10GbE so that GPU devices that cache and process
a document-oriented data store can be added and removed dynamically. We also
proposed a bucket partitioning method that distributes ranges of documents to
GPU devices based on a hash function. The buckets of DistGPU Cache can be
dynamically divided and merged when the GPU devices are added and removed,
respectively.

In the evaluations, we compared local and remote GPU devices on DistGPU
Cache in terms of regular expression match query throughput. We also compared
the DistGPU Cache with remote GPU devices and the original document-oriented
data store in terms of performance. We showed that although the local GPUs case
outperforms the remote GPUs case by 1.08x, the remote overhead is quite small
and can be compensated by a high horizontal scalability to add more GPU devices
via a network. We also showed that DistGPU Cache with GPU devices significantly
outperforms the original data store.

Acknowledgements This work was partially supported by Grant-in-Aid for JSPS
Research Fellow. H. Matsutani was supported in part by JST PRESTO.

References

1. Apache Couch DB. http://couchdb.apache.org
2. MongoDB. http://www.mongodb.org
3. Duato, J., Pena, A., Silla, F., Mayo, R., Quintana-Orti, E.: rCUDA: Reducing the

Number of GPU-based Accelerators in High Performance Clusters. In: Proc. of the
International Conference on High Performance Computing and Simulation (HPCS’10).
pp. 224–231 (Jun 2010)

4. Morishima, S., Matsutani, H.: Performance Evaluations of Graph Database using
CUDA and OpenMP-Compatible Libraries. ACM SIGARCH Computer Architecture
News 42(4), 75–80 (Sep 2014)

5. Morishima, S., Matsutani, H.: Performance Evaluations of Document-Oriented
Databases using GPU and Cache Structure. In: Proc. of International Symposium
on Parallel and Distributed Processing with Applications. pp. 108–115 (August 2015)

6. Naghmouchi, J., Scarpazza, D.P., BereKovic, M.: Small-ruleset Regular Expression
Matching on GPGPUs: Quantitative Performance Analysis and Optimization. In:
Proc. of the International Conference on Supercomputing (ICS’10). pp. 337–348 (Jun
2010)

7. Shukla, D., et al.: Schema-agnostic Indexing with Azure DocumentDB. In: Proc. of
the International Conference on Very Large Data Bases (VLDB’15). pp. 1668–1679
(Aug 2015)

8. Sitaridi, E.A., Ross, K.A.: GPU-accelerated String Matching for Database Applica-
tions. The VLDB Journal pp. 1–22 (Nov 2015)

9. Suzuki, J., Hidaka, Y., Higuchi, J., Yoshikawa, T., Iwata, A.: ExpressEther - Ethernet-
Based Virtualization Technology for Reconfigurable Hardware Platform. In: Proc.of In-
ternational Symposium on High-Performance Interconnects. pp. 45–51 (August 2006)

10. Vasiliadis, G., Polychronakis, M., Ioannidis, S.: Parallelization and Characterization of
Pattern Matching using GPUs. In: Proc. of the International Symposium on Workload
Characterization (IISWC’11). pp. 216–225 (Nov 2011)

11. Zu, Y., Yang, M., Xu, Z., Wang, L., Tian, X., Peng, K., Dong, Q.: GPU-based NFA
Implementation for Memory Efficient High Speed Regular Expression Matching. In:
Proc. of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP’12). pp. 129–140 (Feb 2012)


