
Performance Evaluations of Document-Oriented Databases using
GPU and Cache Structure

Shin Morishima
Dept. of ICS, Keio University,

3-14-1 Hiyoshi, Kohoku, Yokohama, Japan
Email: morisima@arc.ics.keio.ac.jp

Hiroki Matsutani
Dept. of ICS, Keio University,

3-14-1 Hiyoshi, Kohoku, Yokohama, Japan
Email: matutani@arc.ics.keio.ac.jp

Abstract

Document-oriented databases are popular databases,
in which users can store their documents in a schema-less
manner and perform search queries for them. They have
been widely used for web applications that process a large
collection of documents because of their high scalability
and rich functions. One of major functions of document-
oriented databases is a string search that requires a high
computational cost for a large collection of documents,
because its computational complexity increases as the
documents increase. In document-oriented databases, a
database index is typically used for improving text search
queries. However, the index cannot always be used for
text search queries, such as a regular expression match
search. To accelerate such queries by using GPUs, in this
paper, we propose a GPU-friendly cache structure, called
DDB Cache (Document-oriented DataBase Cache), which
is extracted from a document-oriented database. By using
GPU and DDB Cache, we can improve a performance of
text search queries without relying on the database indexes.
We implemented DDB Cache for MongoDB. Experimental
results using GeForce GTX 980 show that our approach
improves the performance of regular expression search
queries by up to 101x compared to the original document-
oriented database.

1. Introduction

Structured storages or NOSQLs [1] are databases that
store and retrieve information in a simpler and more
flexible data structure compared to conventional RDBMSs
(relational database management systems). Because of the
simplicity of their data structure, certain types of opera-
tions are faster than RDBMSs. In addition, a horizontal
scalability is often much enhanced by means of partitioning
(sharding) and replication over a number of machines. They
are increasingly used for Web applications and cloud-based
systems that handle Big data.

Various NOSQLs have been developed and they are
loosely classified into four categories: key-value store,
column-oriented store, document-oriented database, and
graph database. Because NOSQLs are typically optimized

Figure 1. Text search execution time vs. the number
of documents in document-oriented database

for some operations or purposes, one or some of them
are used depending on applications. According to the DB-
Engines Ranking [2] (as of April 2015), all the top three
popular databases (e.g., MySQL) employ the relational
model, while the fourth one is MongoDB which is a
document-oriented NOSQL. Document-oriented databases
[3][4] store data as JSON-like documents without a prior
knowledge of keys and data types. They are sometimes
referred as schema-less databases 1. The stored documents
can be retrieved based on the field, range, and/or regular
expression pattern. Their horizontal scalability can be en-
hanced via partitioning and replication.

One of powerful functions of document-oriented
databases is a text processing that supports regular ex-
pression based text search queries. A text processing time
increases as the number of documents increases. Figure
1 shows the execution time of MongoDB to perform a
text search when the number of documents (each document
contains eight characters) is increased. Both X- and Y-axis
scales are logarithmic. The result shows that the execution
time is proportional to the number of documents and a
single search query takes 26 seconds for 100 millions
documents.

1. In practice, some sort of schema is expected when retrieving data
efficiently.

Database indexing is a common technique to reduce
the time complexity of an information retrieval from O(n)
to O(log n). MongoDB supports database indexing so
that users can build indexes of one or more fields for a
collection of documents. These indexes are stored in a
B+tree based data structure for a faster lookup compared
to a full scan. However, such indexes cannot be used for
all the queries. For example, regular expression based text
search queries cannot utilize the index tree and a full
scan is performed instead, because indexes are built with
an assumption that words go from left to right. Instead
of the B+tree based index, a q-gram based index [5]
(in which a text document is broken into substrings of
length q and these substrings are indexed) has been studied
to support regular expression based text search queries
[6][7]. However, such a q-gram based index consumes
more memory space and takes more time to build the index
at every write queries compared to the B+tree based index;
thus it further degrades the database write performance (we
will evaluate the write throughput degradation in Section
5).

One of notable features of document-oriented databases
is related to their scheme-less data structure. The appli-
cation performance is typically restricted by the slowest
queries; thus, boosting their rich text search queries is
highly required for a wide range of applications that
process Big data. Recently, GPUs have been applied to var-
ious text processing, such as regular expression matching
[8][9][10]. However, there is no prior work that addresses
how to utilize GPUs for such emerging document-oriented
databases. In this paper, we propose a simple Document
DataBase (DDB) Cache structure suitable for a GPU-
based text processing. We can accelerate the slow search
queries that cannot utilize database indexes, by combining
DDB Cache and GPU. DDB Cache is embedded into a
document-oriented database (called a host database) and
the cached data are updated by the host database. We
demonstrate a double-digit performance improvement for
regular expression based text search queries on MongoDB
by introducing DDB Cache combined with GeForce GTX
980 GPU.

The rest of this paper is organized as follows. Section
2 surveys related work and Section 3 introduces the tar-
get document-oriented database. Section 4 proposes DDB
Cache for GPUs. Section 5 evaluates our DDB Cache
and the conventional index-based approaches in terms of
performance. Section 6 concludes this paper.

2. Related Work

2.1. SQL and NOSQL Databases using GPUs

Key-value store, such as Memcached and Redis, is an-
other class of structured storages that stores data as pairs of
key and value. In [11], Memcached is accelerated by GPUs.
The results show a significant speed-up respect to the
original software implementation, while the performance
gain is reduced when CPU-GPU data transfer overhead is
considered.

Figure 2. Example of document data structure ex-
pressed in BSON format

On the other hand, text search queries used in
document-oriented databases are compute-bound (compu-
tation intensive) and their performance can be enhanced by
utilizing the massive parallelism of GPUs. That is, such a
performance gain is expected to be much larger than the
CPU-GPU data transfer overhead. Similarly, graph search
queries used in graph database are also compute-bound and
their acceleration using GPUs is reported in [12].

In addition, SQL database operations are accelerated by
using a GPU and CUDA in [13]. They introduce a GPU
implementation of SQLite command processor.

2.2. Regular Expression Matching using GPUs

GPU-based acceleration methods for a regular expres-
sion matching that utilizes NFA (Non-deterministic Finite
Automaton) or DFA (Deterministic Finite Automaton) have
been studied so far. In [8], a regular expression matching
is accelerated by GPUs using a DFA-based approach. In
[9], a small rule-set based regular expression matching is
accelerated by GPUs. An NFA-based approach is reported
in [10]. The benefit of the NFA-based approach is a higher
memory efficiency.

To show that our GPU-friendly DDB Cache mechanism
can be used for a regular expression matching in document-
oriented databases, we implement a simple DFA-based
approach (similar to [8]) for regular expression based text
search queries and evaluate it in Section 5.4.

3. Document-Oriented Databases

As a target document-oriented database, in this paper,
we use MongoDB which is one of the famous open-source
document-oriented databases implemented in C++ [3].

3.1. Data Structure of MongoDB

In MongoDB, documents are represented in a data
interchange format called BSON, which is a binary form

of JSON (JavaScript Object Notation). Figure 2 shows an
example of a document that has three fields (i.e., id,
Name, and Age) expressed in BSON format. MongoDB
maintains a vast number of documents, each of which
consists of three parts: 1) a header that represents the
document length in Bytes, 2) Key-Value pairs, and 3) a
termination symbol that represents the end of a document.
For each Key-Value pair, Key part consists of a field name
and Value data type. Value part represents a field value in
the data type specified in the Key part. MongoDB supports
19 data types, such as ID, UTF-8 String, 32-bit Integer,
64-bit Integer, Double, Boolean, Date, and Timestamp. In
Figure 2, data types 7, 2, and 16 are corresponding to ID,
UTF-8 String, and 32-bit Integer, respectively.

3.2. Queries in MongoDB

When a search query that specifies search conditions
for some fields of documents is given to MongoDB, the
corresponding documents that match to the conditions are
retrieved. For example, when a search query that specifies a
condition of “Name == Tom && Age == 25” is performed,
the document illustrated in Figure 2 is returned, because it
matches to the condition. Search conditions are not needed
for all the fields. Actually, no condition is specified for
id field in this example. In addition to perfect-matching,

various search conditions, such as less-than, greater-than,
and range conditions for Integer types and pattern match
conditions for String types, can be used.

The time complexity of a full scan for n documents
is O(n), because a given search condition is examined
for every document. Because such a linear scan is not
acceptable especially for large data sets, database indexing
is supported in MongoDB. One or more selected fields
of documents are extracted, sorted in an ascending (or
descending) order, and stored in a B+tree data structure.
By traversing the B+tree based index, the time complex-
ity to search for n documents is reduced to O(log n).
However, document search queries that contain regular
expression based conditions cannot exploit the B+tree
based index, because the selected field-values are sorted
from the leftmost characters. In this case, an O(n) full
scan is performed instead. Thus, such queries become a
performance bottleneck.

Recent MongoDB provides the text index for text
search of string contents, in addition to a conventional
B+tree based index. Although it still cannot handle regular
expression based text search, it can search a specified
word in the documents in a collection. However, as stated
in the MongoDB documentation [14], building a text
index is similar to building a large multi-key index and
will consume more storage space and take a longer time
compared to a conventional index; thus it will impact
insertion throughput. In Section 5, we will show that even
a conventional index, which is faster than the text index,
significantly degrades the write performance.

In the next section, we propose DDB Cache mechanism
in order to accelerate such queries by using GPUs.

Figure 3. Proposed system using DDB Cache

4. DDB Cache Mechanism

DDB Cache is extracted from host databases and used
for accelerating text search queries with GPUs.

4.1. Overall System Using DDB Cache

Figure 3 shows the proposed system that consists of a
document-oriented database (i.e., MongoDB), the proposed
DDB Cache, and GPUs mounted in the same machine.
DDB Cache is created on the host memory by extracting
necessary information from the host database. Because data
structure of DDB Cache is designed for GPU-based text
processing, the cached data can be directly transferred to
a GPU memory. A text search is performed as follows,
depending on the query types.

• For update queries that write a host database, they
are processed by the database first and then DDB
Cache is updated accordingly.

• For search queries that utilize database indexes,
they are processed by the database without DDB
Cache and GPUs. The search result is returned
from the database.

• For search queries that cannot utilize database
indexes, they are processed by GPUs with DDB
Cache. The result is returned from GPU+DDB
Cache via the database.

4.2. DDB Cache Creation

Figure 4 shows a data structure of DDB Cache. It also
illustrates how to create DDB Cache by extracting data
from MongoDB. The upper half of the figure shows a
collection of simplified documents stored in BSON format
and the lower half of the figure shows the corresponding
DDB Cache structure. Again, MongoDB stores multiple
documents, each of which consists of multiple fields,
each of which is represented in a Key-Value pair. DDB
Cache is created by extracting the selected fields of all
the documents and then storing only their values into a
linear array (called Value array) for each field. Because the

Figure 4. DDB Cache creation

field name and data type of every document in the same
linear array are the same, a pair of field name and data
type is stored for each Value array (not needed for every
document). That is, a memory footprint of these Keys can
be reduced from n× (c+1) Bytes to (c+1) Bytes, where
n is the number of documents and c is the field name
length. In Figure 4, for example, Tom, Lisa, and Jim are
extracted from Name field of three documents and stored
into a single Value array (labeled as Name).

However, assuming these strings (e.g., Tom, Lisa, and
Jim) are simply stored into a Value array, a string search for
such a linear Value array cannot be efficiently parallelized,
because a sequential linear search is required to find a
terminal symbol of each string before performing a parallel
search. Thus we introduce Auxiliary array that maintains
a start address of each string in the Value array. In this
example, the Auxiliary array shows that start addresses of
Tom, Lisa, and Jim are 0, 4, and 9 in the Value array,
respectively. Auxiliary array is needed only for data fields
in variable length data types, such as String, while it is
not needed for those in fixed length data types, such as
Integer. For search queries that specify a condition that
span multiple fields (e.g., Name and Age), corresponding
Value arrays are fed to GPUs for a parallel search.

4.3. DDB Cache Update

DDB Cache can be dynamically updated in response
to write queries on the host database. In addition, because
document-oriented databases are intuitively schema-less
and valid fields may differ between documents (e.g., a
document has fields A and B, but another document has
field C only), DDB Cache must cope with such cases.

Although documents may not have values for all the
fields, all the documents must have id field as a primary
key. Value array of id field is thus created as a primary
key in DDB Cache too. Value arrays of the selected fields,
which are expected to be used in search queries, are then
created for DDB Cache.

Figure 5 illustrates DDB Cache applicable for such
schema-less cases. The contents are the same as those in

Figure 5. DDB Cache for schema-less structure

Figure 4. In the DDB Cache, there are three Value arrays
for id, Name, Age, and Mail fields and two Auxiliary
arrays for Name and Mail fields, because these two fields
store variable length strings. Since every document has
id field, the number of values stored in id Value array

represents the number of documents in the database. For
fixed-length data types (e.g., Integer), the number of values
stored in its Value array is also equal to the number of
documents. If a document has a valid value for the field,
the value is stored in the Value array; otherwise, a termi-
nation symbol that represents NULL is stored instead. For
variable-length data types (e.g., String), both Value array
and Auxiliary array are created for each field. The number
of values stored in the Auxiliary array is equal to the
number of documents, because each value in the Auxiliary
array represents a start address of the corresponding string
in the Value array. If a document does not have a valid
string value, only a termination symbol that represents
NULL is stored in the Value array, so that search queries
simply skip such documents. In Figure 5, -1 is stored in
Age Value array if a document does not have Age value,
and only a termination symbol is stored in Mail Value array
if a document does not have Mail value 2. Field values of a
document can be directly read from Value arrays for fixed-
length data types or indirectly read via the corresponding
Auxiliary arrays for variable-length data types. When we
look at the third document in Figure 5, values of id,
Name, Age, and Mail represent 2, Jim, 30, and NULL,
respectively.

They are consistent with the third document in the host
database, as shown in Figure 4.

In case new documents are added or existing documents
are elongated (e.g., when a shorter string is replaced with a
longer one) in the host database, a certain amount of margin
is preallocated at the tail of each Value array in DDB
Cache. Such unused regions are filled with a termination
symbol beforehand and can be used for newly-added or

2. If a termination symbol cannot be predefined for some fields (e.g., -1
may be stored in Integer fields as a valid value), we simply use Auxiliary
array for such fields, in order to identify empty fields. Alternatively, an
additional bitmap, in which 0 indicates empty and 1 indicates valid for
each field, can be used as a more efficient structure.

elongated documents afterward. When an update operation
replaces a string value with a longer one, the longer
one is stored in the margin region and the corresponding
Auxiliary array is updated to point the new address stored
in the margin region. If a margin region in a Value array
is running out, a larger memory is reallocated for the
Value array with more margin. Please note that we do not
have to distinguish empty fields from a margin region in
DDB Cache, because both empty and margin fields cannot
be matched to specified search conditions; thus a margin
region does not affect the search results.

To exploit GPUs with DDB Cache, slight modifications
are needed for the host document-oriented database. When
a document in the host database is updated, the correspond-
ing values in DDB Cache must be searched and updated
accordingly. To eliminate such a search cost in DDB Cache,
a lookup table that keeps track of the index number of each
document stored in DDB Cache is added to MongoDB.
Using this lookup table, the search cost at MongoDB when
DDB Cache is updated becomes O(1).

Assume an update operation of MongoDB that adds a
string value to a document that did not have a valid value
in that field. In this document, only a termination symbol
was stored as a string value in DDB Cache (i.e., there is
no space to store the new string). Thus, the new string is
simply appended at a margin region of DDB Cache and
the corresponding Auxiliary array is updated.

4.4. GPU Processing Using DDB Cache

We use a NVIDIA GPU for text processing with DDB
Cache. We implement text processing GPU kernels by C
language with CUDA (Compute Unified Device Architec-
ture) platform [15]. For a regular expression matching, we
implement a simple DFA-based GPU kernel similar to [8].

DDB Cache that implements a Value array (or a pair
of Value and Auxiliary arrays) for each field is suited for
GPU-based text processing. A string pattern matching that
compares a given condition with a group of documents is
performed as an independent thread. Thus, that for a large
number of documents can be parallelized by utilizing a
massive parallelism of recent GPUs.

A pattern matching result is returned from a GPU
device to a host. The result is formed as a bitmap, in
which each bit indicates whether each document satisfies
a given condition or not. In CUDA, a memory is allocated
in Bytes, and thus the matching results of eight documents
are packed into a single Byte. If these eight documents
that share the same result Byte are searched by multiple
threads in parallel, their write operations to the result Byte
will conflict and thus an atomic operation is additionally
required. To avoid such a conflict, a single CUDA thread
is created for each of eight documents that share the
same result Byte. That is, a single thread performs a
string matching that compares a given search condition
with selected fields of eight documents stored in DDB
Cache. Please note that further optimizations on the patten
matching kernels are possible for some specific data types

but such optimizations are beyond the scope of this paper
and left as our future work.

The result transfer overhead from a GPU device to a
host is quite small, because the result consumes only a
single bit for each document. Actually, the result transfer
time is shorter than that for a string pattern matching at a
GPU device.

Because a text search for different documents can be
performed independently, our DDB Cache approach is
applicable for multiple GPUs cases by assigning different
documents for each GPU. When n GPUs are available,
DDB Cache is statically divided into n ranges, each of
which is transferred to a corresponding GPU and searched
independently. Each GPU processes the assigned range as
well as the single GPU case.

5. Performance Evaluations

In this section, we evaluate the execution time of Mon-
goDB queries using DDB Cache with a GPU or a CPU. It
is compared with those of the original MongoDB without
database indexes and that with database indexes. Please
note that MongoDB is operated on a memory file system
(i.e., tmpfs) for fair comparisons between MongoDB and
our DDB Cache, because DDB Cache is running on a
memory.

5.1. Evaluation Environment

Four types of queries are used for the experiments: 1)
perfect-match of a single string field, 2) perfect-match of
two string fields, 3) regular expression based text match
of a string field, and 4) insertion of new documents.
Documents are stored in MongoDB and searched by these
queries. Although DDB Cache is applicable for the other
data types (e.g., Integer and Timestamp), their evaluation
results are similar to those of string queries; thus, their
results are omitted in this paper.

MongoDB and our DDB Cache are operated at the
same machine. The processor is Intel Xeon E5-2637v3
running at 3.5GHz and memory capacity is 128GB. A
single NVIDIA GeForce GTX980 GPU is used with DDB
Cache. Table 1 lists specification of the GPU. We use
MongoDB version 2.6.6 and CUDA version 6.0.

Table 1. GPU spec. used in the experiments

GeForce GTX 980
Number of cores 2,048
Core clock 1,126MHz
Memory clock 7,046MHz
Memory datapath width 256bit
Memory bandwidth 224GB/s
Memory capacity 4GB

Figure 6. Execution time of perfect-match for a single
string field

5.2. Perfect-Matching for Single String Field

MongoDB stores a number of documents, each of
which has id field and a single string field that con-
tains randomly-generated eight characters. A perfect-match
query for the single string field is performed for these
documents. Below is an example of such a perfect-match
query that retrieves documents whose “field1” field is
matched to “abc.”

find({field1:"abc"})

Randomly-generated eight characters are used for the
search condition.

Figure 6 shows the execution time of a perfect-match
query vs. the number of documents in the database. Both
X- and Y-axis are logarithmic scale. GPU+DDB Cache
(DDB Cache with a GPU) always outperforms the original
MongoDB without indexes. Its performance improvement
is 458x when the number of documents is 100 millions.
Next, we compare GPU+DDB Cache with the original
MongoDB using indexes. When the number of documents
is small, GPU+DDB Cache is comparable to MongoDB
using indexes, while MongoDB using indexes outperforms
GPU+DDB Cache as the number of documents increases.
This is because the computational cost of indexed search
is O(log n), while that with GPU+DDB Cache is O(n),
where n is the number of documents.

5.3. Perfect-Matching for Multiple String Fields

Here, each document has id field and two string fields
that contain randomly-generated characters. A perfect-
match query that specifies these two string fields is per-
formed for these documents. Below is an example of
such a perfect-match query that retrieves documents whose
“field1” and “field2” fields are matched to “abc” and “xyz”
respectively.

find({field1:"abc"},{field2:"xyz"})

Figure 7. Execution time of perfect-match for multiple
string fields

Randomly-generated eight characters are used for these
search conditions.

For the original MongoDB using indexes, we examine
two cases: 1) a composite index that covers these two fields
and 2) a single index only for the first field. We evaluate the
single index case in addition to the composite index case,
because a composite index that covers given fields may not
always be available since the number of composite index
combinations significantly increases as the number of fields
increases, as discussed in Section 5.6.

For the single index case, the search execution time
increases depending on the number of documents that have
the same value in their first string field. In other words,
the second fields of the documents that have the same
value in the indexed field are linearly searched without
indexes. Because the performance depends on the number
of documents that have the same value in their first string
field, here we define “Same String Rate” as a percentage of
documents that have the same value in their first field. For
example, when Same String Rate is 1% for 100 million
documents, 100 unique values appear a million times,
respectively. In this experiment, the number of documents
is fixed to 100 millions while Same String Rate is varied.

Figure 7 shows the execution time of the perfect-match
query for two fields vs. Same String Rate for 100 million
documents. Y-axis (the execution time) is logarithmic scale.
Except for the single index case, the execution time is
almost constant regardless of Same String Rate; thus, there
is no relationship between the execution time and Same
String Rate in the other cases. In the case of MongoDB
using the single index for the first field, its execution time
is almost the same as that with a composite index when
Same String Rate is 0%, while its execution time increases
in proportion to Same String Rate. Our GPU+DDB Cache
outperforms the single index case except when Same String
Rate is quite low. Based on these results, we will discuss
how to select GPU+DDB Cache and indexed search for
incoming queries by considering Same String Rate in
Section 5.6.

Figure 8. Execution time of regular expression match
for a single string field

5.4. Regular Expression Matching for Single String
Field

Here, each document has id field and a single string
field that contains randomly-generated 16 characters. A
regular expression based match query that specifies a
randomly-generated substring is performed for these doc-
uments. Below is a simple example of such a regular
expression based match query that retrieves documents
whose “field1” field contains a substring “abc.”

find({field1:{$regex:/abc/}})

Randomly-generated eight characters are used for the sub-
string.

As conventional database indexes cannot be used for
such regular expression queries, MongoDB with indexes is
not evaluated. We implemented a simple GPU kernel based
on [8] for DDB Cache.

Figure 8 shows the execution time of the regular
expression match query vs. the number of documents
in the database. Both X- and Y-axis are logarithmic
scale. GPU+DDB Cache outperforms MongoDB without
index and it also outperforms CPU+DDB Cache (DDB
Cache with a CPU) case. Its performance improvement
is 101x and 10x compared to MongoDB without index
and CPU+DDB Cache, respectively, when the number of
documents is 100 millions. When the number of documents
is 10 thousands, GPU+DDB Cache performance is almost
the same as CPU+DDB Cache, because the number of
documents is too small to utilize all the CUDA cores
available in GTX 980 GPU.

5.5. Write Performance

MongoDB with indexes and our GPU+DDB approach
are compared in terms of the write performance when
inserting new documents. In addition to 100 million doc-
uments, each of which has six fields (id field and five
string fields containing eight characters), new documents
are inserted to such documents in order to measure the
write throughput.

Figure 9. Write throughput (requests per second) vs.
the number of indexes or cached fields in DDB Cache

Figure 9 shows the write throughput of MongoDB with
indexes when the number of indexes is varied (id field
is indexed when X-axis equals zero). We use separated
indexes for these fields rather than a composite index.
It also shows the write throughput of GPU+DDB Cache
when the number of fields cached in DDB Cache is varied
(id field is cached when X-axis equals zero). The results
show that the write performance of MongoDB with indexes
decreases as the number of indexes increases, while that
of GPU+DDB Cache is almost constant regardless of the
number of cached fields. Please note that if we consider the
composite index, we need to take care of all the possible
combinations of composite indexes, which may further
degrade the write performance.

5.6. Comparisons to Database Indexes

Based on the above results, here we discuss how
to select GPU+DDB Cache and indexed search in the
document-oriented databases.

For regular expression based match queries or perfect-
match queries in which indexes were not prepared,
GPU+DDB Cache is the best solution. Obviously we
focused on such cases in this paper. Here, we discuss the
other cases as follows.

For perfect-match queries for a single field, using
database index can reduce a search cost and outperforms
GPU+DDB Cache, as shown in Section 5.2. However, we
need to take into account a maintenance cost of the data-
base indexes. Because entries in an index must be sorted,
the B+tree based index is updated when a new document
is inserted; thus the write performance is degraded, as
shown in Section 5.5. On the other hand, because DDB
Cache does not require any sorted data structures, its write
performance is not degraded.

For perfect-match queries for multiple fields,
GPU+DDB Cache, composite index, or single index
should be selected carefully. Regarding the composite
indexes, incoming query can utilize a composite index if an
existing index covers all the fields specified in the query.
The number of composite index combinations increases

significantly as the number of fields increases, which may
further degrade the write performance. Therefore, the
composite index is the best solution when most queries
specify the same set of fields. Otherwise, GPU+DDB
Cache or single index should be selected.

As discussed in Section 5.3, our GPU+DDB Cache
approach outperforms the single index except when Same
String Rate is quite low. Again, the execution time of
GPU+DDB Cache approach is constant regardless of Same
String Rate, while that of the single index case increases
as Same String Rate increases. More importantly, our
GPU+DDB Cache approach does not affect a write per-
formance, while an indexing degrades the performance.

5.7. CPU-GPU Data Transfer Time

Lastly, we discuss the CPU-CPU data transfer time.
The CPU-GPU data transfer time to transfer 100 millions
documents, which were used in Section 5.4, to the GPU
is 0.21sec and it is corresponding to 64% of the execution
time of a regular expression match query. However, please
note that transferring the entire 100 millions documents to
the GPU is required only when DDB Cache is created.
When DDB Cache is updated, usually only the differences
are transferred to the GPU; thus the CPU-GPU data transfer
time will be quite smaller than 0.21sec. Even if we assume
the entire 100 million documents are transferred to GPU at
every time, GPU+DDB Cache approach is 62x faster than
the original MongoDB.

If DDB Cache becomes too large and the GPU memory
is not enough, the best way is to divide the DDB Cache into
multiple portions (each of which can be fit into a single
GPU memory) and store them in multiple GPU devices.
If only a single GPU is available for use, DDB Cache is
divided into multiple portions, and then we can repeat a
procedure that transfers a portion to the GPU and performs
a search for it. In this case, the CPU-GPU data transfer
overhead is imposed every query.

6. Summary

Document-oriented databases are one of the most pop-
ular NOSQL databases due to their schema-less data struc-
ture and high horizontal scalability. MongoDB is the fourth
most popular database in the DB-Engines Ranking [2] as
of April 2015. Although a regular expression based text
search is one of the attractive features of document-oriented
databases, it incurs a significant computational cost because
database indexes are not typically suited to such queries.
This paper is the first paper that discusses how to utilize
GPUs for document-oriented databases.

In this paper, we propose DDB Cache structure suitable
for GPU-based text processing. By using GPU and DDB
Cache, we can boost text search queries with modest
modifications on the original document-oriented database.

Our GPU and DDB Cache approach is useful especially
for text search queries that cannot utilize the database in-
dexes. Experimental results using GeForce GTX 980 show

that our approach improves the performance of regular
expression search queries by up to 101x compared to the
original document-oriented database.

Acknowledgements This work was supported by
SECOM Science and Technology Foundation and JST
PRESTO.

References

[1] P. J. Sadalage and M. Fowler, NoSQL Distilled: A Brief
Guide to the Emerging World of Polyglot Persistence.
Addison-Wesley, August 2013.

[2] “DB-Engines Ranking,” http://db-engines.com/en/.

[3] “MongoDB,” http://www.mongodb.org.

[4] “Apache Couch DB,” http://couchdb.apache.org.

[5] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas,
S. Muthukrishnan, L. Pietarinen, and D. Srivastava, “Using
q-grams in a DBMS for Approximate String Processing,”
IEEE Data Engineering Bulletin, vol. 24, no. 4, pp. 28–34,
Dec. 2001.

[6] A. Korotkov, “Index Support for Regular Expression
Search,” in The PostgreSQL Conference (PGCon’12), May
2012.

[7] J. Cho and S. Rajagopalan, “A Fast Regular Expression
Indexing Engine,” in Proceedings of the International
Conference on Data Engineering (ICDE’02), Mar. 2002,
pp. 419–430.

[8] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “Paral-
lelization and Characterization of Pattern Matching using
GPUs,” in Proceedings of the International Symposium
on Workload Characterization (IISWC’11), Nov. 2011, pp.
216–225.

[9] J. Naghmouchi, D. P. Scarpazza, and M. BereKovic,
“Small-ruleset Regular Expression Matching on GPGPUs:
Quantitative Performance Analysis and Optimization,” in
Proceedings of the International Conference on Supercom-
puting (ICS’10), Jun. 2010, pp. 337–348.

[10] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng, and
Q. Dong, “GPU-based NFA Implementation for Memory
Efficient High Speed Regular Expression Matching,” in
Proceedings of the ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPoPP’12),
Feb. 2012, pp. 129–140.

[11] T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor,
and T. M. Aamodt, “Characterizing and Evaluating a Key-
value Store Application on Heterogegenenous CPU-GPU
Systems,” in Proceedings of the International Symposium
on Performance Analysis of System and Software (IS-
PASS’12), Apr. 2012, pp. 88–98.

[12] S. Morishima and H. Matsutani, “Performance Evaluations
of Graph Database using CUDA and OpenMP-Compatible
Libraries,” ACM SIGARCH Computer Architecture News,
vol. 42, no. 4, pp. 75–80, Sep. 2014.

[13] P. Bakkum and K. Skadron, “Accelerating SQL Database
Operations on a GPU with CUDA,” in Proceedings of the
Workshop on General-Purpose Computation on Graphics
Processing Units (GPGPU’10), Mar. 2010, pp. 94–103.

[14] “The MongoDB 3.0 Manual,” http://docs.mongodb.org/
manual.

[15] “NVIDIA CUDA,” https://developer.nvidia.com/
cuda-zone.

