
Accelerating Blockchain Search of Full Nodes Using GPUs

Shin Morishima
Dept. of ICS, Keio University,

3-14-1 Hiyoshi, Kohoku, Yokohama, Japan
Email: morisima@arc.ics.keio.ac.jp

Hiroki Matsutani
Dept. of ICS, Keio University,

3-14-1 Hiyoshi, Kohoku, Yokohama, Japan
Email: matutani@arc.ics.keio.ac.jp

Abstract

Blockchain is a distributed ledger system based on
P2P network and originally used for a crypto currency
system. The P2P network of Blockchain is maintained
by full nodes which are in charge of verifying all the
transactions in the network. However, most Blockchain
user nodes do not act as full nodes, because work-
load of full nodes is quite high for personal mobile
devices. Blockchain search queries, such as confirming
balance, transaction contents, and transaction histories,
from many users go to the full nodes. As a result, search
throughput of full nodes would be a new bottleneck of
Blockchain system, because the number of full nodes is
less than the number of users of Blockchain systems.
In this paper, we propose an acceleration method of
Blockchain search using GPUs. More specifically, we
introduce an array-based Patricia tree structure suitable
for GPU processing so that we can make effective use
of Blockchain feature that there are no update and
delete queries. In the evaluations, the proposed method is
compared with an existing GPU-based key-value search
and a conventional CPU-based search in terms of the
throughput of Blockchain key search. As a result, the
throughput of our proposal is 3.4 times higher than that
of the existing GPU-based search and 14.1 times higher
than that of the CPU search when the number of keys
is 80 × 220 and the key length is 256-bit in Blockchain
search queries.

1. Introduction

Blockchain is a distributed ledger system built on P2P
(Peer-to-Peer) network and was originally proposed in
bitcoin [1]. Recently, Blockchain has become popular,
because it has been applied to not only crypto currency
(e.g., bitcoin) but also the other applications, such as
transaction of non-currency asset [2][3] and smart con-
tract [4][5].

In Blockchain, transaction data are propagated to all
the nodes that join the P2P network and are verified by
these nodes. The nodes are classified into two types: full
nodes that verify all the transactions in the network and
SPV (Simplified Payment Verification) nodes that verify
a part of transactions that involve themselves. Full nodes
propagate transaction for the other full nodes and SPV
nodes when requested. From a viewpoint of Blockchain
users, being a SPV node is much lightweight compared

to a full node, because the SPV node can significantly
reduce the storage requirement to store transaction data
and the number of transactions to be verified. In addition,
if a user trusts a specific full node for deposit, the user
can use Blockchain without any SPV node operations
by deposit of asset to the full node operator. In the
case of bitcoin, many users of bitcoin applications (e.g.,
exchanges, settlements, and wallets) are using bitcoin
services without any node operations. For example, the
number of Coinbase [6] users that use its wallet service
is about 11 millions, while that of full nodes is about 9
thousands as of October 2017. It means that a bitcoin net-
work is accessed by a vast number of users and responded
by a relatively small number of full nodes. Therefore,
Blockchain search queries, such as confirming balance,
transaction contents, and transaction histories, from many
users go to full nodes and search throughput by the full
nodes would be a new bottleneck of Blockchain system.

In this paper, we propose an acceleration method
of Blockchain search using GPUs (Graphics Processing
Units), because GPUs have high computational power
and can be used for acceleration of various databases. A
major difference between Blockchain and conventional
databases is that there is no update and delete query for
old blocks. We accelerate Blockchain search by taking
advantage of this feature. More specifically, we propose
to use an array representation of Patricia tree that can
make use of both the Blockchain and GPU features.

2. Related Work

2.1. Data Structure of Blockchain

Figure 1 shows an overview of data structure of
Blockchain. As shown in the upper half of the figure,
Blockchain consists of multiple blocks, each of which has
information of block ID, previous block ID, and multiple
transaction contents. A block is linked to its previous
block via the previous block ID, and this relationship
continues to the first block. A block ID is generated
as a hashed value of data included in the block, and it
affects all the successive blocks. Thus, if a block content
is modified, all the successive block IDs should be
changed accordingly. This means that tamper resistance
of Blockchain is very high, because an attacker needs
to update all the successive block IDs even when it
tampers with only one transaction in a block. The lower
half of the figure shows an overview of data structure
of a transaction. Each transaction has transaction ID



Figure 1. Overview of data structure of Blockchain

and transaction contents. The transaction contents include
information of sender, receiver, amount of remittance, and
so on. The transaction ID is a hashed value of the trans-
action contents. A write query in Blockchain appends
a new block to the last block in Blockchain. It does
not update nor delete any blocks including transaction
contents, transaction ID, and block ID

2.2. Acceleration of KVS Using GPUs
KVS (Key-Value Store) is a simple database that

stores pairs of a key and a value. KVS typically achieves
high performance and high horizontal scalability, thanks
to the simplified structure and functions that support
simple read and write queries (e.g., GET and SET
queries). Full nodes of Blockchain use KVS to store
and search transaction data. For example, as a bitcoin
system, Bitcoin Core [7], which is one of the most
famous full node implementations, uses LevelDB [8],
which is a KVS. An acceleration method of KVS using
GPUs is proposed in [9]. The proposed acceleration
method is enhanced by using NIC (Network Interface
Controller) in [10]. In these methods, KVS read queries
are accelerated by offloading key hashing and hash table
in GPUs. To handle collisions of multiple hashed values,
a chain structure is often employed. As a typical software-
based implementation of the chain, dynamic allocation
of memory and pointer of each key are used. However,
such hash table implementation is not very suitable
for GPUs, because dynamic memory allocation would
degrade the performance [11] and the chain creates a non-
deterministic number of elements in each hashed value.
To address this issue, a fixed-size set-associative hash
table is used in [10] so that GPUs can use statically-
allocated array and process a deterministic number of
elements in each thread. As a result, up to 13 million
requests per second throughput is achieved using the
above-mentioned method and direct memory access from
NIC to GPUs by GPUDirect [12]. In addition to KVS,
document-oriented data stores are accelerated by using
GPUs in [13].

Figure 2. Overview of proposed Blockchain search
method using GPUs

3. Blockchain Search Using GPUs

3.1. Overview of Blockchain Search System

Blockchain search queries typically request transac-
tion contents, transaction histories, and balance. KVS
can be used for such queries if transaction ID or user
address is used as a key and corresponding data is used
as a value. Thus, KVS is suited for the Blockchain
search queries. However, unlike most applications that
use KVS, Blockchain data are not updated nor deleted,
as mentioned in Section 2. Using this feature, Blockchain
search can be implemented efficiently than regular KVS
systems. Figure 2 illustrates the proposed Blockchain
search method using GPUs. The key-value pairs are
divided into keys and values. The keys are stored in
GPU device memory and the values are stored in CPU
host memory. An index number is assigned to each
value, and it is stored in the GPU device memory as
a “virtual value” together with the corresponding key.
A host CPU maintains a pointer array that stores host
CPU memory addresses where the values are stored. The
pointer array is indexed by the virtual values stored in
the GPU device memory. That is, a memory address of a
value is stored in an element of the pointer array indexed
by the corresponding virtual value. The virtual value of
the first key-value pair is zero and it is incremented
by one whenever a new key-value pair is added. This
is because Blockchain is append-only and there are no
update and delete queries in Blockchain. Please note that
virtual value 0 is reserved as NULL which means that
there is no matched key in the search query.

In GPU, a search query searches a given key from all
the keys stored in the GPU device memory. If the given
key is found in the GPU device memory, it returns the
corresponding virtual value; otherwise it returns NULL.
Then, in CPU, the target value can be retrieved from
a host CPU memory based on the pointer array and the
virtual value returned by the GPU search. In this method,
CPU-GPU transfer is very small. That is, only a single
integer value (i.e., virtual value) is transferred from GPU
to CPU as a query result. To accelerate the key search
in GPU, keys are organized as an array representation of
a tree structure suitable for the GPU processing. Detail
will be discussed in the next subsection.



Figure 3. Example of Patricia tree representing four
keys

3.2. Data Structure for GPU Key Search

As mentioned above, Blockchain search uses a trans-
action ID or a user address as a search key. In fact,
a transaction ID is generated as a hashed value of the
transaction contents and a user address is generated as
a hashed value of user’s public key. In bitcoin system,
length of a transaction ID is 256-bit and that of address
is 160-bit (272-bit if header and checksum are included).
An existing GPU-based acceleration of KVS uses a fixed-
size set-associative hash table [9] as mentioned in Section
2. However, there are two problems in this approach.
First, a cache miss occurs when the number of keys that
have the same hashed value is more than the number
of ways of the set associative. Second, the number of
key comparisons between a given key and a cached key
increases as the number of ways increases. Multiple com-
parisons per a query increase the GPU computation cost.
Our proposed data structure can address these problems
by exploiting the Blockchain feature.

In this paper, we propose to use Patricia tree where
each bit in a key represents a node (i.e., radix is two).
Figure 3 shows an example of Patricia tree that represents
four keys. A tree structure in the right side of the figure
is constructed from four keys shown in the left side of
the figure. Bit patterns of the four keys are mapped to
this tree from their left-most bit to the right-most bit.
Starting from the left-most digit, when two or more keys
have different bit values (0 or 1) in the selected digit,
a vertex diverges. A number in each vertex indicates the
digit where a divergence occurs. In this example, the root
vertex corresponds to the first digit (denoted as 1). The
first digit of the 1st and 3rd keys is 0, while that of the
2nd and 4th keys is 1. Thus, a divergence occurs at the
root vertex. Because the first four bits of the 2nd and
4th keys are the same (1011), the root vertex diverges
with two edges: edge 0 and edge 1011. The left child
node corresponds to the second digit (denoted as 2) and
diverges to the 3rd and 1st keys. The right child node
corresponds to the fifth digit (denoted as 5) and diverges
to the 4th and 2nd keys. Overall, the number of vertexes is
n−1 when the number of keys is n, because the vertexes
are introduced at different bits and all keys are unique.
When a new key is added to the tree, the following
two steps are performed. First, the tree is traversed from
the root based on the bit pattern of a new key and the
first unmatched bit is detected. Second, a new vertex is
introduced at the first unmatched bit and the new key is
assigned to this vertex.

Figure 4. Example of array structure representing
the tree structure
Algorithm 1 Proposed key search on GPU

1: ptr = 0 // Vertex currently visited (initial value is 0)
2: searchptr = 0 // Digit of key currently examined
3: P0[], P1[] // The first and third arrays
4: C0[], C1[] // The second and fourth arrays
5: length // Key’s bit length
6: key[] // Bit pattern of the key (key[0] is the first bit)
7: while searchptr < length do
8: p = searchptr
9: searchptr = searchptr + Ckey[p][ptr]

10: ptr = Pkey[p][ptr]
11: end while
12: return ptr // Virtual value of the key

In tree structures, an edge between two vertexes
are typically implemented as a pointer. As a result,
many pointers are used in a tree-based search, but such
implementation is not suited for GPU kernels. In this
paper, Patricia tree is represented as an array structure
suitable for using GPUs. The array structure is simply
built by storing each vertex in order added, because write
queries of Blockchain are append-only and do not update
nor delete existing keys. More specifically, four arrays
are created. The length of each array is the same as
the number of vertexes. Each vertex is corresponding to
elements at the same position in the four arrays in order
added. Figure 4 shows an example of the array structure
representing the tree structure. Four arrays in the right
side of the figure represent the tree structure shown in
the left side of the figure. Each element in the first array
indicates the left child vertex and that in the second array
indicates the digit of the left child vertex (i.e., a number
in the circle). In the same way, each element in the third
array indicates the right child vertex and that in the fourth
array indicates the digit of the right child vertex. Please
note that corresponding virtual values are stored in the
tree as leaf vertexes. For example, vertex 1’s left child
vertex is virtual value 3 as shown in the second element
in the first array. Vertex 3’s left and right child vertexes
are virtual values 5 and 1 as shown in the fourth elements
in the first and third arrays. Thus, the virtual value of a
given key can be efficiently searched by using GPUs.

3.3. Key Search Using GPUs
In this paper, we use CUDA [14] as a developmet

platform of NVIDIA GPUs. A CUDA thread is created



for each search query. Many threads can be executed in
parallel to process many queries. Algorithm 1 shows the
search process in each thread. ptr in the 1st line is a
currently visited vertex and searchptr in the 2nd line
is a currently examined digit in bit pattern of the key.
Four arrays in the 3rd and 4th lines are the proposed
array representation of Patricia tree. length in the 5th
line is bit length of the key. For example, it is 256 when
a transaction ID of bitcoin is used as a key. The condition
in the 7th line checks if the currently examined digit is
less than bit length of the key. If it is true, it means
that the search is not completed; otherwise the search is
terminated. In the 8th, 9th, and 10th lines, a digit in the
key is searched. key[p] is a value (0 or 1) of the currently
examined digit in the key (e.g., key[0] is the first bit).
The currently visited vertex and the currently examined
digit in the key are updated in the 9th and 10th lines,
respectively. These update steps execute only addition
and substitution without any conditional branches; thus
these update steps can be effectively parallelized in
GPUs. As each leaf vertex represents a corresponding
virtual value, in the 12th line, ptr to be returned is the
search result.

As a search result, the corresponding virtual value
of a given key is obtained if the key is included in
the tree. Otherwise, the search result is not matched to
the given key. For this reason, a verification step that
compares a given key and the key searched is required.
This verification step returns 0 (i.e., NULL) as the virtual
value when the comparison is not matched. It can be
implemented as a simple bit string comparison in GPUs.
In this case, bit patterns of all the keys must be stored
in the GPU device memory for the comparisons. On the
other hand, if this verification step is executed in the host
CPU, we do not have to store bit patterns of all the keys
in the GPU device memory, and thus we can save the
GPU device memory usage.

4. Performance Evaluations
In this section, we compare the following four meth-

ods in terms of performance.

• GPU: The proposed method using GPU only.
Verification of result is done by GPU.

• GPU+CPU: The proposed method using both
GPU and CPU. Search is done by GPU, while
verification is done by CPU.

• HASH: An existing GPU-based approach that
uses fixed-size set associative hash table [10].
The number of ways is 16.

• CPU: A software approach that uses hash table
with chaining for conflict resolution.

The above hash table based implementations (i.e., HASH
and CPU) use a hash function. In the evaluations, a
part of bits of keys are used as hashed values, because
the original keys (e.g., transaction ID and user address)
are already hashed values in Blockchain system. All the
methods are executed at the same machine. The pro-
cessor is Intel Xeon E5-2637v3 running at 3.5GHz and
memory capacity is 256GB. A single NVIDIA GeForce
GTX980Ti GPU is used for the GPU processing. The

Figure 5. Relationship between the number of keys
and device memory usage

Figure 6. Relationship between throughput and the
number of keys (≤ 80× 220)

number of cores is 2,816, the core clock is 1,038MHz
and the memory capacity is 6GB of the GPU.

4.1. GPU Device Memory Usage

As mentioned in Section 3.3, the memory usage of
GPU processing in our proposal depends on by which
the verification is done (i.e., GPU or GPU+CPU). Figure
5 shows the memory usage of the tree structure when the
key length is 256-bit and the number of keys is varied
from 10× 220 to 80× 220. The memory usage increases
in proportion to the number of keys in both the methods.
GPU+CPU can save the memory usage and the usage
is one third of the GPU-only when the number of keys
is 80× 220. In the bitcoin system, the number of all the
transactions until now is about 260 millions. They cannot
be stored in a single GeForce GTX980Ti when the GPU-
based key verification is used. In this case, GPU+CPU
method should be used.

4.2. Relationship between Throughput and Num-
ber of Keys

Figure 6 shows the relationship between throughput
and the number of keys when key length is 256-bit and



Figure 7. Relationship between throughput and the
number of keys (≥ 100× 220)

the number of keys is varied from 10 millions to 80
millions. In the tree-based key search, the number of
vertexes is proportional to the number of keys. It is a
binary search, so the order of the computation cost of
the search is O(logn) when the number of keys is n. In
Figure 6, the throughput is degraded as the number of
keys increases in GPU method. However, the throughput
is almost constant in all the cases in GPU+CPU method;
this is because the verification time of GPU+CPU method
is constant regardless of the number of keys and it is
significant in the whole process. In the hash-based key
search, the order of the computation cost of hash search
is O(1). However, in Figure 6, the throughput is degraded
as the number of keys increases in HASH method. This
is due to collisions of hashed values. In the fixed-size set
associative hash table, as the number of keys increases,
due to the collisions, the number of comparisons for
verifying a key increases up to 16. On the other hand, the
throughput in CPU method is almost constant, because of
a low probability of collisions because the hash table can
utilize abundant host CPU memory. In summary, when
the number of keys is 80× 220, the throughput of GPU
method is 3.4 times higher than that of HASH method.
It is 14.1 times higher than that of CPU method.

Due to the GPU device memory limitation, when a
huge number of keys are searched, GPU+CPU method is
a reasonable option for the GPU processing. To discuss
such a situation, we evaluate the cases when the number
of keys is more than 100×220. Figure 7 shows the results
when the number of keys is more than 100 × 220. Al-
though the throughput of GPU+CPU method is degraded
as the number of keys increases, it is still 4.8 times higher
than that of CPU method even when the number of keys
is 200× 220. This result demonstrates a good scalability
of GPU+CPU method that does not store all the keys in
the GPU device memory.

5. Summary

In this paper, we proposed an acceleration method
of Blockchain search at full nodes using GPUs. We
proposed an array-based Patricia tree structure for the

Blockchain key search using GPUs. The structure con-
sists of four arrays and optimized for the GPU processing.
It can make effective use of Blockchain feature, that
is, there are no update and delete queries. Furthermore,
the structure can search a given key without storing
all the existing keys in the GPU device memory; as a
result, a huge number of keys can be managed within a
single GPU. In the evaluations, the proposed method is
compared with an existing GPU-based key-value search
and a conventional CPU-based search in terms of the
throughput of Blockchain key search. As a result, the
throughput of our proposal is 3.4 times higher than that
of the existing GPU-based search and 14.1 times higher
than that of the CPU search when the number of keys
is 80 × 220 and the key length is 256-bit in Blockchain
search queries. When all the keys cannot be stored in a
single GPU, the throughput of our proposal is 4.8 times
higher than that of CPU search.

References

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash
System,” https://www.bitcoin.com/bitcoin.pdf.

[2] “Counterparty,” https://counterparty.io/.

[3] A. Nordrum, “Wall Street Occupies the Blockchain -
Financial Firms Plan to Move Trillions in Assets to
Blockchains in 2018,” IEEE Spectrum, pp. 40–45, Sep.
2017.

[4] “Ethereum Project,” https://www.ethereum.org/.

[5] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor,
“Making Smart Contracts Smarter,” in Proceedings of the
ACM SIGSAC Conference on Computer and Communi-
cations Security, Oct. 2016, pp. 254–269.

[6] “Coinbase,” https://www.coinbase.com.

[7] “Bitcoin Core,” https://bitcoin.org.

[8] “LevelDB,” http://leveldb.org/.

[9] T. H. Hetherington, T. G. Rogers, L. Hsu, M. O’Connor,
and T. M. Aamodt, “Characterizing and Evaluating a
Key-value Store Application on Heterogegenenous CPU-
GPU Systems,” in Proceedings of the International Sym-
posium on Performance Analysis of System and Software,
Apr. 2012, pp. 88–98.

[10] T. H. Hetherington, M. O’Connor, and T. M.
Aamodt, “MemcachedGPU: Scaling-up Scale-out Key-
value Stores,” in Proceedings of the ACM Symposium on
Cloud Computing, Aug. 2015, pp. 43–57.

[11] X. Huang, C. I. Rodrigues, S. Jones, I. Buck, and W. mei
Hwu, “XMalloc: A Scalable Lock-free Dynamic Memory
Allocator for Many-core Machines,” in Proceedings of
the IEEE International Conference on Computer and
Information Technology, Jun. 2010, pp. 1134–1139.

[12] “Developing a Linux Kernel Module using GPUDirect
RDMA,” http://docs.nvidia.com/cuda/gpudirect-rdma/
index.html.

[13] S. Morishima and H. Matsutani, “Performance Evalu-
ations of Document-Oriented Databases using GPU and
Cache Structure,” in International Symposium on Parallel
and Distributed Processing with Applications, August
2015, pp. 108–115.

[14] “NVIDIA CUDA,” https://developer.nvidia.com/
cuda-zone.


