
An FPGA-Based Low-Latency Network Processing
for Spark Streaming

Kohei Nakamura, Ami Hayashi, and Hiroki Matsutani
Dept. of ICS, Keio University

3-14-1 Hiyoshi, Kohoku, Yokohama, Japan 223-8522
Email: {nakamura,hayashi,matutani}@arc.ics.keio.ac.jp

Abstract—Low-latency stream data processing is a key enabler
for on-line data analysis applications, such as detecting anomaly
conditions and change points from stream data continuously
generated from sensors and networking services. Existing stream
processing frameworks are classified into micro-batch and one-at-
a-time processing methodology. Apache Spark Streaming employs
the micro-batch methodology, where data analysis is repeatedly
performed for a series of data arrived during a short time period,
called a micro batch. A rich set of data analysis libraries provided
by Spark, such as machine learning and graph processing, can be
applied for the micro batches. However, a drawback of the micro-
batch processing methodology is a high latency for detecting
anomaly conditions and change points. This is because data are
accumulated in a micro batch (e.g., 1 sec length) and then data
analysis is performed for the micro batch. In this paper, we
propose to offload one-at-a-time methodology analysis functions
on an FPGA-based 10Gbit Ethernet network interface card
(FPGA NIC) in cooperation with Spark Streaming framework, in
order to significantly reduce the processing latency and improve
the processing throughput. We implemented word count and
change-point detection applications on Spark Streaming with
our FPGA NIC, where a one-at-a-time methodology analysis
logic is implemented. Experiment results demonstrates that the
word count throughput is improved by 22x and the change-point
detection latency is reduced by 94.12% compared to the original
Spark Streaming. Our approach can complement the existing
micro-batch methodology data analysis framework with ultra low
latency one-at-a-time methodology logic.

I. INTRODUCTION

Stream processing is a processing paradigm that repeats
an action of single or multiple operations on time-series data
generated permanently, called stream data. There is a growing
importance for processing and analyzing a large amount of
stream data in low latency due to recent advances on sens-
ing, IoT (Internet of Things), and SNS (Social Networking
Service) technologies. For example, real-time trend business
intelligence is required to collect, analyze, and perform various
actions onto the stream data within a certain time period.

Existing stream processing frameworks are classified into
micro-batch and one-at-a-time processing methodologies. In
the one-at-a-time processing methodology, data analysis is
performed whenever new data arrive along a data stream.
In the micro-batch processing methodology, data analysis is
periodically performed for a series of data arrived during a
short time period, called a micro batch; thus, the stream data
are discretely processed as multiple micro batches. Advantages
of the micro-batch methodology is that existing software
libraries for batch processing can be used for the micro-
batch processing. Fault tolerance can be improved by creating
checkpoints after processing micro batches.

Apache Spark [1] is one of large-scale data analysis frame-
works that employ a batch processing methodology. Spark
Streaming [2] is a stream processing library of Spark. Since
it employs the micro-batch processing methodology, it can
exploit rich libraries of Spark (e.g., machine learning, graph
processing) for stream processing. However, an issue is that
the micro-batch methodology inherently introduces a certain
delay for processing depending on the micro-batch length.

Most stream processing frameworks including Spark and
Spark Streaming are executed as a software program on micro-
processors. Software program has a high flexibility, and we can
speed up the data processing by various software optimization
techniques. Please note that, when high bandwidth stream data
(e.g., data stream received via 10Gbit Ethernet (10GbE)) are
processed by an application program, all the received data
are transferred from the network interface card (NIC) to an
application layer via a TCP/IP network protocol stack. That
is, in a conventional software-based stream data processing,
all the data which may not be necessary for the applications
are transferred to the application layer and then data processing
tasks such as filtering and detection are performed. If we could
perform data processing (e.g., outlier filtering and change-
point detection) at the NIC, we can drastically reduce the data
amount copied from the NIC to the application layer. Since
data transfer between the NIC and the application layer via
a kernel network protocol stack is a performance bottleneck
[3][4], such in-NIC processing can improve the performance
of stream processing.

In this paper, we propose to offload various one-at-a-
time methodology operations onto FPGA (Field Programmable
Gate Array) based 10GbE NIC and combine it with Spark
Streaming to complement its negative aspect. More specif-
ically, as an FPGA NIC, we employ NetFPGA-10G board
[5] that has a Xilinx Virtex-5 FPGA device and four 10GbE
interfaces and we implement the one-at-a-time methodology
operations on the FPGA device. By performing the stream
processing on the NIC, we can reduce data processing latency
compared to the original micro-batch methodology Spark
Streaming where a certain delay is inherently required depend-
ing on the length of each micro batch (e.g., 1 sec). In addition,
by offloading the stream processing on the NIC and reducing
(e.g., filtering) the data amount at the NIC, we can reduce
the CPU workload and improve the throughput compared to
the original Spark Streaming implemented as an application
program.

The rest of this paper is organized as follows. Section II
surveys stream processing frameworks and some FPGA-based
accelerators. Section III introduces our approach and Section



IV illustrates our accelerator design using FPGA NIC for Spark
Streaming. Section V evaluates it in terms of throughput and
latency and Section VI conclude this paper.

II. RELATED WORK

In this section, we introduce data processing frameworks
and survey FPGA-based accelerations for stream processing.

A. Classification of Data Processing

Data processing can be classified into batch processing,
one-at-a-time processing, and micro-batch processing [6]. We
will introduce representative data processing frameworks listed
in Table I.

TABLE I. CLASSIFICATION OF DATA PROCESSING.

Batch processing One-at-a-time Micro-batch
processing processing

Spark [1] Yes
Storm [7] Yes Yes

Spark Streaming [2] Yes Yes

1) Spark: Batch Processing: Spark is a parallel distributed
processing framework that has been developed in order to
process a large amount of data at high speed. Different from
Hadoop where intermediate data are stored in disks, Spark
exploits in-memory data storages in order to mitigate the disk
I/O overheads. Thus, it is suitable to iterative workloads (e.g.,
machine learning) that perform functions on the same data
set repeatedly. In Spark, a data set is stored as an in-memory
data storage called RDD (Resilient Distributed Dataset) [8]
that consists of multiple partitions for distributed processing
on a cluster of machines. For distributed processing, Spark
first reads a data set from disks and stores it as an RDD.
Then the RDD is distributed over multiple machines and
processed by them based on the partitions. Fault tolerance can
be improved by RDD [8]. Since a data set is stored as an RDD
before processing, Spark is used for parallel distributed batch
processing. In addition to Spark basic libraries that handle
RDDs, various dedicated libraries are available, such as MLlib
for machine learning, GraphX for graph processing, Spark
SQL for SQL processing, and Spark Streaming for stream
processing.

2) Spark Streaming: Micro-Batch Processing: Unlike the
batch data, stream data are a series of data generated contin-
uously over time. Unlike the batch processing that performs
functions on stored data, stream processing performs functions
(e.g., filter) on a series of data continuously generated. Spark
Streaming is a library of Spark which is used to perform stream
processing on Spark framework originally designed for batch
processing. In Spark Streaming, a series of data is divided
into small RDDs or micro batches at a regular time interval
as shown in Figure 1. These micro batches are processed by
utilizing Spark framework. By shortening the time interval of
the micro batch, we can reduce the processing latency. Such
micro-batch processing methodology strikes a good balance
between stream processing capability and high productivity
with rich libraries of Spark for batch processing. Micro-batch
methodology improves fault tolerance by creating checkpoints
at a regular time interval.

Fig. 1. Micro-batch processing of stream data.

3) Storm: One-at-a-Time Processing: Storm [7] is a dis-
tributed processing framework specialized for stream pro-
cessing. In Storm, a pipeline processing of stream data is
represented as a Directed Acyclic Graph (DAG) that consists of
sources of data called Spouts and functions for the stream data
called Bolts. Stream data is processed as a list of data called
Tuple. Generation, distribution, and processing of Tuples are
performed continuously so that stream data are processed in
a pipeline manner. Bolt is performed for each Tuple as in
a one-at-a-time processing methodology. Processing latency
is shorter than those in batch and micro-batch processing
methodologies, while computation becomes complicated and
more compute resources are required for the one-at-a-time pro-
cessing. Storm supports micro-batch processing methodology
by utilizing a library called Trident.

B. FPGA-Based Acceleration for Stream Processing

FPGA-based accelerations have been extensively studied
for stream processing. We will introduce some of them.

Machine learning is one of important tasks for stream pro-
cessing. As machine learning algorithms are typically compute
intensive, they have been offloaded to FPGA-based accelera-
tors [9]. In [9], an outlier detection based on Mahalanobis
distance was implemented on an FPGA NIC so that sensor data
with normal values are discarded at the NIC and only those
with anomaly values (i.e., outliers) are received by the host.
By filtering unnecessary data at the NIC, computation cost
including network protocol stack can be reduced. Change-point
detection has been used for stream processing. Its hardware
design was proposed in [10]. In [10], NP-CUSUM algorithm
was implemented on an FPGA in order to demonstrate a high
speed change-point detection. FPGA has a high parallelism, so
it is possible to perform various algorithms at the same time.

A compiler and libraries for stream processing on FPGAs,
called Glacier, have been developed in [11]. It translates a
database query into hardware components described in VHDL.
The hardware components are then implemented on FPGA to
process stream data. Various operations for stream processing
have been implemented on FPGAs. For example, join is one of
basic operations in databases, and handshake join is a typical
stream join algorithm. Stream join for FPGAs was studied in
[12]. Hardware-friendly designs of the stream join and their
scalability were discussed. Sliding window aggregation is also
an important operation for stream processing. It can be used
to detect anomalous conditions by monitoring real-time stream
data. Since it requires a high computation power, its efficient



Fig. 2. Data size reduction by aggregate operation.

design for FPGAs was studied in [13]. Scalability issues of
the hardware design were discussed.

Electronic commerce is an important application domain
for the stream processing. Market data feed arbitration was
accelerated by using FPGAs in [14]. The financial transactions
require a high speed communication while a single packet loss
may cause serious problems. In [14], a dynamic window model
was introduced for low-latency and lossless packet processing
for reliable market data feed arbitration.

III. OFFLOADING SPARK STREAMING USING FPGA NIC

In this paper, we propose to offload one-at-a-time method-
ology operations onto FPGA NIC in order to complement the
negative aspects of Spark Streaming. By performing stream
processing on the FPGA NIC, we can reduce data processing
latency compared to the original micro-batch methodology
Spark Streaming. By filtering unnecessary data at the NIC,
we can reduce the CPU workload (e.g., network protocol pro-
cessing) and improve the throughput compared to the original
Spark Streaming implemented as an application program. We
will introduce how our FPGA NIC based approach works with
Spark Streaming.

A. Filter Operation

A filter operation discards specific data matched to given
patterns. It is useful to reduce data amount and CPU workload
by discarding unnecessary data before network processing.
Thus, moving the filter operations from an application layer
to the FPGA NIC is beneficial.

B. Aggregate Operation in Window

An intra-window aggregate operation groups a series of
data in the same window as an input and then it outputs a single
value, such as an average value in the window. The output
data are transferred to Spark Streaming via a network protocol
stack. Typical aggregate operations include average, count,
max, min, sum, median, and variance. When the application
requires only the aggregated result, the original stream data can
be discarded at the NIC; in this case, we can reduce the data
amount and CPU workload. Thus, moving the intra-window
aggregate operations from an application layer to the FPGA
NIC is also beneficial. In Figure 2, values in five packets are
aggregated to a single value, resulting in 80% reduction in
size.

Fig. 3. Window-based change-point detection.

Fig. 4. NetFPGA-10G board.

C. Aggregate Operation between Windows

Some analysis functions require the aggregated or original
values of past windows in addition to those in the current
window. For example, a change-point detection compares
incoming data with the aggregated values of past windows in
order to detect change points. Figure 3 illustrates the simple
change-point detection using the aggregated values of past
windows. More specifically, it uses the average values of
past windows as reference data and compares them with an
incoming value. If their difference is greater than a certain
threshold, the incoming value is detected as a change point.
Since Spark Streaming employs a micro-batch methodology,
the comparisons between the reference and incoming values
are performed at a certain interval which is equal to the length
of a micro batch; thus the change-point detection may be
delayed depending on the micro-batch length. By performing
such a compare operation in one-at-a-time manner with FPGA
NIC, we can minimize the detection latency.

Also, the original values of past windows may be required
when a specific condition is triggered. For example, when a
change point is detected, the original values before and after
the change point will be required for the application to analyze
the cause. In this case, the past values can be accumulated in
DRAMs on the FPGA NIC board and read out when necessary.

IV. DESIGN AND IMPLEMENTATION

In this section, we will illustrates design and implemen-
tation of one-at-a-time methodology operations on the FPGA
NIC incorporated with Spark Streaming.

A. Target FPGA NIC

We use NetFPGA-10G board as a target FPGA NIC. Figure
4 shows the board. It has four 10Gbit Ethernet (10GbE) in-



Fig. 5. Stream processing using FPGA NIC.

terfaces. Xilinx 10GbE MAC core is used for these interfaces.
Based on Reference NIC design provided by NetFPGA team
[5], we implemented one-at-a-time methodology operations on
the FPGA NIC. The board has 288MB RLDRAM 1 and we use
it to store the aggregated or original values in past windows.

B. Stream Processing Using FPGA NIC

The FPGA NIC provides two major functions: packet
processing and stream processing. Figure 5 illustrates the
hardware components implemented on the FPGA NIC. As
shown in this figure, “Packet Header Check” and “Packet Filter
and Rewrite” modules are related to the packet processing,
while “Stream Processing” module performs one-at-a-time
operations, such as aggregate operation.

1) Packet Processing: In Reference NIC design for
NetFPGA-10G, the bit width of AXI (Advanced eXtensible
Interface) based internal bus is 256-bit; thus Packet Header
Check module receives packets in 256-bit width. When it
receives a new packet, it checks the protocol and destina-
tion port fields of the packet to see whether it is sent to
Spark Streaming. In our implementation, we modified Spark
Streaming to support UDP as a transport layer protocol. In this
case, UDP packets with a specific port number are detected
as Spark Streaming packets. All the other packets, such as
ARP (Address Resolution Protocol) packets, are passed to the
network protocol stack as usual. Only sample data are extracted
from the Spark Streaming packets and passed to Stream
Processing module where selected one-at-a-time operations,
such as aggregation, are performed. Stream Processing result is
passed to Packet Filter and Rewrite module where it is packed
as a packet and then transferred to Spark Streaming via a
network protocol stack. Thus the one-at-a-time methodology
operations are performed at the NIC and the result can be
immediately notified to the application.

2) Stream Processing: Here we illustrate two stream pro-
cessing functions: (1) word count using an intra-window
aggregate operation and (2) change-point detection using a
inter-window aggregate operation.

(1) Word Count: This function counts the number
of each word appeared in a certain time duration. In our
experimental system, a server machine has NetFPGA-10G
NIC with our packet and stream processing modules and
Spark Streaming is running on an application layer. A client

1A newer NetFPGA board, called NetFPGA-SUME, has 8GB DRAM.

machine that has Mellanox 10GbE NIC is connected to the
server machine via a SFP+ direct attach copper cable. The
client machine sends packets containing words to the server
machine. In the stream processing module, a key-value store
is implemented where key is corresponding to a word and
the value is its counter. When the module receives a word,
the value field of the corresponding key is incremented. After
a prespecified time duration (e.g., 100usec), a list of (word,
count) pairs is transferred to the network protocol stack as
a normal Spark Streaming packet. Since Spark Streaming
receives the aggregated result as a normal data packet, our
FPGA NIC based stream processing is transparent to Spark
Streaming. Actually, modifications on Spark Streaming for our
proposed system are quite small 2. After the aggregated result
is sent to Spark Streaming, value fields of all the keys are reset
to 0. By performing the stream processing at the FPGA NIC,
we can reduce the data amount at the NIC and also reduce the
CPU workload for the network packet processing and Spark
Streaming.

(2) Change-Point Detection: This function monitors
incoming data and detects a change point when the received
data exceed a certain threshold compared to the past data.
We assume one-dimensional numerical data for the input. All
the received values are summed up for each window and
the average value is calculated at the end of the window by
dividing the total value by the number of values in the window.
The average values of past windows are used as reference data
for the change-point detection. When the stream processing
module receives a new value, the value is compared to these
reference data; if the difference between them exceeds a certain
threshold, it detects a change point. Although this detection
method is very simple, we can extend it more sophisticated
one. When a change point is detected, the reference data
or original data stored in RLDRAM can be also transferred
to Spark Streaming for further analysis. By performing the
change-point detection in a one-at-a-time manner at the NIC,
we can detect the change point immediately when it occurs.

C. Software Processing with Spark Streaming

Spark Streaming provides a receiver function in order to
receive stream data. In the original Spark Streaming, a series of
data received by the receiver function are stored as a DStream
for each micro-batch time interval. In other words, a DStream
is a small RDD where stream data during a micro-batch time
interval are stored. Then micro-batch operations defined by
applications are performed for the DStream.

In this paper, we assume that Spark Streaming deals with
a huge amount of sensor data, so UDP is preferred as a
transport layer protocol due to the simplicity and low overhead.
We modified Spark Streaming to support UDP as a transport
layer protocol. More specifically, we introduced a new custom
receiver function that can receive UDP packets and transform
them into DStream format. Applications first notify the IP
address and port number used for Spark Streaming to the
custom receiver function so that it can set up the UDP socket.

When stream processing is offloaded to the FPGA NIC,
we need to modify applications that use Spark Streaming. For
the word count application, for example, the application will

2We only modified Spark Streaming to support UDP as a transport layer
protocol.



receive a list of (word, count) pairs since the FPGA NIC
performs the word counting. For the change-point detection
application, it will receive a change-point value and past
reference data only when the change point is detected.

V. EVALUATIONS

A. Evaluation Environment

The proposed system described in the previous sections
is implemented on NetFPGA-10G board as an FPGA NIC.
Below are the major parameters of the board.

• Xilinx Virtex-5 XC5VTX240TFFG1759-2 (160MHz)

• Four SFP+ interfaces (10Gb x4)

• PCI Express Gen2 x8

• 288MB RLDRAM

Our experiments were performed by using two machines:
server and client machines. They are directly connected via
a SFP+ direct attach copper cable. Spark Streaming and our
applications are running on the server machine. NetFPGA-10G
board is mounted in the server machine as a NIC. The server
machine has an Intel Core i5-4460 CPU operating at 3.2GHz
and 8GB DRAM. As system software, we employ CentOS 6.6,
Spark version 1.6.0, Java version 1.7.0 65, and Scala 2.10.5
on the server machine.

In the client machine, a client application program ran-
domly generates sample data and continuously sends them
to the server machine as stream data. The server and client
applications communicate with each other using UDP as a
transport layer protocol since we want to minimize the data
transfer overheads. Mellanox 10GbE NIC is mounted in the
client machine. The same CPU and DRAM as well as the
server are used in the client machine. Ubuntu 15.04 is used as
an operating system.

First of all, we implemented the word count and change-
point detection applications as described in the previous sec-
tion on the server and client machines. We confirmed the
correct behavior of these applications.

Then we compared the proposed FPGA NIC based ap-
proach with the original Spark Streaming application in terms
of performance. Regarding the word count application, we
measured the maximum throughputs (packets per second) of
the proposed FPGA NIC based approach and the original
Spark Streaming based approach. To measure the maximum
throughput, we employed a 10Gbps hardware packet injector
implemented on NetFPGA-10G board. As a client machine, we
used the hardware packet injector instead of Mellanox 10GbE
NIC for this experiment. For the word count application, the
hardware packet injector generates UDP packets that convey
randomly-generated words in 10Gbps line rate.

Regarding the change-point detection application, we mea-
sured the average latencies (sec) to detect the change points on
the proposed FPGA NIC based approach and the original Spark
Streaming based approach. The client application continuously
sends packets that convey sample data to the server. To
generate change points at a specific time interval, value range
of the sample data generated by the client is changed. Then
we measured the latency to detect the change point at the

Fig. 6. Maximum throughput for the word count.

server side application after the change point was created at
the client side application. In this case, the measured change-
point detection latency will include a communication latency
from the client machine to the server machine. To eliminate
this communication latency from the measured change-point
detection latency, the client application was executed on the
server machine and fed the sample data directly to our stream
processing hardware components implemented on the FPGA
NIC via PCI Express Gen2 x8. For the original Spark Stream-
ing based counterpart, since Spark Streaming employs micro-
batch methodology operations, we set 0.5 sec, 1 sec, and 2 sec
as the micro-batch time intervals.

B. Area Utilization

All the hardware components including our packet pro-
cessing and stream processing modules in addition to the
original Reference NIC modules were implemented on Xilinx
Virtex-5 XC5VTX240TFFG1759-2. The maximum operating
frequency satisfies the 160MHz timing constraint. We used
Xilinx ISE 13.4 for design synthesis, place, and route of our
two implementations: word count and change-point detection.

TABLE II. AREA UTILIZATION OF FPGA NIC.

Word count Change-point detection
LUTs 51,045 (34.1%) 50,471 (33.7%)

BRAMs 135 (41.7%) 136 (42.0%)
DSPs 0 (0%) 14 (14.6%)

Table II shows the resource utilizations of LUTs, BRAMs,
and DSPs for the two implementations. The word count
application does not use any DSPs. As shown in the results, all
the resource utilizations are less than 50% of the target FPGA.
This means that our proposed systems can be implemented on
the FPGA with low hardware overheads and we can employ
further sophisticated design options, such as sophisticated
change-point detection algorithm as our future work.

C. Throughput for Word Count

Figure 6 shows the maximum throughputs (packets per
second) of the word count on the proposed FPGA NIC based
approach and the original Spark Streaming based approach. As
shown in this graph, the proposed FPGA NIC based approach
improves the throughput by 22x compared to the original
Spark Streaming. Its throughput is corresponding to 99.8%
of the 10Gbps line rate, which means that our implementation
achieves the almost optimal performance.



D. Latency for Change-Point Detection

We measured the latencies to detect the change points on
the proposed FPGA NIC based approach and the original Spark
Streaming based approach. We performed the measurements
100 times for both the cases and calculated the average
latencies over the 100 trials. For the original Spark Streaming
based approach, since Spark Streaming employs the micro-
batch methodology operation, we can estimate the expected
latencies depending on the micro-batch lengths (i.e., 0.5 sec,
1 sec, and 2 sec). When the micro-batch length is 1 sec,
the expected latency for the original Spark Streaming based
approach can be modeled as (0.5 + Tp), where Tp is an
actual computation time for the change-point detection by the
application software.

TABLE III. LATENCY FOR THE CHANGE-POINT DETECTION (SEC).

Measured latency Expected latency
Spark Streaming (0.5 sec) 0.457 0.25 + Tp

Spark Streaming (1 sec) 0.817 0.5 + Tp

Spark Streaming (2 sec) 1.249 1 + Tp

FPGA NIC 0.048 -

Table III shows the measured average latencies and ex-
pected latencies for the change-point detection on the four
cases. Especially for the original Spark Streaming cases, we
can estimate Tp by comparing the measured average latency
and the expected latency; as a result, Tp is approximately
0.26sec. On the other hand, the measured average latency for
the proposed FPGA NIC based approach is only 0.048sec. This
latency is only 5.88% of the original Spark Streaming approach
with a 1 sec micro-batch interval. If we assume that the micro-
batch interval is zero 3, it is still only 18.46% of the original
Spark Streaming approach. These results demonstrate that the
proposed FPGA NIC based approach significantly reduces the
change-point detection latency. We believe our approach would
be beneficial for a wide range of real-time stream analysis
applications that require high throughput and/or low latency.

VI. SUMMARY

In this paper, we proposed to offload various one-at-a-time
methodology operations onto FPGA NIC and combine it with
Spark Streaming in order to complement its negative aspects on
the micro-batch methodology processing and application level
aggregation/filtering. By performing the stream processing
on the FPGA NIC, we can reduce data processing latency
compared to the original micro-batch methodology Spark
Streaming. By filtering unnecessary data at the NIC, we can
reduce the CPU workload (e.g., network protocol processing)
and improve the throughput compared to the original Spark
Streaming implemented as an application program.

We implemented the word count and simple change-point
detection applications on the proposed system. More specifi-
cally, we implemented our packet processing and stream pro-
cessing hardware components on NetFPGA-10G board as an
FPGA NIC in conjunction with Spark Streaming applications.
The area utilization was modest and the hardware components
satisfied the 160MHz timing constraint. We confirmed the
correct behaviors of these applications on the real machines.
Experimental results using real machines demonstrated that
the word count throughput was improved by 22x compared

3This is an extreme assumption.

to the original Spark Streaming. This throughput is 99.8% of
the 10Gbps line rate, which means that our implementation
achieves the almost optimal performance. In addition, the
change-point detection latency was reduced to only 5.88% of
the original Spark Streaming approach with a 1 sec micro-
batch interval. These results demonstrated that the proposed
FPGA NIC based approach significantly improved the perfor-
mance of these applications and it would be beneficial for
a wide range of real-time stream analysis applications that
require high throughput and/or low latency.

To the best of our knowledge, this paper is the first work
to offload Spark Streaming on FPGA NIC. As the aim of
this paper is to demonstrate the performance improvement
by the hardware offloading, we implemented relatively simple
applications on the FPGA NIC. We are now planning to
implement more sophisticated stream analysis operations on
the FPGA NIC as a future work.

Acknowledgements This work was supported by JST PRESTO
and JSPS KAKENHI Grant Number JP16H02793.

REFERENCES

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster Computing with Working Sets,” in Proceedings of the
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud’10),
Jun. 2008.

[2] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized Streams: Fault-Tolerant Streaming Computation at Scale,”
in Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP’13), Nov. 2013, pp. 423–438.

[3] Y. Xua, E. Frachtenbergb, and S. Jiang, “Building a High-Performance
Key-Vluec Cache as an Energy-Efficient Apppliance,” Performance
Evaluation, vol. 79, pp. 24–37, Sep. 2014.

[4] Y. Tokusashi and H. Matsutani, “A Multilevel NOSQL Cache Design
Combining In-NIC and In-Kernel Caches,” in IEEE International Sym-
posium on High Performance Interconnects (Hot Interconnects 24),
Aug. 2016, pp. 60–67.

[5] “The NetFPGA Project,” http://netfpga.org/.
[6] Nathan Marz and James Warren, Big Data: Principles and Best Prac-

tices of Scalable Real-Time Data Systems. Manning Publications, 2015.
[7] “Apache Storm,” http://storm.apache.org/.
[8] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. J. Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets:
A Fault-Tolerant Abstraction for In-Memory Cluster Computing,” in
Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI’12), Apr. 2012, pp. 15–28.

[9] A. Hayashi, Y. Tokusashi, and H. Matsutani, “A Line Rate Outlier Fil-
tering FPGA NIC using 10GbE Interface,” ACM SIGARCH Computer
Architecture News, vol. 43, no. 4, pp. 22–27, Sep. 2015.

[10] P. Benacek, R. B. Blazek, T. Cejka, and H. Kubatova, “Change-Point
Detection Method on 100 Gb/s Ethernet Interface,” in Proceedings
of the ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS’14), Jun. 2014, pp. 245–246.

[11] R. Mueller, J. Teubner, and G. Alonso, “Streams on Wires: A Query
Compiler for FPGAs,” in Proceedings of the International Conference
on Very Large Data Bases (VLDB’09), Aug. 2009, pp. 229–240.

[12] Y. Oge, T. Miyoshi, H. Kawashima, and T. Yoshinaga, “Design and
Implementation of a Handshake join Architecture on FPGA,” IEICE
Transactions on Information and Systems, vol. E95-D, no. 12, pp. 2919–
2927, Dec. 2012.

[13] Y. Oge, M. Yoshimi, T. Miyoshi, H. Kawashima, H. Irie, and T. Yoshi-
naga, “An Efficient and Scalable Implementation of Sliding-Window
Aggregate Operator on FPGA,” in Proceedings of the International
Symposium on Computing and Networking (CANDAR’13), Dec. 2013,
pp. 112–121.

[14] S. Denholm, H. Inoue, T. Takenaka, T. Becker, and W. Luk, “Low
Latency FPGA Acceleration of Market Data Feed Arbitration,” in
Proceedings of the International Conference on Application-Specific
Systems, Architectures and Processors (ASAP’14), Jun. 2014, pp. 36–
40.


