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Abstract—Existing simple routing protocols (e.g., OSPF, RIP)
have some disadvantages of being inflexible and prone to
congestion due to the concentration of packets on particular
routers. To address these issues, packet routing methods using
machine learning have been proposed recently. Compared
to these algorithms, machine learning based methods can
choose a routing path intelligently by learning efficient routes.
However, machine learning based methods have a disadvantage
of requiring training time. Therefore, we use a lightweight ma-
chine learning algorithm, OS-ELM (Online Sequential Extreme
Learning Machine), to reduce the training time in this paper.
There is a previous work about reinforcement learning method
using OS-ELM, though it has a problem of low learning
accuracy. Hence, we propose OS-ELM QN (Q-Network) with
a prioritized experience replay buffer and multi-agent learning
function to improve the learning performance. It is compared
to a deep reinforcement learning based packet routing method
using a network simulator. Experimental results show that
the introduction of the experience replay buffer improves the
learning performance. In terms of learning speed, OS-ELM QN
achieves approximately 2 times speedup than a DQN (Deep
Q-Network). The multi-agent learning further improves the
learning speed of OS-ELM QN.

1. Introduction
In the past few years, the amount of traffic flowing

through the Internet has increased rapidly [1]. Existing
routing protocols such as OSPF [2] and RIP [3] may not
be able to deal with the increase of network traffic. For
example, OSPF protocol uses Dijkstra algorithm to find the
shortest path without considering the congestion. Therefore,
when a data flow increases, it can overload certain routers
and reduce a throughput in the network. On the other hand,
packet routing methods using machine learning have been
proposed recently. These methods can intelligently select
a routing path by utilizing a high representational ability
to take into account complex information. Some previous
works report that machine learning methods achieve a higher
throughput than OSPF [4] [5].

However, many of the previous methods only aim to
improve a packet transfer efficiency; there has been little
research on reducing the training costs. A lower training
cost has some advantages. Since network conditions change
from time to time, it is better to shorten the training time to
deal with these changes. In addition, all the network nodes
may not have computing resources enough to train deep
neural networks.

In this paper, we propose a packet routing method using
OS-ELM (Online Sequential Extreme Learning Machine),
which enables a sequential learning of neural networks. It is
known as a lightweight machine learning method compared
to deep neural networks using a backpropagation algorithm.

A reinforcement learning method using OS-ELM for Q-
learning has already been proposed [6]. This previous work

used a random update technique, which has a disadvantage
of slow convergence speed during the training. In this paper,
we newly introduce an experience replay buffer to OS-
ELM-based reinforcement learning in order to stabilize the
training. In addition, multi-agent learning is implemented to
further speed up the training.

In this paper, we design the state and reward to achieve
a lower latency in the packet transfer. Specifically, we aimed
to avoid congestion by using negative numbers of delays in
the reward. We evaluate OS-ELM QN as a reinforcement
learning based packet routing method.

The rest of this paper is organized as follows. Section
2 describes preliminary knowledge. Section 3 overviews
related works. Section 4 proposes OS-ELM QN for packet
routing. Evaluation results in terms of learning performance,
execution time, packet routing performance, and multi-agent
learning are presented in Section 5. Section 6 discusses the
usefulness of OS-ELM QN. Section 7 concludes this paper.

2. Preliminaries

This section introduces OS-ELM (Online Sequential
ELM), DQN (Deep Q-Network), prioritized replay buffer,
and multi-agent learning.

2.1. OS-ELM

OS-ELM [7] is an online sequential learning algorithm
for 3-layer neural networks that consist of an input layer, a
hidden layer, and an output layer. Here, we assume that the
numbers of their nodes are n, X̃ , and m nodes, respectively.
Figure 1 shows an example network model of OS-ELM.
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Figure 1. OS-ELM (Online Sequential Extreme Learning Machine)

α ∈ Rn×X̃ is an input weight matrix between the input
and hidden layers, β ∈ RX̃×m is an output weight matrix
between the hidden and output layers, and b ∈ RX̃ is a bias
vector of the hidden layer.



Assuming that the i-th training chunk {xi ∈ Rki×n, ti ∈
Rki×m} with batch size ki is given, the i-th optimal solution
βi can be computed as the following equation.

Pi = Pi−1 − Pi−1H
⊤
i (I +HiPi−1H

⊤
i )−1HiPi−1

βi = βi−1 + PiH
⊤
i (ti −Hiβi−1),

(1)

where Hi is defined as Hi ≡ G(xi · α + b) using an
activation function G.

The initial values P0 and β0 are precomputed as follows.

P0 = (H⊤
0 H0)

−1

β0 = P0H
⊤
0 t0

(2)

As shown in Equation 1, the output weight matrix βi and
its intermediate result Pi are computed from the previous
training results βi−1 and Pi−1. Thus, OS-ELM can sequen-
tially update the model with a newly-arrived target chunk in
one shot.

2.2. DQN

DQN [8] is known as a typical reinforcement learning
algorithm. Qθ1(st, at) represents a Q-value in time step t
when taking action at in state st. θ1 represents a set of
neural network parameters.

In DQN, a target signal can be computed as follows.

f(rt, st+1, dt) = rt + (1− dt)γmax
a∈A

Qθ2(st+1, a), (3)

where γ ∈ [0, 1] is a discount rate that determines the
importance of the next step, rt represents the reward for
transitioning from st to st+1, and dt indicates whether the
episode is finished, which is expressed as 1 or 0. In addition,
Equation 3 uses a fixed target Q-Network technique. If θ1
is changed each time while it is used for predicting the
Q-value, then the training process becomes unstable. To
suppress this issue, a target Q-Network θ2 is separated from
the main Q-Network θ1. θ2 is used to generate the target Q-
value for the reinforcement learning while it is periodically
updated by θ1. Then, the loss value L(θ1) is computed with
the following equation.

L(θ1) = E[(Qθ1(st, at)− f(rt, st+1, dt))
2], (4)

where E means an expectation value. New parameters are
computed using an optimization algorithm, and they are
applied to θ1.

In DQN, an experience replay technique [8] is used
to acquire a set of experiences. In Figure 3(b), a replay
buffer uses this technique. An experience means a set of
st, at, rt, st+1, and dt. If a training is performed every
time an experience is generated, the training is affected
by a temporal dependence of the generated experiences.
To suppress this negative impact, a batch of experiences
is randomly picked up from the replay buffer.

2.3. Prioritized Replay Buffer

In addition to the experience replay buffer, a recent
reinforcement learning uses a prioritized experience replay
buffer technique [9].

The random sampling method described in Section 2.2
is sometimes inefficient for preferentially training certain

transitions of high importance. To address this issue, the pri-
oritized experience replay buffer technique assigns weights
to the sampling probability of each experience based on a
priority. In Figure 3(c), a replay buffer uses this prioritized
sampling.

A sampling probability of an experience i is calculated
based on priority p of the experience as follows.

Pi =
pαi∑
k p

α
k

(pk ̸= 0), (5)

where α is a hyper-parameter that weights the priority; if α
is 0, it is equivalent to a random sampling.

2.4. Distributed Reinforcement Learning

Distributed Prioritized Experience Replay (Ape-X) [10]
is one of well-known distributed reinforcement learning
systems. By decoupling actors or agents from a learner, an
agent can get experiences more effectively than previous
distributed learning methods.

Figure 2 shows Ape-X architecture. The agents take
actions and observe the environments to obtain the rewards.
After that, they add states, actions, and rewards into a global
buffer. A learner samples the experiences from the global
buffer to learn. We use this algorithm as a baseline. We will
describe the detail in Section 4.1.
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Figure 2. Learning model of Apex-DQN

3. Related Work

3.1. Reinforcement Learning using OS-ELM

As mentioned earlier, an OS-ELM-based reinforcement
learning is proposed [6]. In this section, we describe the
reinforcement learning techniques using OS-ELM and their
shortcomings that degrade learning efficiency.

3.1.1. Simplified Output Model. The loss value of DQN is
calculated by Equation 4. In typical DQNs, the i-th node of
an output layer represents the Q-value of the i-th action, and
the Q-Network is trained so that the i-th node can predict
Q(s, ai). On the other hand, as Equation 1 shows, OS-ELM
requires teacher data t ∈ Rm to update β. Since OS-ELM
analytically derives the weight parameters, it is necessary
to specify inputs and outputs explicitly. In the previous
work [6], a set of state variables and a scalar variable that
represents actions are given as inputs to the neural network.
However, we consider that representing an action as a scalar
value may not be scalable, and thus we use a vector variable
instead of a scalar variable. We will describe the detail in
Section 4.1.1.

3.1.2. Random Update. As shown in Section 2.2, DQN
typically trains its neural network parameters in a batch
manner and uses the experience replay technique to form
a batch randomly. On the other hand, this previous work [6]



fixes the batch size to 1 and randomly decides whether to
train using an incoming experience. Figure 3(a) illustrates
the random update technique, in which Q-Network accepts
the experiences by probability P .
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Figure 3. Three experience sampling techniques

By fixing the batch size to 1, an inverse matrix operation
(I +HiPi−1H

⊤
i )−1 in Equation 1 can be interpreted as a

simple division 1
1+(HiPi−1H⊤

i )
when training an incoming

experience. This technique can eliminate the need for the
pseudo-inverse operation that typically requires SVD or QR
decomposition. However, the training may be affected by the
temporal dependence since a replay buffer is not used. In
this paper, we compare this technique with other sampling
techniques.

3.1.3. Forget Rate. The distribution of data given by the
environment may change as time goes by. To gradually
reduce the impact of old trained data, Pi is recomputed
before updating the parameters using Equation 1 as follows.

Pi−1 ← Pi−1/λ
2, (6)

where λ ∈ [0, 1] is a forget rate. Thus, the impact of old
trained data is adjusted by the λ parameter.

3.2. Packet Routing using Machine Learning

Supervised learning methods: In this section, we de-
scribe some previous research about packet routing methods
using machine learning. In [11], a data-driven supervised
learning model is designed to minimize maximum link
utilization. It implies that well-predicting traffic conditions
would be challenging when using existing methods. This
problem is one of motivations to use supervised learning.

In [4], a supervised learning method is proposed to
optimize routing efficiency using three phases: Initial phase,
Learning phase, and Running phase. In Initial phase and
Learning phase, each node collects traffic information by
using existing routing methods (e.g., OSPF) and starts train-
ing. In Running phase, each node routes packets by using
the trained neural networks. It achieves a higher forwarding
efficiency than OSPF by reducing signaling overhead [4].

Deep reinforcement learning methods: As mentioned
in [12], DRL methods are superior to supervised methods
in some respects. For example, supervised training meth-
ods require labeling a large amount of information in the
network, which is an arduous task. In addition, DRL can
autonomously monitor and control networks by training.

In [5], a system model of the reinforcement learning
(i.e., states, actions, and rewards) is defined and a central
controller which routes all the packets is designed. It shows
a higher forwarding efficiency than OSPF.

4. Proposed Routing Method

4.1. OS-ELM Q-Network

In this section, we propose OS-ELM QN (OS-ELM Q-
Network), which is an improved version of the reinforce-
ment learning method using OS-ELM [6]. OS-ELM QN
uses Ape-X as a baseline and replaces the neural network
model and optimization algorithm with OS-ELM as we in-
troduced in Section 2.1. The agent, learner, and optimization
algorithms are shown in Algorithms 1, 2, and 3.

4.1.1. Agent’s Behavior. Algorithm 1 shows the behavior
of the agent. It is running on the agents in Figure 2.

There are multiple agents. Each agent has an environ-
ment and a neural network (lines 2-3). The agent chooses
an action according to the ϵ-greedy policy (line 5) [8]. That
is, an action is chosen randomly with probability ϵ or using
an inferred result with probability (1-ϵ).

The action is represented as a vector (lines 6-9). Com-
pared to the previous method [6], we change the input
format. As we described in Section 3.1.1, a set of state
variables and a scalar action variable is used as an input data
for the Q-Network [6]. However, if a single scalar is used to
represent multiple actions, different scalar values are defined
for different actions (e.g., 0.5 for a0 and -0.5 for action a1).
The mapping between the scalar values and corresponding
actions may affect the results. In this paper, the action is
given as a vector instead of a scalar. For example, assuming
that the number of input states is 3 and the number of
input actions is 2. In this case, the neural network model
is designed as shown in Figure 4. The action vector is fed
to this single neural network as [1, 0] for action â0 and [0, 1]
for action â1, in addition to the state variables. The output
of the neural network is the Q-value corresponding to the
given action and state. Using this neural network, we get
two Q-values, Q(s, â0) and Q(s, â1), by inferring twice with
different action vectors. The action that outputs the largest
Q-value is selected as the next action.
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Figure 4. OS-ELM QN model

Then, an agent takes the inferred action and acquires the
next state st, reward rt, and finish flag dt (line 12). Each
agent stores the experience in the global buffer (line 13) and
calculates its priority (lines 14-17). The parameters θ1 are
periodically updated by given global parameters (line 18).
The above operations can be performed asynchronously.

4.1.2. Learner’s Behavior. Algorithm 2 shows a training
algorithm that updates the Q-Network parameters. It is
running on the leaner in Figure 2.



The experiences generated by the agents are stored in
a fixed-length global buffer, and the learner samples the
experiences from the global buffer (line 4). It updates the
priorities of the experiences in the global buffer (line 5) and
then it updates the neural network of the learner (line 6).
The sequential learning method for updating the parameters
is shown in Algorithm 3. Periodically, the learner shares the
updated neural network parameters with the agents.

As we described in Section 3.1.2, a random update
technique is used in the previous work [6]. Compared to
the previous work, we use a prioritized experience replay
inspired from Ape-X. This is because the previous work [6]
targets an edge environment with a limited memory capacity.
However, in this paper, our targets are network routers which
are expected to have more memory capacity than tiny edge
devices. Therefore, we introduce a prioritized experience re-
play buffer into OS-ELM QN. This modification is expected
to improve learning performance.

4.1.3. Online Sequential Learning. Algorithm 3 shows an
algorithm of online sequential learning of OS-ELM QN.
Algorithm 2 uses this algorithm to update the parameters
β. If the Q-Network is trained at the first time, an initial
learning is executed (lines 3-7). After that, a sequential
learning is executed to train the Q-Network (lines 9-12).

Algorithm 1 Agent
1: procedure Actor(B, T )
2: θ0 ← initial parameters
3: s0 ← initial state of environment
4: for t = 1 . . . T do
5: if random value r̂ < ϵ then
6: for i = 1 . . . |A| do
7: add Q(st−1, âi) into ActionList
8: end for
9: at−1 ← argmax(ActionList)

10: else
11: at−1 ← random action
12: take at−1 and acquire (st, rt, dt) from environment
13: add τ (st−1, at−1, st, rt, dt) into a local buffer
14: if size of local buffer > B then
15: get B experiences τ from local buffer
16: compute priority p based on τ
17: add (τ, p) into global buffer
18: periodically θt ← global parameters
19: end for

Algorithm 2 Learner
1: procedure Learner(T )
2: θ0 ← initial parameters
3: for t = 1 . . . T do
4: τ, id ← experiences and their indexes sampled

from global buffer
5: update priority of global buffer using id, p
6: perform online sequential learning using τ
7: end for

4.2. Packet Routing using Reinforcement Learning

In this section, we describe the packet routing method
using a reinforcement learning.

4.2.1. System Model. The proposed method considers the
following model. Here we assume the network is an undi-
rected graph G = {V ,E}, and N is the number of nodes

Algorithm 3 Online Sequential Learning
1: procedure SequentialLearning(st−1, at−1, rt, st, dt)
2: t̂← rt + (1− dt)γmaxa∈AQθ2(st)
3: if initial learn then
4: P0 ← (H⊤

0 H0)
−1

5: β0 ← P0H
⊤
0 t̂0

6: update OS-ELM QN with parameter β0
7: i← 0
8: else
9: Pi−1 ← Pi−1/λ

2

10: Pi ← Pi−1 − Pi−1H
⊤
i (I + HiPi−1H

⊤
i )−1

HiPi−1

11: βi ← βi−1 + PiH
⊤
i (t̂−Hiβi−1)

12: update OS-ELM QN with parameter βi

13: i← i+ 1

in the network. Each node has a Q-Network for each des-
tination node. For example, as shown in Figure 6, node v0
has five Q-networks, Qv0,v1 , Qv0,v2 , Qv0,v3 , Qv0,v4 , and
Qv0,v5 . Below, we describe the design of the state, action,
and reward in our reinforcement learning system.

The state s is an N -dimensional vector that ranks the
network nodes based on their buffer occupancy. For exam-
ple, in Figure 6, the number of packets held by the six nodes
are 10, 15, 5, 30, 0, and 10, respectively. In this case, the
input ranked vector is [3, 5, 2, 6, 1, 4]. The reason for using
the ranked data is to stabilize the training. This is based on
prior research in which the training was unstable when the
actual packet counts were used as input data. The state is
updated periodically as we describe below.

The action space a of each Q-Network is defined as the
next hop nodes that can take the shortest path for a given
destination node. For example, in Figure 6, the action space
of Qv0,v5

is [v1, v3] because node v1 or v3 can be selected
as a next hop when node v0 transfers packets to node v5.

The reward r is the negative signed latency of each
packet to the destination node. Figure 7 shows a packet
routing example. Here, we assume a packet is forwarded
from node v0 to node v4. Qv0,v4

forwards the packet p0
from node v0 to node v1 at cycle 0. Then, node v1 receives
p0 at cycle 4, and Qv1,v4

forwards p0 to node v4 at the
same cycle. At last, node v4 receives p0 at cycle 6. These
latencies and a routing path are stored in the packet header
of p0. As a result, Qv0,v4

will get the reward -6, and Qv1,v4

will get the reward -2. The method of acquiring the rewards
is described below.

4.2.2. Learning Flow. Figure 5 shows the learning flow in
this paper. The state and experience are updated at a pre-
specified interval.

Update state: The state s is updated periodically. For
example, let us assume that the update interval is 50 cycles.
In Figure 5, the state s0 is updated with the latest ranked
buffer occupancies at 0 cycle. Then, to infer a next hop
router, every Q-Network in every node uses the same state
s0 during 0 to 49 cycles. After that, the state is updated to
s1 with the latest buffer occupancies at 50 cycle, and every
Q-Network uses the same state s1 during 50 to 99 cycles.
The above steps are repeated until one episode is completed.

Get experiences: The latencies data at intermediate
hops are recorded in the packets during their flight to the
destination. In Figure 7, p0 has two latencies when it arrives
at node v4 from node v0. That is, Qv0,v4

took 6 cycles to
forward p0 and Qv1,v4

took 2 cycles under s0. At the same
time as the states are updated, experiences are also sent to



the nodes along the routing path. In this case, Qv0,v4 gets an
experience {s0, v1,−6, s1, 0} and Qv1,v4

gets an experience
{s0, v4,−2, s1, 0} at 50 cycle.

0 Cycle

・Update State
・Get experience

s!s" s#
・・・

Figure 5. Learning flow where time goes by from left to right.

5. Evaluations

5.1. Simulation Environment

All the programs are executed on a computer with an
Intel Core i7-10700 CPU, 32GB RAM, and NVIDIA GTX
3060 Ti GPU. The operating system is Ubuntu 20.04.

We build a network simulator with Python 3.8.10. We
use the Python library Gym 0.18.3 [13] and NetworkX
2.6.3 [14] to build the environment. To build a neural
network, we use Tensorflow 2.9.1 and NumPy 1.23.1. The
network topology of this simulation is a 4x4 mesh topology.
The reason for using this small topology is that we consider
it is sufficient to validate the proposed method. All the nodes
and edges in the network have the same link bandwidth.
Each node can forward a single packet in each cycle under
a round-robin scheduling; thus in total 16 packets are for-
warded in each cycle in the network. Each node has an infi-
nite FIFO (First-In First-Out) queue as a packet buffer. The
latency for the packet transfer is 2 cycles per a hop. All the
generated packets have the same size. A certain amount of
packets are injected at randomly-selected (discrete uniform
distribution) nodes each cycle. One episode is finished when
all the packets have been delivered completely. A destination
node of packets is selected randomly. The update interval
we described in Section 4.2.2 is set to 50 cycles.

5.2. Learning Performance

In this section, we compare the performance of DQN and
OS-ELM QN with the three different sampling techniques
(a), (b), and (c) in Figure 3. That is, the following five
methods are compared.

1) DQN (Replay buffer)
2) DQN (Prioritized replay buffer)
3) OS-ELM QN (Random update)
4) OS-ELM QN (Replay buffer)
5) OS-ELM QN (Prioritized replay buffer)

In this experiment, only a single agent is used in these
methods. We set the batch size to 64. The interval of Q-
learning is 50 cycles. The synchronization interval between
the target Q-Network and the main Q-Network as mentioned
in Section 2.2 is set to 1000 cycles. The random update
probability P is 0.5. The sampling probability parameter α
is 0.3. Table 1 shows the neural network models of DQN and
OS-ELM QN. In this experiment, 8000 packets are injected
into the network in one episode. This means 8 packets are
injected per 1 cycle until 1000 cycles.

Figure 8 shows the total rewards of all the nodes in the
network. First, we compare (3) Random update method with
the replay buffer methods. OS-ELM QN with an experience
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Figure 7. Routing example. p0[x:vi] means p0 reached vi at x cycle.

replay buffer shows a better learning performance than the
random update method, which means the experience replay
buffer technique contributes significantly to the performance
of OS-ELM QN.

We then focus on performance between DQN-based
methods ((1) and (2)) and OS-ELM-based methods ((4)
and (5)). The OS-ELM QN methods can be trained more
efficiently than the DQN methods in the first 20 episodes.
This is because the OS-ELM QN methods can optimize
parameters in one-shot, while the DQN methods optimize

OS-ELM QN (Random update)DQN (Replay buffer)

DQN (Prioritized replay)
OS-ELM QN (Prioritized replay)

OS-ELM QN (Replay buffer)

Figure 8. Total rewards vs. training episodes. X-axis shows the number of
episodes. Y-axis shows the total rewards of all nodes. Light-colored lines
show measured rewards. Heavy-colored lines show the 5-moving average.



TABLE 1. NETWORK MODELS OF DQN AND OS-ELM QN

Input layer Hidden layers Output layer
DQN 18 64 64 deg(vn)

OS-ELM QN 18 64 1

the parameters gradually. However, in subsequent episodes,
the DQN methods acquire higher average reward values than
the OS-ELM QN methods. This is because the OS-ELM
QN methods use a 3-layer neural network and only β can
be optimized.

OS-ELM QN (Random update)

DQN (Replay buffer)

DQN (Prioritized replay) OS-ELM QN (Prioritized replay)

OS-ELM QN (Replay buffer)

OSPF

Figure 9. Latency comparison. Y-axis means the total number of cycles
taken to transfer all packets.

Next, we consider the performance between the replay
buffer technique ((1) and (4)) and the prioritized replay
buffer technique ((2) and (5)). These two techniques show
some differences in the early episodes of the training process
for both the DQN and the OS-ELM QN. The total reward
values increase quickly for the prioritized replay buffer
methods in the first 10 episodes. This result indicates that
the prioritized replay technique can optimize the parameters
quickly. In the end, these two methods are converged to the
stationary state.

Finally, we evaluate these methods in terms of the packet
transfer latency. Figure 9 shows the relationship between the
packet latency and training length in episodes. In addition to
the reinforcement learning methods ((1) to (5)), we evaluate
the latency of OSPF in the same environment for compar-
ison. Comparing the reinforcement learning methods with
OSPF, the latency in the reinforcement learning methods
decrease significantly. We set the negative number of the
latency as the reward value as proposed in Section 4.2.1.
Therefore, the total latencies of the reinforcement learning
methods (except (3) Random update) decrease as the number
of episodes increases. We will discuss the latency more
detail in Section 5.4.

5.3. Learning Time

In this section, we evaluate the learning time of OS-
ELM QN and DQN. Table 2 shows the inference and
learning times of the DQN and OS-ELM QN methods in
100 episodes.

The values in the table are in seconds. The running time
of the network simulator and experience sampling are not
included. The comparison result shows that the OS-ELM

TABLE 2. COMPARISON OF LEARNING AND INFERENCE TIME

Inference time (100 ep) Learning time (100 ep)
DQN 1192.4 2999.8

OS-ELM QN 1020.5 1539.9
DQN / OS-ELM QN 1.168 1.948

QN method is about twice as fast as the DQN method.
As we mentioned in Section 5.2, this is because OS-ELM
QN does not use the backpropagation algorithm but one-hot
optimization. As a result, OS-ELM QN can learn faster.

5.4. Latency in Different Injection Rates

We evaluate the packet transfer latency under different
packet injection rates. Figure 10 shows the latencies when
the packet injection rate is varied from 1 to 10 by 1 in the
cases of (2) DQN, (5) OS-ELM QN, and OSPF.

The DQN and OS-ELM QN methods use their models
that have learned 100 episodes in Section 5.2. As we can
see, there is little difference in the latency when the injection
rate is less than 4. However, after that, the two reinforcement
learning methods achieve lower latencies than OSPF. These
results demonstrate that the reinforcement learning methods
choose a routing path intelligently when the packet injection
rate is increased. Comparing the two reinforcement learning
methods, the DQN method shows a better performance than
the OS-ELM QN method. This is due to the difference in
the final reward acquired in Figure 8.
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Figure 10. Packet transfer latency with different injection rates

5.5. Performance of Multi-agent Learning

Finally, we evaluate the performance of the multi-agent
learning method. Figure 11 shows the total reward versus
the training time in the cases of 1, 4, and 8 agents. The
executing time is 120 seconds in total. They are compared to
the DQN method. That is, the light-blue dotted line indicates
the final total rewards of (2) DQN (Prioritized replay buffer)
in Figure 8.

The current implementation of multi-agent learning of
the OS-ELM QN methods works well in improving the
learning speed but the final rewards still do not reach that
of the DQN method. As we mentioned in Section 5.2, this
slightly lower final reward may come from the represen-
tational ability of the 3-layer neural networks. However,
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Figure 11. Total rewards per running time

comparing the multi-agent cases (4 and 8 agents) to the
single agent case, the multi-agent cases actually improve
the learning efficiency per second, which demonstrates the
benefit of the multi-agent learning in the OS-ELM QN
methods.

6. Discussion

In this section, we discuss the usefulness of OS-ELM
QN and its related techniques.

First, we compare OS-ELM QN with DQN in packet
routing. In terms of learning performance, while OS-ELM
QN performed better than DQN in the early stages of
learning, the final reward of DQN was better than OS-
ELM QN in Figure 8. These results imply that OS-ELM
QN can adapt to traffic patterns quickly, while DQN still
provides a stable and high-performance routing. In terms of
learning time, OS-ELM QN could be trained approximately
two times faster than DQN. OSPF showed a lower transfer
efficiency than the reinforcement learning methods, though
OSPF does not require a training time of neural networks.
These results demonstrated that there is a tradeoff between
performance and learning speed.

The three sampling techniques were compared in this
paper. In this environment, although a random update tech-
nique did not work well, experience replay and prioritized
experience replay techniques improved the learning effi-
ciency. Especially, the prioritized experience replay tech-
nique achieved higher efficiency than the experience replay
technique in the first 10 episodes of Figure 8.

Regarding the reinforcement learning settings (e.g., state,
action, reward) introduced in Section 4.2.1, we consider that
these settings would be meaningful based on the results
from Figures 9 and 10. Further tuning on the reinforcement
learning settings is our future work.

A scalability analysis of the proposed algorithm using
larger network sizes is our future work. Each node has
(N − 1) neural networks, so the number of neural networks
in a network is quadratically increased when the network
size is increased. To alleviate this problem, we are consider-
ing combining state (i.e., buffer data) and one-hot encoded
destination node as an input state. This modification may
affect the accuracy while it can compress the number of
neural networks in each node.

7. Conclusions
In this paper, we proposed OS-ELM QN as an OS-ELM-

based reinforcement learning method for intelligent packet
routing. We evaluated the performance of OS-ELM QN by
using a network simulator to measure the packet transfer
latency. Compared to an existing work [6], we improved the
sampling technique and introduced the multi-agent learning
function.

Experimental results showed that DQN achieved a
slightly higher packet transfer efficiency than OS-ELM QN,
while OS-ELM QN could learn approximately twice as
fast as the DQN. Compared to the random update tech-
nique, the experience replay techniques contributed greatly
to improving the network performance. The multi-agent
learning further increased the learning speed of OS-ELM
QN. Further performance improvement of the multi-agent
learning is our future work.
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