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PAPER

A Lightweight Reinforcement Learning Based Packet Routing
Method Using Online Sequential Learning

Kenji NEMOTO†a), Nonmember and Hiroki MATSUTANI†b), Member

SUMMARY Existing simple routing protocols (e.g., OSPF, RIP) have
some disadvantages of being inflexible and prone to congestion due to the
concentration of packets on particular routers. To address these issues,
packet routing methods using machine learning have been proposed re-
cently. Compared to these algorithms, machine learning based methods
can choose a routing path intelligently by learning efficient routes. How-
ever, machine learning based methods have a disadvantage of training time
overhead. We thus focus on a lightweight machine learning algorithm,
OS-ELM (Online Sequential Extreme Learning Machine), to reduce the
training time. Although previous work on reinforcement learning using
OS-ELM exists, it has a problem of low learning accuracy. In this pa-
per, we propose OS-ELM QN (Q-Network) with a prioritized experience
replay buffer to improve the learning performance. It is compared to a
deep reinforcement learning based packet routing method using a network
simulator. Experimental results show that introducing the experience re-
play buffer improves the learning performance. OS-ELM QN achieves a
2.33 times speedup than a DQN (Deep Q-Network) in terms of learning
speed. Regarding the packet transfer latency, OS-ELM QN is comparable
or slightly inferior to the DQN while they are better than OSPF in most
cases since they can distribute congestions.
key words: reinforcement learning, packet routing, neural networks, OS-
ELM

1. Introduction

In the past few years, the amount of traffic flowing through
the Internet has increased rapidly [1]. Existing routing pro-
tocols such as OSPF [2] and RIP [3] may not be able to deal
with the increase of network traffic. For example, OSPF
protocol uses Dijkstra algorithm to find the shortest path
without considering the congestion. Therefore, when a data
flow increases, it can overload certain routers and reduce a
throughput in the network. On the other hand, packet rout-
ing methods using machine learning have been proposed re-
cently [4], [5]. These methods can intelligently select a rout-
ing path by utilizing a high representational ability to take
into account complex information. Some previous works re-
port that machine learning based methods achieve a higher
throughput than OSPF [4], [6].

However, many of the previous methods only aim to
improve a packet transfer efficiency, and there has been lit-
tle research on reducing the training costs. A lower train-
ing cost has some advantages. Since network conditions

Manuscript received December 28, 2022.
Manuscript revised May 1, 2023.
Manuscript publicized August 15, 2023.
†The authors are with Graduate School of Science and Tech-

nology, Keio University, Yokohama-shi, 223–8522 Japan.
a) E-mail: kenji@arc.ics.keio.ac.jp
b) E-mail: matutani@arc.ics.keio.ac.jp

DOI: 10.1587/transinf.2022EDP7231

change from time to time, it is better to shorten the training
time to deal with such changes. In addition, all the network
nodes may not have computing resources enough to train
deep neural networks. In this paper, we propose a packet
routing method using OS-ELM (Online Sequential Extreme
Learning Machine) [7], which enables a sequential learning
of neural networks. It is known as a lightweight machine
learning method compared to deep neural networks using a
backpropagation algorithm.

A reinforcement learning method using OS-ELM for
Q-learning has already been proposed [8]. This previous
work used a random update technique, which has a disad-
vantage of slow convergence speed during the training. In
this paper, we newly introduce an experience replay buffer to
OS-ELM based reinforcement learning in order to stabilize
the training. In addition, we design the state and reward to
achieve a lower latency in the packet transfer. Specifically,
we aim to avoid congestions by using negative numbers of
delays in the reward. We evaluate OS-ELM QN as a rein-
forcement learning based packet routing method.∗

The rest of this paper is organized as follows. Section 2
describes preliminary knowledge. Section 3 overviews re-
lated works. Section 4 proposes OS-ELM QN for packet
routing. Evaluation results in terms of learning perfor-
mance, execution time, and packet routing performance are
presented in Sect. 5. Section 6 discusses the evaluation re-
sults of OS-ELM QN. Section 7 concludes this paper.

2. Preliminaries

This section introduces OS-ELM, DQN (Deep Q-Network),
and prioritized replay buffer.

2.1 OS-ELM

OS-ELM [7] is an online sequential learning algorithm for
3-layer neural networks that consist of an input layer, a hid-
den layer, and an output layer. Here, we assume that the
numbers of their nodes are n, X̃, and m, respectively. Fig-
ure 1 shows an example network model of OS-ELM.

In this figure, α ∈ Rn×X̃ is an input weight matrix be-
tween the input and hidden layers, β ∈ RX̃×m is an output
weight matrix between the hidden and output layers, and
b ∈ RX̃ is a bias vector of the hidden layer.

∗This paper is an extended version of [9] by adding evaluation
results of the scalability.

Copyright c© 2023 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 OS-ELM (Online Sequential Extreme Learning Machine)

Assuming that the i-th input data xi ∈ Rk×n and teacher
label ti ∈ Rk×m with batch size k are given, the i-th optimal
solution βi can be computed as the following equation.

Pi = Pi−1 − Pi−1H�i (I + Hi Pi−1H�i )−1Hi Pi−1

βi = βi−1 + PiH�i (ti − Hi βi−1), (1)

where Hi is defined as Hi ≡ G(xi ·α+ b) using an activation
function G.

The initial values P0 and β0 are precomputed as fol-
lows.

P0 = (H�0 H0)−1

β0 = P0H�0 t0 (2)

As shown in Eq. (1), the output weight matrix βi and its in-
termediate result Pi are computed from the previous train-
ing results βi−1 and Pi−1. Thus, OS-ELM can sequentially
update the model with a newly-arrived target chunk in one
shot.

2.2 DQN

DQN [10] is known as a typical reinforcement learning al-
gorithm. Qθ1 (st, at) represents a Q-value in time step t when
taking action at in state st. θ1 represents a set of neural net-
work parameters.

In DQN, a target signal can be computed as follows.

f (rt, st+1, dt) = rt + (1 − dt)γmax
a∈A

Qθ2 (st+1, a), (3)

where γ ∈ [0, 1] is a discount rate that determines the im-
portance of the next step, rt represents the reward for transi-
tioning from st to st+1, and dt indicates whether the episode
is finished, which is expressed as 1 or 0. In addition, Eq. (3)
uses a fixed target Q-Network technique. If θ1 is changed
each time while it is used for predicting the Q-value, the
training process becomes unstable. To mitigate this issue, a
target Q-Network θ2 is separated from the main Q-Network
θ1. θ2 is used to generate the target Q-value for the rein-
forcement learning while it is periodically updated by θ1.
Then, the loss value L(θ1) is computed with the following
equation.

L(θ1) = E[(Qθ1 (st, at) − f (rt, st+1, dt))
2], (4)

where E means an expectation value. The current Q-
Network parameters θ1 are updated to minimize the squared

Fig. 2 Three experience sampling techniques

error loss between the main Q-Network and the target Q-
Network as shown in the above equation.

In DQN, an experience replay technique [10] is used to
acquire a set of experiences. In Fig. 2 (b), a replay buffer
uses this technique. An experience means a set of st, at, rt,
st+1, and dt. If a training is performed every time an ex-
perience is generated, the training is affected by a temporal
dependence of the generated experiences. To mitigate this
negative impact, a batch of experiences is randomly picked
up from the replay buffer.

2.3 Prioritized Replay Buffer

The random experience sampling method mentioned in
Sect. 2.2 is sometimes inefficient to train certain transitions
of high importance. To address this issue, a recent reinforce-
ment learning uses a prioritized experience replay buffer
technique [11].

The prioritized experience replay buffer technique as-
signs a weight to the sampling probability of each experi-
ence based on a priority. The priority can be calculated by
the TD (Temporal Difference) error [11]. In Fig. 2 (c), a re-
play buffer uses this prioritized sampling. A sampling prob-
ability of an experience i is calculated based on priority p of
the experience as follows.

Pi =
pαi
∑

k pαk
(pk � 0), (5)

where α is a hyper-parameter that weights the priority; if α
is 0, it is equivalent to a random sampling.

3. Related Work

3.1 Reinforcement Learning Using OS-ELM

As mentioned earlier, an OS-ELM based reinforcement
learning is proposed [8]. This section introduces its related
techniques and their shortcomings that degrade the learning
efficiency.
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3.1.1 Simplified Output Model

The loss value of DQN is calculated by Eq. (4). In typi-
cal DQNs, the i-th node of an output layer represents the
Q-value of the i-th action, and the Q-Network is trained so
that the i-th node can predict Q(s, ai). On the other hand,
as Eq. (1) shows, OS-ELM requires teacher data t ∈ Rm to
update β. Since OS-ELM analytically derives the weight
parameters, it is necessary to specify inputs and outputs ex-
plicitly. In the previous work [8], a set of state variables and
a scalar variable that represents actions is given as an input
to the neural network. However, we consider that represent-
ing an action as a scalar value may not be scalable, and thus
we use a vector variable instead of a scalar variable. We will
describe the detail in Sect. 4.1.1.

3.1.2 Random Update

As mentioned in Sect. 2.2, DQNs typically train their neural
network parameters in a batch manner and use the experi-
ence replay techniques to form a batch of sampled experi-
ences. On the other hand, the previous work [8] fixes the
batch size to 1 and randomly decides whether to train an
incoming experience. Figure 2 (a) illustrates the random up-
date technique, in which Q-Network accepts the experiences
by probability P.

By fixing the batch size to 1, an inverse matrix oper-
ation (I + Hi Pi−1H�i )−1 in Eq. (1) can be interpreted as a
simple division 1

1+(Hi Pi−1 H�i ) when training an incoming ex-
perience. This technique can eliminate the need for the
pseudo-inverse operation that typically requires SVD or QR
decomposition. However, the training may be affected by
the temporal dependence since a replay buffer is not used. In
this paper, we compare this technique with other sampling
techniques.

3.1.3 Forget Rate

The distribution of data given by the environment may
change as time goes by. To gradually reduce the impact of
old trained data, Pi−1 is recomputed before updating the pa-
rameters using Eq. (1) as follows.

Pi−1 ← Pi−1/λ
2, (6)

where λ ∈ [0, 1] is a forget rate. Thus, the impact of old
trained data is adjusted by the λ parameter.

3.2 Packet Routing Using Machine Learning

This section introduces packet routing methods based on su-
pervised learning and reinforcement learning.

Supervised learning methods: In [4], a supervised
learning method is proposed to optimize a routing efficiency
using three phases: Initial phase, Learning phase, and Run-
ning phase. In Initial phase and Learning phase, each node

collects traffic information by using existing routing meth-
ods (e.g., OSPF) and trains neural network models. In Run-
ning phase, each node routes packets by using the trained
neural networks. It achieves a higher forwarding efficiency
than OSPF by reducing signaling overhead [4].

In [12], a data-driven supervised learning model is de-
signed to learn an efficient packet routing strategy based on
given traffic demands. It implies that predicting traffic con-
ditions accurately would be challenging.

Deep reinforcement learning methods: As men-
tioned in [5], DRL (Deep Reinforcement Learning) meth-
ods are superior to supervised methods in some respects.
For example, supervised training methods require labeling a
large amount of information in the network, which is an ar-
duous task. Since DRL agent continuously observes states,
executes actions, and receives rewards by interacting with
an environment, it can cope with changes of the network
conditions.

In [6], a system model of the reinforcement learning
(i.e., states, actions, and rewards) is defined and a central
controller which routes all the packets is designed. It shows
a higher forwarding efficiency than OSPF.

4. Proposed Routing Method

In this section, we propose OS-ELM QN (OS-ELM Q-
Network), which is an improved version of the reinforce-
ment learning method using OS-ELM [8].

4.1 OS-ELM Q-Network

The agent and learning algorithms are shown in Algorithms
1 and 2.

4.1.1 Agent Algorithm

An agent generates experiences by interacting with a given
environment. Algorithm 1 shows its algorithm. The agent
is located in an environment and has a neural network (lines

Algorithm 1 Agent
1: procedure Agent(B,T )
2: θ1 ← initial parameters
3: s0 ← initial state of environment
4: for t = 1 . . . T do
5: if random value r̂ < (1 − ε) then
6: for i = 1 . . . |A| do
7: Add Q(st−1, âi) into ActionList
8: end for
9: at−1 ← arg max(ActionList)

10: else
11: at−1 ← random action
12: Take at−1 and acquire (st , rt , dt) from environment
13: Add τ (st−1, at−1, st , rt , dt) and priority p into a local buffer
14: if size of local buffer > B then
15: Update θ1 by Learning algorithm

16: Copy weights θ1 into target network θ2 periodically
17: end for
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Algorithm 2 Learning
1: procedure Learning
2: τ, id ← experiences and their indexes sampled from local buffer
3: Update priorities of experiences in local buffer using id
4: t̂ ← rt + (1 − dt)γmaxa∈AQθ2 (st)
5: if initial learning then
6: P0 ← (H�0 H0)−1

7: β0 ← P0 H�0 t̂0

8: Update OS-ELM QN with parameter β0

9: i← 0
10: else
11: Pi−1 ← Pi−1/λ

2

12: Pi ← Pi−1 − Pi−1 H�i (I + Hi Pi−1 H�i )−1 Hi Pi−1

13: βi ← βi−1 + Pi H�i ( t̂ − Hiβi−1)
14: Update OS-ELM QN with parameter βi

15: i← i + 1

Fig. 3 OS-ELM QN model

2-3). It chooses an action according to the ε-greedy policy
(line 5) [10]. That is, an action is chosen randomly with
probability ε or using an inferred result with probability
(1-ε).

The action is represented as a vector (lines 6-9). Com-
pared to the previous method [8], we change the input for-
mat. As we described in Sect. 3.1.1, a set of state variables
and a scalar action variable is used as an input data for the
Q-Network [8]. However, if a single scalar is used to repre-
sent multiple actions, different scalar values are defined for
different actions (e.g., 0.5 for a0 and -0.5 for action a1). The
mapping between the scalar values and corresponding ac-
tions may affect the results. In this paper, the action is given
as a vector instead of a scalar. For example, assuming that
the number of input states is 3 and the number of input ac-
tions is 2. In this case, the neural network model is designed
as shown in Fig. 3. The action vector is fed to this single
neural network as [1, 0] for action â0 and [0, 1] for action
â1, in addition to the state variables. The output of the neu-
ral network is the Q-value corresponding to the given action
and state. Using this neural network, we get two Q-values,
Q(s, â0) and Q(s, â1), by inferring twice with different ac-
tion vectors. The action that outputs the largest Q-value is
selected as the next action.

Then, the agent takes the selected action and acquires
the next state st, reward rt, and finish flag dt (line 12). The
agent stores the experience in a local buffer and calculates
its priority (line 13). When a certain amount of experiences
B are stored in the local buffer, the learning algorithm (see
Algorithm 2) is executed (line 15). The target Q-Network

Fig. 4 Network example of six nodes. Values under “Buffer” represent
(occupied capacity / total capacity).

parameters θ2 are periodically updated by parameters θ1
(line 16).

4.1.2 Learning Algorithm

Algorithm 2 shows an algorithm that updates the Q-Network
parameters. Experiences are sampled from the local buffer
(line 2). It updates the priorities of the sampled experiences
in the buffer based on the TD error (line 3).

As we described in Sect. 3.1.2, a random update tech-
nique is used in the previous work [8]. Compared to the
previous work, we use a prioritized experience replay. This
is because the previous work [8] targets low-end edge de-
vices with a strict memory size limitation. However, in this
paper, our targets are network routers which are expected to
have more memory capacity than tiny edge devices. There-
fore, we introduce a prioritized experience replay buffer into
OS-ELM QN. This modification is expected to improve the
learning performance.

The OS-ELM QN parameter β is updated by using OS-
ELM algorithm that we described in Sect. 2.1. If the Q-
Network is trained at the first time, an initial learning is
executed (lines 5-9). After that, a sequential learning is exe-
cuted to train the Q-Network (lines 11-14).

4.2 Packet Routing Using Reinforcement Learning

This section proposes a packet routing method using the re-
inforcement learning method.

4.2.1 System Model

The proposed method considers the following model. Here,
we assume that the network is an undirected graph G =

{V, E}, and N is the number of nodes in the network. Each
node has a Q-Network for each destination node. For exam-
ple, as shown in Fig. 4, node v0 has five Q-Networks, Qv0,v1 ,
Qv0,v2 , Qv0,v3 , Qv0,v4 , and Qv0,v5 . Below, we describe the de-
sign of the state, action, and reward in our reinforcement
learning system. The state s is an N-dimensional vector that
ranks the network nodes based on their buffer occupancies.
For example, there are six nodes in Fig. 4. The number of
packets held by these six nodes are 10, 15, 5, 30, 0, and 10
packets, respectively. They are then sorted by their buffer
occupancies in descending order. Their ranks are 3rd, 5th,
2nd, 6th, 1st, and 4th, respectively. Their ranks are used as
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Fig. 5 Routing example. p0[x:vi] means p0 reached vi at x cycle.

Fig. 6 Time steps for learning. State and experiences are updated at pre-
specified time interval.

input for OS-ELM QN; in this case, the input ranked vector
is [3, 5, 2, 6, 1, 4].

The reason for using the ranked data is to stabilize the
training. This is based on prior research in which the train-
ing was unstable when the actual packet counts were used
as input data. In this paper, we assume current network
states are propagated over the network as well as conven-
tional practical routing protocols, such as OSPF. The state is
updated periodically as we describe below.

The action space A of each Q-Network is defined as
the next hop nodes that can take the shortest path for a given
destination node. For example, in Fig. 4, the action space of
Qv0,v5 is [v1, v3] because node v1 or v3 can be selected as the
next hop when node v0 sends packets to node v5.

The reward r is the negative signed latency of each
packet to the destination node. Figure 5 shows a packet
routing example. Here, we assume that a packet is sent from
node v0 to node v4. Qv0,v4 forwards the packet p0 from node
v0 to node v1 at cycle 0. Then, node v1 receives p0 at cycle 4,
and Qv1,v4 forwards p0 to node v4 at the same cycle. At last,
node v4 receives p0 at cycle 6. These latencies and a routing
path are stored in the packet header of p0. As a result, Qv0,v4
will get the reward -6, and Qv1,v4 will get the reward -2. The
method to acquire the rewards is described in Sect. 4.2.2.

4.2.2 Time Steps for Learning

Figure 6 shows a timing diagram of the learning process in
this paper. The state is updated and experiences are gener-
ated at a pre-specified time interval.

Updating state: The state s is updated periodically.
For example, assume that the update interval is 50 cycles.
In Fig. 6, the state s0 is updated with the latest ranked buffer
occupancies at 0 cycle. Then, every Q-Network in every
node uses the same state s0 to select the next hop router
during 0 to 49 cycles. After that, the state is updated to s1

with the latest buffer occupancies at 50 cycle, and every Q-
Network uses the same state s1 during 50 to 99 cycles. The
above steps are repeated until one episode is completed.

Generating experiences: The latencies to reach inter-
mediate hops are recorded in each packet during its flight to
the destination. In Fig. 5, p0 has two latency values when
it arrives at node v4 from node v0. That is, Qv0,v4 took 6 cy-
cles to forward p0 and Qv1,v4 took 2 cycles under s0. At the
same time as the states are updated, experiences are sent to
the nodes along the routing path. In this case, Qv0,v4 receives
an experience {s0, v1,−6, s1, 0} and Qv1,v4 receives an experi-
ence {s0, v4,−2, s1, 0} at 50 cycle.

5. Evaluations

5.1 Simulation Environment

All the programs are executed on a computer with an Intel
Core i7-10700 CPU, 32GB RAM, and NVIDIA GTX 3060
Ti GPU. The operating system is Ubuntu 20.04.

We build a network simulator with Python 3.8.10. We
use the Python libraries of Gym 0.18.3 [13] and NetworkX
2.6.3 [14] to build the environment. To build neural network
models, we use Tensorflow 2.12.0 and NumPy 1.23.1.

The network topologies examined in this paper are 4x4
mesh, 8x8 mesh networks, and ARPANET. We assume a
4x4 mesh network unless otherwise stated. All the nodes
and edges in a network have the same link bandwidth. Each
node can forward a single packet in each cycle under a
round-robin scheduling; thus 16 and 64 packets are for-
warded in total in the 4x4 mesh and 8x8 mesh networks,
respectively. Each node has an infinite FIFO (First-In First-
Out) queue as a packet buffer. The latency for the packet
transfer is 2 cycles per a hop. All the generated packets
have the same size. A certain amount of packets are in-
jected at randomly-selected (discrete uniform distribution)
nodes each cycle. One episode is finished when all the pack-
ets have been delivered completely. A destination node of
each packet is also selected randomly. The update interval
we described in Sect. 4.2.2 is set to 50 cycles. The update
interval of states is a tuning parameter. We evaluate rewards
of OS-ELM QN by varying the update interval from 10 to
150 cycles. The hyperparameters are listed in Table 2. A
4x4 mesh topology is used. The model uses a replay buffer.
The reward value is a sum of those in all the nodes. Figure 7
shows the evaluation result, where the rewards are averaged
over ten trials. The light-colored lines represent the average
values, while the heavy-colored lines represent moving aver-
ages of five values. From this evaluation result, we observe
that the update intervals longer than 50 cycles decrease the
total rewards. On the other hand, shorter update intervals
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Table 1 Five routing methods compared in this paper.

Algorithm Number of layers Sampling method
(1) DQN 4 Replay buffer
(2) DQN 4 Prioritized replay buffer
(3) OS-ELM QN 3 Random update
(4) OS-ELM QN 3 Replay buffer
(5) OS-ELM QN 3 Prioritized replay buffer

Table 2 Hyperparameters of DQN and OS-ELM QN.

Batch size 64
ε-greedy ε 0.05
Forget rate λ 0.99
Discount rate γ 0.99
Learning rate 0.0005
Local buffer size B 512
Update probability P 0.5
Sampling probability α 0.6
Q-learning interval 50
Synchronization interval 1000

Fig. 7 Total rewards vs. training episodes of OS-ELM QN with different
update intervals. Y-axis shows the total rewards of all nodes. Light-colored
lines show average rewards. Heavy-colored lines show the 5-moving aver-
age.

increase the number of control packets in the network. We
thus selected 50 cycles as the update interval of states in this
paper.

Regarding the validity range of this paper, first of all we
made the following assumptions. The reinforcement learn-
ing based route optimization method is running on routing
nodes in a network. Their current network states are prop-
agated over the network as well as conventional practical
routing protocols, such as OSPF. Such control packets (in-
cluding those of OSPF) are quite small compared with data
traffic. The machine learning time is not integrated in our
network simulator. All the evaluations are done ten times
and average values of the ten trials are reported.

5.2 Learning Performance

In this section, we compare the performance of a 4-layer
DQN and our OS-ELM QN with the three different sampling
techniques (a), (b), and (c) in Fig. 2. That is, the following

Table 3 Number of nodes in each layer in DQN and OS-ELM QN mod-
els for 4x4 mesh network. Number of shortest paths or actions is 2.

Input layer Hidden layers Output layer
DQN 16 64 64 2

OS-ELM QN 16+2 64 1

Fig. 8 Total rewards vs. training episodes of different methods.

five methods (listed in Table 1) are compared.

1. 4-layer DQN (Replay buffer)
2. 4-layer DQN (Prioritized replay buffer)
3. OS-ELM QN (Random update)
4. OS-ELM QN (Replay buffer)
5. OS-ELM QN (Prioritized replay buffer)

We set the batch size to 64†. The interval of Q-learning
is 50 cycles††. The synchronization interval between the tar-
get Q-Network and the main Q-Network as mentioned in
Sect. 2.2 is set to 1000 cycles. The random update prob-
ability P is 0.5. The sampling probability parameter α is
0.6. Model parameters of OS-ELM QN are listed in Ta-
ble 2. Table 3 shows the neural network models of DQN
and OS-ELM QN. In this experiment, 8000 packets are in-
jected into a network in an episode. The injection rate is set
to 0.5 packets per cycle per node, which means that 8 pack-
ets are injected per cycle until 1000 cycles in the 4x4 mesh
network. All the evaluations are done ten times and average
values of the ten trials are reported in this paper.

Figure 8 shows the total rewards of all the nodes in the
network. First, we compare (3) Random update method with
the replay buffer methods ((4) and (5)). OS-ELM QN with
an experience replay buffer shows a better learning perfor-
mance than the random update method, which means that

†As a preliminary evaluation, OS-ELM QN was evaluated by
varying the batch size from 16 to 128. Since there was no signif-
icant difference in the results, we selected 64 as a middle of these
batch sizes.
††OS-ELM QN was evaluated by varying the Q-learning in-

terval from 25 to 100 cycles. A shorter Q-learning interval can
achieve a higher reward especially in earlier episodes, while that
with 25 cycles slightly decreases the reward in 40 episodes or later;
we thus selected 50 cycles as the Q-learning interval.
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Fig. 9 Packet latency vs. training episodes of different methods. Y-axis
shows the total number of cycles to transfer a packet.

the experience replay buffer technique contributes signifi-
cantly to the performance of OS-ELM QN.

We then focus on performance differences between
DQN based methods ((1) and (2)) and OS-ELM QN based
methods ((4) and (5)). The OS-ELM QN methods can be
trained more efficiently than the DQN methods in the first
20 episodes. This is because the OS-ELM QN methods can
optimize parameters in one-shot, while the DQN methods
optimize the parameters gradually. However, in subsequent
episodes, the DQN methods acquire higher average reward
values than the OS-ELM QN methods. This is because the
OS-ELM QN methods use a 3-layer neural network and
only β can be optimized.

Next, we consider the performance between the re-
play buffer technique ((1) and (4)) and the prioritized replay
buffer technique ((2) and (5)). These two techniques show
some differences in the early episodes of the training process
for both DQN and OS-ELM QN. The total reward values
increase quickly for the prioritized replay buffer methods in
the first 10 episodes. This result indicates that the priori-
tized replay technique can optimize the parameters quickly.
In the end, these two techniques are converged to the sta-
tionary state. In the stationary state, the differences between
OS-ELM QN with a replay buffer and that with a priori-
tized replay buffer are not significant. In our experiments,
the number of next hops (i.e., the number of actions) in each
node is mostly small. Since the diversity of actions and their
outcomes is limited especially in mesh topologies, the ben-
efit of the prioritized replay buffer is also limited.

Finally, we evaluate these methods in terms of the
packet transfer latency. Figure 9 shows the relationship be-
tween the packet latency and training length in episodes.
In addition to the reinforcement learning methods ((1) to
(5)), we evaluate the latency of OSPF in the same environ-
ment for comparison. Comparing the reinforcement learn-
ing methods with OSPF, the latency in the reinforcement
learning methods decrease significantly. We set the neg-
ative number of the latency as the reward value as pro-
posed in Sect. 4.2.1. Therefore, the total latencies of the
reinforcement learning methods decrease as the number of

Fig. 10 Packet transfer latency under uniform traffic in 4x4 mesh
topology.

episodes increases. We will discuss the latency more detail
in Sect. 5.3.

5.3 Packet Transfer Latency

We evaluate the packet transfer latency under various traffic
patterns. We inject uniform, transpose, and bit reverse traf-
fic pattern packets into a network. In the simulations, the
packet injection rate is varied from 0 to 0.5 packets per cy-
cle per node in the cases of (2) DQN, (5) OS-ELM QN, and
OSPF. We use the DQN and OS-ELM QN models which
have been trained with 100 episodes† under a uniform traf-
fic pattern††. The trained injection rates are 0.5 and 0.125
for the 4x4 mesh and 8x8 mesh networks, respectively. The
machine learning time is not integrated in the network sim-
ulations. This paper focuses on the machine learning times
of OS-ELM QN and DQN. They are separately evaluated in
Sect. 5.4.

5.3.1 4x4 Mesh Topology

Figures 10, 11, and 12 show the latencies in uniform, trans-
pose, and bit reverse traffic patterns, respectively. The la-
tency value displayed in these figures is an average packet
transfer latency of all the generated packets. Standard devi-
ations of the packet latencies are shown in Tables 4, 5, and
6, respectively.

In Fig. 10, there is little difference in the latency when
the injection rate is less than 0.25. However, after that, the
two reinforcement learning methods ((2) and (5)) achieve
lower latencies than OSPF. These results demonstrate that
these reinforcement learning methods choose routing paths

†As shown in Figs. 8 and 9, the reinforcement learning meth-
ods are fully converged within 100 episodes. We thus select 100
episodes as the pretraining time.
††Especially in the uniform traffic, communication occurs in all

the source-destination pairs, and traffic workload is balanced over
the network. Since an agent is trained for each source-destination
pair in the reinforcement learning methods, all the agents can be
trained in the uniform traffic pattern. We thus select the reinforce-
ment learning models pretrained by the uniform traffic.
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Fig. 11 Packet transfer latency under transpose traffic in 4x4 mesh
topology.

Fig. 12 Packet transfer latency under bit reverse traffic in 4x4 mesh
topology.

Table 4 Average and standard deviation of packet latency under uniform
traffic in 4x4 mesh topology.

Injection rate 0.125 0.25 0.35 0.5

DQN
avg 7.070 9.466 82.30 275.3
std 4.532 6.018 68.43 211.8

OS-ELM avg 7.265 10.44 97.44 309.7
QN std 4.549 6.241 88.87 249.8

OSPF
avg 7.223 21.83 181.9 405.5
std 4.601 15.73 179.2 339.5

Table 5 Average and standard deviation of packet latency under trans-
pose traffic in 4x4 mesh topology.

Injection rate 0.125 0.25 0.35 0.5

DQN
avg 12.18 283.6 724.4 1133
std 9.811 290.8 552.9 763.3

OS-ELM avg 22.79 273.3 647.2 1059
QN std 15.97 138.2 337.0 612.4

OSPF
avg 17.57 350.4 788.1 1215
std 12.89 296.9 613.3 850.1

intelligently when the packet injection rate is increased.
To further analyze the results, we measure the aver-

age number of packets processed in each node during an

Table 6 Average and standard deviation of packet latency under bit re-
verse traffic in 4x4 mesh topology.

Injection rate 0.125 0.25 0.35 0.5

DQN
avg 14.86 285.3 672.5 1106
std 8.212 330.7 616.2 805.9

OS-ELM avg 10.90 210.6 567.3 975.1
QN std 5.495 169.5 337.4 563.0

OSPF
avg 20.02 435.2 933.2 1433
std 11.37 294.8 580.8 843.0

Fig. 13 Average number of packets processed in each node during an
episode (OS-ELM QN, 4x4 mesh, uniform traffic).

Fig. 14 Average number of packets processed in each node during an
episode (OSPF, 4x4 mesh, uniform traffic).

episode. Uniform traffic is used as well. The packet injec-
tion rate is fixed at 0.5. OS-ELM QN and OSPF are com-
pared in terms of the load balancing of packets.

Figures 13 and 14 show the results of OS-ELM QN
and OSPF, respectively. In these figures, a darker green in-
dicates more packets, which cause a congestion around it.
Since a uniform traffic is used in this experiment, the traffic
workload should be evenly distributed over all the nodes. In
the case of OSPF (Fig. 14), however, the workload is high
in central nodes while it is low in corner nodes. In the case
of OS-ELM QN (Fig. 13), the traffic workload becomes uni-
form compared with the OSPF case, demonstrating that OS-
ELM QN can balance the workload better than OSPF. In
other words, the routing paths are intelligently decided to
avoid congestions.

In Fig. 12, the two reinforcement learning methods are
better than OSPF. These results also show that since these
methods choose routing paths to avoid congestions, they can
reduce the latencies. Comparing these two methods, OS-
ELM QN reduces more latency compared to DQN. This re-
sult shows that the simple model of OS-ELM QN is well
optimized to this problem. In Fig. 11, the reinforcement
learning methods are slightly better than OSPF, but the dif-
ferences are small and their benefits are not significant in
this pattern.

5.3.2 8x8 Mesh Topology

We evaluate packet transfer latencies in an 8x8 mesh topol-
ogy. Figures 15, 16, and 17 show latencies in uniform,
transpose, and bit reverse traffic patterns, respectively. In
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Fig. 15 Packet transfer latency under uniform traffic in 8x8 mesh
topology.

Fig. 16 Packet transfer latency under transpose traffic in 8x8 mesh
topology.

Fig. 17 Packet transfer latency under bit reverse traffic in 8x8 mesh
topology.

Fig. 15, latency differences between the three methods are
decreased compared to Fig. 10. In Figs. 16 and 17, the re-
inforcement learning methods achieve lower latencies than
OSPF. In Fig. 16, when the injection rate is more than 0.1,
latencies of OS-ELM QN are approximately 80% of those

Table 7 Average and standard deviation of packet latency under uniform
traffic in 8x8 mesh topology.

Injection rate 0.125 0.25 0.35 0.5

DQN
avg 27.82 415.1 915.6 1447
std 17.57 318.12 615.1 881.9

OS-ELM avg 55.18 517.5 1054 1616
QN std 26.08 426.0 744.8 1038

OSPF
avg 37.69 487.0 1008 1555
std 34.05 390.1 689.8 972.3

Table 8 Average and standard deviation of packet latency under trans-
pose traffic in 8x8 mesh topology.

Injection rate 0.125 0.25 0.35 0.5

DQN
avg 144.3 722.1 1482 2175
std 135.0 594.5 966.4 1311

OS-ELM avg 226.5 966.9 1679 2424
QN std 200.7 771.0 1129 1526

OSPF
avg 343.0 1171 1992 2830
std 320.6 843.0 1357 1896

Table 9 Average and standard deviation of packet latency under bit re-
verse traffic in 8x8 mesh topology.

Injection rate 0.125 0.25 0.35 0.5

DQN
avg 120.0 758.6 1446 2168
std 90.48 483.9 755.5 1224

OS-ELM avg 182.1 896.1 1711 2469
QN std 153.8 622.8 1012 1344

OSPF
avg 468.2 1524 2585 3642
std 394.2 985.0 1568 2096

of OSPF. In Fig. 17, when the injection rate is more than 0.1,
latencies of OS-ELM QN are approximately 70% of those
of OSPF.

Please note that the latency differences between the
three methods in the 8x8 mesh are larger than those in the
4x4 mesh except for the uniform traffic. This is because
since the network size is increased from 4x4 to 8x8, the
number of available routing paths increases and thus ben-
efits of selecting best paths also increase. It is thus expected
that a larger network size has more room to reduce transfer
latencies. Comparing the two reinforcement learning meth-
ods, DQN is superior to OS-ELM QN in the 8x8 network as
shown in Fig. 17. In Sect. 5.3.1, we reported that OS-ELM
QN reduces more latency compared to DQN in the 4x4 mesh
with bit reverse traffic. In the larger network, however, OS-
ELM QN is inferior to DQN due to a high generalization
performance of DQN. It seems that DQN can take advan-
tage of the high learning ability in the larger network. The
network simulation results show that a larger network size
has more room to reduce transfer latencies, while the ma-
chine learning times increase proportionally to the number
of nodes, as we will show in Sect. 5.4.

In addition to the packet transfer latencies shown in
Figs. 10-12 and 15-17, their average and standard deviation
are also shown in Tables 4-9. The latency value displayed in
these figures is an average packet transfer latency of all the
generated packets. It is observed that the standard deviation
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Table 10 Number of nodes in each layer in DQN and OS-ELM QN mod-
els for ARPANET.

Input layer Hidden layers Output layer
DQN 29 64 64 2

OS-ELM QN 29+2 64 1

Fig. 18 Packet transfer latency under uniform traffic in ARPANET.

Table 11 Average and standard deviation of packet latency under uni-
form traffic in ARPANET.

Injection rate 0.14 0.28 0.38 0.52

DQN
avg 67.79 531.3 950 1505
std 67.82 450.7 734.0 1096

OS-ELM avg 95.25 585.5 993.9 1579
QN std 100.7 531.7 817.1 1200

OSPF
avg 118.9 615.9 1059 1660
std 127.1 561.5 877.1 1285

increases as the number of packets that take more transfer
latency is increased.

5.3.3 ARPANET

In addition, OS-ELM QN, DQN, and OSPF are evaluated
on ARPANET (1972) as a realistic topology. Model pa-
rameters of OS-ELM QN and DQN are listed in Table 10.
Both the OS-ELM QN and DQN use a prioritized replay
buffer. These reinforcement learning models were trained
for 100 episodes on the ARPANET assuming a uniform traf-
fic. Packets are generated in the first 1000 cycles, and packet
generation rate is 0.28 packets per cycle per node (i.e., 8
packets per step). An episode is completed when packet
transfers of all the generated packets are completed. These
models are evaluated in terms of packet transfer latency.

Figure 18 shows the evaluation results, where the laten-
cies are averaged over ten trials. Standard deviations of the
packet latencies are shown in Table 11. In the ARPANET,
the number of available paths for each destination is limited
compared with the mesh topologies, reducing the benefits of
route optimization by the reinforcement learning. The eval-
uation results show that the performance improvements by
the reinforcement learning are limited compared with those
in the mesh topologies. Nevertheless, OS-ELM QN is better

Table 12 Inference time and learning time (sec) for 4x4 mesh topology
on Intel Core i7-10700 CPU.

Inference time Learning time

DQN 1326.0 3191.2

OS-ELM QN 1185.1 1367.7

DQN / OS-ELM QN 1.120 2.333

Table 13 Standard deviation of inference time and learning time (sec)
for 4x4 mesh topology on Intel Core i7-10700 CPU.

Inference time Learning time

DQN 3.310 74.25

OS-ELM QN 25.91 63.76

Table 14 Inference time and learning time (sec) for 8x8 mesh topology
on Intel Core i7-10700 CPU.

Inference time Learning time

DQN 2674.8 12531

OS-ELM QN 2351.7 5528.5

DQN / OS-ELM QN 1.137 2.267

Table 15 Standard deviation of inference time and learning time (sec)
for 8x8 mesh topology on Intel Core i7-10700 CPU.

Inference time Learning time

DQN 10.45 102.1

OS-ELM QN 32.01 223.7

than OSPF, demonstrating a potential of OS-ELM QN in a
practical network.

5.4 Learning Time

In this section, we evaluate the learning time of OS-ELM
QN and DQN. The evaluation condition is the same as that
in Sect. 5.2. Table 12 shows the inference and learning times
of the DQN and OS-ELM QN methods in 100 episodes.
Their standard deviations are shown in Table 13.

The values in the table are in seconds. The running
time of the network simulator and experience sampling are
not included. The learning time results show that the OS-
ELM QN method is about 2.33 times faster than the DQN
method. This is because OS-ELM QN does not use the
backpropagation algorithm but one-shot optimization. As
a result, the OS-ELM QN model can be trained faster.

The inference and learning times in the 8x8 network are
shown in Table 14. Their standard deviations are shown in
Table 15. Eight packets are injected in each cycle, which
means 0.125 packets per cycle per node. These results
show that the execution times increase in proportional to the
number of nodes. The speedup ratios by the OS-ELM QN
against the DQN are almost constant when the network size
is changed from 4x4 to 8x8.

In this paper, we assume the proposed reinforcement
learning based routing optimization method is implemented
on intelligent network equipment. To make this assumption
more realistic, we implement the proposed OS-ELM QN
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Table 16 Specification of Bluefield-2 DPU.

CPU Eight Armv8 A72 cores (64-bit) @ 2.5GHz

NIC Two 25GbE I/Fs (2xSFP56)

PCIE Gen 4.0 x8

DDR4 Memory 16GB

eMMC Memory 64GB

Table 17 Average of inference time and learning time (sec) for 4x4 mesh
topology on NVIDIA Bluefield-2 DPU.

Inference time Learning time

DQN 10212 41017

OS-ELM QN 6661 4784

DQN / OS-ELM QN 1.533 8.574

Table 18 Standard deviation of inference time and learning time (sec)
for 4x4 mesh topology on NVIDIA Bluefield-2 DPU.

Inference time Learning time

DQN 31.50 616.9

OS-ELM QN 48.12 78.08

algorithm on NVIDIA Bluefield-2 DPU as a commercial
network processing platform. Table 16 shows the specifi-
cation of the DPU used in this experiment, respectively.

We evaluate OS-ELM QN and DQN in terms of train-
ing and inference times on the DPU. A 4x4 mesh topology
is used. Model parameters are the same as those in Table 3.
Table 17 shows the evaluation results, where the execution
times are averaged over ten trials. Table 18 shows their
standard deviations. The results show that the inference
and training of OS-ELM QN are faster than DQN by 1.533
times and 8.574 times, respectively. These results demon-
strate benefits of the computation cost reduction by the pro-
posed OS-ELM QN especially in such network processing
platform. Please note that both the DQN and OS-ELM
QN methods invoke the inference and training functions
implemented with Tensorflow. Since the inference function
is called more frequently compared with the training func-
tion during the 100 episodes, invocation costs of Tensorflow
become dominant especially in the inference time of OS-
ELM QN in DPU.

6. Discussion

This section discusses the evaluation results of OS-ELM QN
and its related techniques.

First, we compare OS-ELM QN with DQN in packet
routing. In terms of the learning performance, while OS-
ELM QN performed better than DQN in the early stages of
learning, the final reward of DQN was better than OS-ELM
QN in Fig. 8. These results imply that OS-ELM QN can
adapt to traffic patterns quickly, while DQN still provides a
stable and high-performance routing. In terms of the learn-
ing time, OS-ELM QN could be trained 2.33 times faster
than DQN. OSPF showed a lower transfer efficiency than
the reinforcement learning methods, though OSPF does not

require a training time of neural networks. These results
demonstrated that there is a tradeoff between performance
and learning cost.

The three sampling techniques were compared in this
paper. In this environment, although the random update
technique did not work well, the experience replay and pri-
oritized experience replay techniques improved the learn-
ing efficiency. Especially, the prioritized experience replay
technique achieved a higher efficiency than the experience
replay technique in the first 10 episodes of Fig. 8.

Regarding the reinforcement learning settings (e.g.,
state, action, reward) introduced in Sect. 4.2.1, we consider
that these settings worked sufficiently based on the results
from Fig. 9 and Sect. 5.3. Further tuning on the reinforce-
ment learning settings is our future work.

In this paper, each node has (N−1) neural networks, so
the number of neural networks in a network is quadratically
increased when the network size is increased. To alleviate
this problem, we are considering to combine the state (i.e.,
buffer occupancies) and one-hot encoded destination node
as an input state. This modification may affect the accuracy
while it can compress the number of neural networks in each
node.

7. Conclusions

In this paper, we proposed OS-ELM QN as an OS-ELM
based reinforcement learning method for intelligent packet
routing. We evaluated the performance of OS-ELM QN by
using a network simulator to measure the packet transfer la-
tency. Compared to an existing work [8], we changed the
sampling technique and input structure of neural networks.
Experimental results showed that introducing the experience
replay buffer improves the learning performance. OS-ELM
QN achieves a 2.33 times speedup than DQN in terms of the
learning speed. Regarding the packet transfer latency, OS-
ELM QN is comparable or slightly inferior to DQN while
they are better than OSPF in most cases since they can dis-
tribute traffic congestions.
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