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Abstract

Toward machine learning based prediction services, the
prediction server has multiple predictors and selects an
appropriate one based on past feedbacks from the clients.
In this case, three messages including request, reply, and
feedback, are required for each prediction request. Packets
are typically transmitted and received via a network proto-
col stack in OS kernel, and performance improvement can
be expected by avoiding the protocol stack since it degrades
the communication performance especially for small pack-
ets. We implement the prediction server using network
optimization approaches including kernel-bypassing and
in-NIC processing approaches. Evaluation results show
that these network optimizations are beneficial to improve
the prediction server performance compared to a baseline
prediction server using a standard network protocol stack.

1. Introduction

Machine learning is widely used in various applica-
tions especially that require classification, regression, and
clustering tasks. Since machine learning requires a huge
amount of data and computation cost for learning, the
prediction services that receive requests, perform predic-
tions, and reply the results will play an important role.
Since an appropriate predictor differs depending on a given
environment, the prediction server is required to select
an appropriate predictor based on weights of predictors.
Then it performs a prediction with the selected predictor.
The weights of predictors are updated based on feedbacks
from clients. In [1], a prediction server, called Clipper, that
handles multiple models at the same time and dynamically
selects an appropriate one from them is proposed. Inspired
by [1], we also focus on the prediction server with multiple
predictors.

In this case, as shown in Figure 1, three messages
are required for each prediction request: (1) prediction
request from a client to the prediction server, (2) prediction
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Figure 1. Three messages for prediction server

result from the server to the client, and (3) feedback (e.g.,
correct or not) from the client to the server. Such messages
are typically transmitted and received via a network pro-
tocol stack in OS kernel, and performance improvement
can be expected by avoiding the protocol stack since it
degrades the communication performance especially for
small messages. In such prediction servers, we expect that
optimizations on the communication are beneficial.

2. Network Optimization Approaches

In this paper, we optimize the network processing of
the prediction servers with multiple predictors. The net-
work optimization can be classified into three approaches:
kernel-bypassing, in-kernel processing, and in-NIC pro-
cessing. Figure 2 illustrates these three approaches. In
the kernel-bypassing, the network protocol stack of OS
is bypassed and application-specific packet processing is
done at user space. This approach can be implemented
with DPDK (Data Plane Development Kit) [2]. In the in-
kernel processing, application-specific packet processing is
performed at the entrance of the network protocol stack.
In the case of Linux, it can be implemented with Netfil-
ter framework [3]. In the in-NIC processing, application-
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Figure 2. Three network optimization approaches

specific packet processing is implemented in Network
Interface Cards (NICs) as dedicated hardware logic. It
can be implemented with FPGA (Field-Programmable Gate
Array) based NIC that has high-speed network interfaces,
such as NetFPGA-SUME [4].

The kernel-bypassing and in-kernel processing are
software-based approaches, while the in-NIC processing
is a hardware-based approach. In this paper, the predic-
tion server with multiple predictors is optimized with the
kernel-bypassing and in-NIC processing approaches.

3. Design and Implementation

Baseline. We assume a simple image classification
is performed as a prediction service. In this case, a predic-
tion request includes an image and the reply includes the
classification result. Then, as a feedback, the client notifies
the server whether the prediction result is correct or not.
An appropriate predictor is selected from ten predictors
based on such feedbacks by using Exp3 or Exp4 algorithm
[5]. The above-mentioned service is implemented as a user-
space application in the case of baseline server.

Kernel-Bypassing. In the kernel-bypassing version,
the prediction server with ten predictors and the predictor
selection function based on Exp3 or Exp4 algorithm is
implemented as a user-space application, and its commu-
nication is optimized by DPDK. DPDK version 17.05.2 is
used to bypass the network protocol stack of Linux kernel.

In-NIC Processing. For the in-NIC processing ver-
sion, the prediction server that has a prediction logic
and the predictor selection logic based on Exp3 or Exp4
algorithm is implemented for NetFPGA-SUME board that
has a Xilinx Virtex-7 690T FPGA and four 10Gbit Eth-
ernet (10GbE) interfaces. Based on Reference NIC design
of NetFPGA-SUME [4], the prediction server module is
inserted between Input Arbiter and Output Port Lookup
modules. It is implemented with C++ and synthesized with

Table 1. Specification of server machine

CPU Intel(R) Core(TM) i5-3470S CPU @ 2.90GHz x 4
oS Ubuntu 17.04
NIC Intel Corporation 82599ES 10-Gigabit
FPGA NIC | NetFPGA-SUME (Xilinx Virtex-7 xc7vx690tffg1761-3)
Cable SFP+ network connection

Xilinx Vivado HLS version 2016.4. Due to a resource
limitation, only a single predictor was implemented.

4. Experimental Results and Summary

Table 1 shows the machine where the baseline, kernel-
bypassing, and in-NIC prediction servers are implemented.
Ten predictors are trained with combinations of five opti-
mizers (SGD, Adam, RNSProp, AdaGrad, and Nadam) and
two epoch numbers (1 and 10). We use MNIST dataset for
simplicity. For Exp3 and Exp4 algorithms, the v parameter
that adjusts the balance between utilization and search of
information is set to 0.1. We confirmed that an appropriate
predictor is dynamically selected based on feedbacks from
clients by using Exp3 and Exp4 algorithms.

The baseline prediction server and those optimized
by the kernel-bypassing approach and in-NIC processing
approach are evaluated in terms of prediction throughput.
Because we could not implement the ten predictors in
the FPGA NIC due to a resource limitation, throughput
of the in-NIC processing version is evaluated based on
simulations. As a result, the kernel-bypassing version is
1.9 times faster than the baseline in both the Exp3 and
Exp4 cases. The in-NIC processing version is 4.6 times
faster than the baseline in the Exp3 case and 3.4 times
faster in the Exp4 case. It is corresponding to 39.6% of
the 10GbE line rate in the case of Exp3 algorithm.

These results show that the network optimizations are
beneficial to enhance the prediction server performance
compared to the baseline. As future work, we are still opti-
mizing the three implementations for higher performance.
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